Dissertações/Teses

Clique aqui para acessar os arquivos diretamente da Biblioteca Digital de Teses e Dissertações da UFPA

2024
Descrição
  • ERMINIO AUGUSTO RAMOS DA PAIXAO
  • MULTILAYER RESOURCE ORCHESTRATION FOR ARCHITECTURES

  • Orientador : DIEGO LISBOA CARDOSO
  • Data: 29/11/2024
  • Mostrar Resumo
  • Internet Protocol (IP), operators and researchers are seeking solutions to meet this demand. One of the most promising approaches is Heterogeneous Cloud Radio Access Networks (HCRAN), which has the potential to address the issues of the current generation while offering improvements such as centralized processing and greater energy efficiency. However, the deployment of these new architectures faces two critical challenges: high energy consumption and the underutilization of PRRHs (Remote Radio Heads), caused by the tidal effect, and the processing capacity limitation of BBUs (BaseBand Units), known as Hard Capacity, which can negatively impact network performance when exceeded. This thesis proposes a multilayer approach that enables the reconfiguration of underutilized PRRHs and an optimized mapping between PRRHs and BBUs, aiming for high availability, energy savings, and reduced high-speed processing. The results obtained, compared to other approaches in the literature, demonstrate that the proposed model can optimize the resources of PRRHs and BBUs without compromising the user's minimum QoS.

  • FÁBIO SOUZA DE ARAÚJO
  • PERFORMANCE ANALYSIS OF AN OPTICAL SYSTEM BASED ON MACH-ZEHNDER INTERFEROMETER AND SEMICONDUCTOR OPTICAL AMPLIFIER
  • Orientador : MARCOS BENEDITO CALDAS COSTA
  • Data: 18/11/2024
  • Mostrar Resumo
  • This work presents the design of a fully optical system based on a Mach-Zenhder Interferometer (MZI) and Semiconductor Optical Amplifier (SOA) combined with Bragg Grating Fibers (FBGs). The optical system is made up of three main parts, namely: transmission session, SOA-MZI session and reception session. The commercial software Optisystem was used for the study and simulation of the optical design and the system performance parameters were analyzed, i.e., Q-Factor and Bit Error Rate (BER) for different bit sequences, input powers and lengths. optical link. The results obtained showed a significant variation in the Q-Factor and BER values for different bit sequences and for the variation in the size of the optical fiber length. In general, the proposed system performed well, proving to be a viable project for application in metropolitan networks with links of up to 50 km.

  • CLEVERSON VELOSO NAHUM
  • Intent-based radio resource scheduling using reinforcement learning for RAN Slicing scenarios

  • Orientador : ALDEBARO BARRETO DA ROCHA KLAUTAU JUNIOR
  • Data: 04/11/2024
  • Mostrar Resumo
  • The network slicing at the radio access network (RAN) domain, called RAN slicing, requires elasticity, efficient resource sharing, and customization in order to deal with scarce and limited frequency spectrum resources while fulfilling the slice intents defined in a service-level agreement (SLA). In this scenario, radio resource scheduling (RRS) is an essential function to provide the resource management needed to prevent SLA violations, hence providing sufficient radio resources for RAN slices to accomplish their goals. The wide variety of scenarios supported in 5G and beyond 5G (B5G) networks makes the RRS problem in RAN slicing scenarios a significant challenge. This thesis proposal provides an intent-based RRS for RAN slicing using reinforcement learning (RL) with the slice requirements defined in a SLA. The proposed method aims to prevent SLA violations by making the management of resource block groups (RBGs) available between slices and users equipment (UEs) using inter-slice and intra-slice schedulers, respectively. It also proposes a slice prioritization structure to assure SLA requirements of more important slices when the available radio resources are not sufficient to guarantee all slice’s requirements fulfillment. It presents partial results obtained using an intent-based RRS using RL for a fixed number of slices and UEs to prevent SLA violations, aiming to demonstrate the importance of intent-based RRS design for scenarios with RAN slicing. It also presents a discussion about the related work limitations and improvements in the implemented method, proposing a new approach to deal with slices and UEs insertions in the network while avoiding the SLA  iolations and improving the network performance.

  • ADRIEL BRITO DA SILVA
  • Título: Estudo Comparativo de Métodos de Filtragem e Análise de Sinais em Medições Não-Invasivas de Descargas Parciais em Sistemas de Alta Tensão: Abordagens com Diferentes Filtros Clássicos e Transformada Wavelet.

    Artigo Publicado no Congresso Brasileiro de Automática 2024 – CBA2024, como descrito a seguir:

    Artigo: SILVA, A. B., NUNES, M. V. A., ROMANO, M. A. de A., ALMEIDA, V. V. M. de, MANITO, A. R. A., DE MORAIS, A. M., e SILVA, R. do N.; “Técnicas de Redução de Ruídos em Medições Não-Invasivas de Descargas Parciais utilizando Diferentes Filtros e Transformada Wavelet”, Congresso Brasileiro de Automática 2024 – CBA2024, Rio de Janeiro, 15 a 18 de outubro de 2024.

  • Orientador : MARCUS VINNICIUS ALVES NUNES
  • Data: 30/10/2024
  • Mostrar Resumo
  • O fenômeno das descargas parciais (DP) ocorre de maneira segmentada no isolamento elétrico. Com o tempo, essas ocorrências podem evoluir para um estado crítico, resultando em curtos-circuitos e danos significativos aos equipamentos elétricos. A identificação e análise de DP são essenciais para a manutenção preventiva e a integridade dos sistemas de alta tensão. No entanto, a interferência de várias fontes de ruído, como outros equipamentos elétricos e fenômenos eletromagnéticos, torna a detecção dos sinais de DP desafiadora. Este trabalho apresenta um estudo comparativo de métodos de filtragem e análise de sinais em medições não-invasivas de descargas parciais em sistemas reais de alta tensão, utilizando diferentes filtros clássicos e a Transformada Wavelet (TW). A pesquisa avaliou a eficácia de diversos métodos de filtragem na redução de ruídos, proporcionando uma melhor identificação e caracterização dos sinais de DP. Foram implementados e comparados filtros clássicos como Média Móvel (MA), Savitzky-Golay (SG), Butterworth (BW), Chebsyshev (Tipo I) e filtragem adaptativa como Mínimos Quadrados Médios (LSM), além das técnicas baseadas em decomposição de multirresoluções wavelets, para verificar métricas como a Razão Sinal-Ruído (SNR), Correlação-Cruzada (CC), Erro Quadrático Médio (RMSE), Curtose (K), e outras, considerando a preservação das características essenciais dos sinais de DP. Os resultados obtidos demonstraram que as técnicas de filtragem são cruciais para a mitigação dos efeitos de ruídos, embora métodos mais clássicos apresentem eficiência limitada quando comparados àquelas com capacidade de adaptação. A análise comparativa revelou pontos críticos que, embora tenham demonstrado uma eficiência restrita, contribuem significativamente para o aprimoramento dos métodos de monitoramento e diagnóstico dos equipamentos elétricos.

  • LOREDDANA MONTEIRO BANDEIRA DE OLIVEIRA
  • ANÁLISE E APRIMORAMENTO DE METODOLOGIA PARA DEFINIÇÃO DOS LIMITES DE CONTINUIDADE DOS CONJUNTOS ELÉTRICOS DAS DISTRIBUIDORAS DE ENERGIA ELÉTRICA NO BRASIL

  • Orientador : MARIA EMILIA DE LIMA TOSTES
  • Data: 10/10/2024
  • Mostrar Resumo
  • O trabalho tem por objetivo analisar comparativamente as metodologias de definição dos conjuntos para estabelecimento de Metas de Qualidade do setor elétrico relativas aos indicadores de DEC e de FEC, avaliando se os índices e reflexos financeiros estão aderentes às realidades locais e propor o aprimoramento da metodologia vigente para definição dos limites de continuidade dos conjuntos elétricos das distribuidoras de energia elétrica no Brasil, através da análises de mais atributos que no momento não são adotados pela agencia reguladora, porém podem capturar particularidades principalmente das distribuidoras da região Norte e Nordeste, que não são capturadas na metodologia vigente.

  • VANILZE VAZ MONTEIRO DE ALMEIDA
  •  

     
  • Orientador : MARCUS VINNICIUS ALVES NUNES
  • Data: 23/09/2024
  • Mostrar Resumo
  •  

     
  • LUCIAN MORAIS RIBEIRO
  • MODELO DE PERDA DE PROPAGAÇÃO PARA DOIS RAIOS COM MODIFICAÇÃO DE FASE PARA  MOBILIDADE APLICADO À RECEPTOR LORA SOBRE RIO

  • Orientador : FABRICIO JOSE BRITO BARROS
  • Data: 19/09/2024
  • Mostrar Resumo
  • Conforme previsto por especialistas, houve um crescimento exponencial do número de dispositivos IoT usados pela população em geral. Entre estes dispositivos, um dos grupos mais notáveis é o de dispositivos Long Range (LoRa). Entre as características da tecnologia LoRa destaca-se o baixo consumo de energia, ao mesmo tempo em que o dispositivo proporciona uma grande área de cobertura. Essa tecnologia, quando aplicada na região amazônica – uma área densamente arborizada, úmida e com populações afastadas dos centros urbanos – pode oferecer uma nova gama de serviços aos nativos da região. Partindo do princípio que os modelos de propagação mais conhecidos não estão ajustados às especificidades da região amazônica, o que torna  os enlaces de rádio de difíceis predições, visamos apresentar soluções para este problema através deste trabalho que apresenta ajustes no modelo de perda de propagação Terra-Plana para atender comunicações LoRa sob os rios amazônicos, quando os dispositivos receptores estão em movimento.

  • EDRIANE DO SOCORRO SILVA COSTA
  • Convolutional Neural Networks to Assist in the Diagnosis of Cervical Cancer Screening Tests

  • Orientador : CARLOS RENATO LISBOA FRANCES
  • Data: 18/09/2024
  • Mostrar Resumo
  • The cervical screening test is a widely used method for detecting cervical cancer and precancerous lesions. Automated classification of results can help healthcare professionals accurately identify abnormal cytology patterns, increasing accuracy and consistency in anomaly detection. Furthermore, the systematization of this solution can reduce analysis time and associated costs, enabling the availability of an immediate pre-diagnosis, especially in remote areas. This approach also has the potential for integration into public health systems, contributing to more efficient and accessible care. Thus, this study proposes the application of pre-trained convolutional neural network models, VGG16 and VGG19, for the classification of images resulting from the liquid-based cytology technique, comparing the performance between classification of 4 classes and 2 classes with balanced and unbalanced data. Several topologies were tested, and results showed accuracies of up to 98%, along with good classification metrics, demonstrating potential as a solution to assist healthcare professionals in a more accurate classification of these results.

  • ANA CAROLINA DIAS BARRETO DE SOUZA
  • METODOLOGIA DE AVALIAÇÃO DO DESEMPENHO ENERGÉTICO DE INTEGRAÇÃO DE CARROS ELÉTRICOS EM EDIFICAÇÕES

  • Orientador : MARIA EMILIA DE LIMA TOSTES
  • Data: 06/09/2024
  • Mostrar Resumo
  • O avanço das discussões sobre mudanças climáticas e impactos ambientais, atrelada às questões energéticas, evoluiu as metodologias de diagnóstico que vêm incorporando nas análises não só sistemas de consumo, mas também de geração de energia. Essas incorporações possibilitaram a classificação de Edificações autossuficientes de energia, que são caracterizadas por possuírem um sistema de geração de energia renovável que supra, por completo ou parcialmente, a sua demanda de consumo. No âmbito da mobilidade elétrica, a maior adesão de veículos elétricos traz desafios e oportunidades na área de consumo, gestão e eficientização de energia elétrica. O impacto que essa carga veicular robusta e crescente pode acarretar aos ser integrada nos edifícios, novos e existentes, ainda não é contemplada nas avaliações de desempenho. Consequentemente as metodologias de obtenção das certificações e etiquetagens não levam em consideração a carga desse sistema como uso final. Portanto, analisar o impacto da integração de veículos elétricos (VE) no segmento de edificações, visa subsidiar a formulação ou revisão de metodologias de diagnósticos energéticos, que passem a contemplar o sistema carregamento de VE integrado às edificações. Como objetivo o estudo visa a elaboração de uma metodologia de diagnóstico energético de edificações brasileiras, para avaliar a integração do carregamento de veículos elétricos VE como um sistema predial de uso final. A metodologia escolhida foi a da Etiquetagem PBE Edifica, visando complementar a metodologia de diagnóstico energético de edificações do Programa Brasileiro de Etiquetagem de Edificações (PBE Edifica), apresentada através da Instrução Normativa Inmetro para edificações comerciais, de serviços e públicas (INI-C), que avalia atualmente sistemas que possuem alto consumo de energia elétrica como: envoltória, iluminação, condicionamento de ar (calefação e/ou arrefecimento) e aquecimento de água. Através da incorporação do sistema de abastecimento de veículo elétrico, esse estudo prospecta uma contribuição positiva ao abranger mais um sistema que apresenta uma significativa carga de consumo elétrico predial. 

  • WESLEY RODRIGUES HERINGER
  • Análise de Estabilidade Transitória em Geradores Distribuídos: Considerações sobre a proteção 78PS

  • Orientador : MARCUS VINNICIUS ALVES NUNES
  • Data: 05/09/2024
  • Mostrar Resumo
  • As conexões das usinas de cogeração, constituídas essencialmente por geradores síncronos, nas redes de distribuição podem provocar impactos técnicos, tais como, sobretensão no ponto de acoplamento comum (PAC), perda de coordenação da proteção, sobretensões transitórias, etc. Em um esforço para hospedar tais usinas de cogeração nas suas redes de distribuição, a concessionária adota os requisitos de interconexão para tais geradores, de acordo com o estabelecido pela ANEEL. Entretanto, uma condição anormal que pode ser imposta aos geradores síncronos é a perda de sincronismo em razão das faltas na rede de distribuição ou subtransmissão não eliminadas dentro do tempo crítico de falta. Uma condição de perda de sincronismo pode resultar em estresses torcionais no eixo mecânico que interliga a turbina ao gerador. Portanto, este requisito, quando aplicado, pode representar um desafio para engenheiros de proteção na tarefa de ajuste e configuração do relé contra a perda de sincronismo (relé 78PS), uma vez que o ajuste apropriado desta função requer a realização de um estudo detalhado de estabilidade transitória do sistema de distribuição ou até mesmo de transmissão, considerando a geração distribuída, sendo este o foco da presente dissertação de mestrado. 

  • JULIO LEITE AZANCORT NETO
  • ESTIMATIVA VOLUMÉTRICA DE RESÍDUOS SÓLIDOS URBANOS EM IMAGEM DE VISUALIZAÇÃO ÚNICA

  • Data: 02/09/2024
  • Mostrar Resumo
  • A gestão eficiente de resíduos sólidos é crucial para manter a cidade limpa e sustentável. Este trabalho apresenta uma metodologia que utiliza algoritmos bem estabelecidos para a estimativa de volume na gestão de resíduos sólidos urbanos a partir de imagens de única visualização. O sistema proposto baseia-se em conceitos e modelos de visão computacional de última geração, incluindo segmentação de instâncias, estimativa de profundidade e cálculo de volume baseado em nuvem de pontos. A metodologia demonstrou a capacidade de estimar com precisão o volume de objetos de resíduos sólidos, tanto individuais quanto múltiplos, em imagens. Avaliamos nossa abordagem utilizando dados do mundo real. Apesar dos desafios, como o reescalonamento manual de distâncias e conjuntos de dados limitados, nosso sistema possui um potencial considerável para refinamento e aprimoramento, visando cenários complexos como os urbanos reais. Os resultados numéricos mostraram que o sistema proposto é promissor mesmo em cenários complexos, com valores de erro percentual absoluto médio (MAPE) de 8,60% para resíduos únicos e 9.23% para resíduos múltiplos, resultando em uma média geral de 8.91%. O coeficiente de determinação foi de 95.11% para instâncias únicas e 87.64% para múltiplas. A metodologia proposta contribui significativamente para o avanço das tecnologias de gestão em smart cities

  • ULRICH KAUÊ MENDES ALENCAR DA SILVA
  • Classificação de tumores cerebrais: um estudo comparativo entre Rede Neural Convolucional e Rede Neural Convolucional com mecanismo de atenção

  • Orientador : ADRIANA ROSA GARCEZ CASTRO
  • Data: 30/08/2024
  • Mostrar Resumo
  • O tumor cerebral é caracterizado como um crescimento anormal de um grupo de células do cérebro ou próximas a ele, sendo uma das grandes causas de morte ao redor do mundo. Um dos principais problemas relacionados aos tumores cerebrais diz respeito à dificuldade do seu diagnóstico, visto que seus sintomas podem ser confundidos com os de doenças com menor grau de seriedade, fazendo-se assim necessário um conjunto de exames, onde a ressonância magnética se destaca como um dos mais importantes. Considerando a importância do problema, esta dissertação tem como objetivo apresentar os resultados de um estudo comparativo da  eficiência das Redes Neurais Convolucionais (CNN - Convolutional Neural Network) e Redes Neurais Convolucionais com mecanismo de atenção para o problema de classificação de tumores cerebrais baseada em imagens de ressonâncias magnéticas, sendo que os mecanismos de atenção, advindos da área de processamento de linguagem natural, podem ser utilizados em conjunto com as CNNs com o intuito de aumentar o foco destas redes em partes mais importantes das imagens para o processo de classificação. Os resultados obtidos, considerando especificamente a base de dados de ressonância magnética utilizada neste trabalho para o desenvolvimento dos classificadores, sugerem que o uso do mecanismo de atenção pode aumentar a eficiência das redes neurais convolucionais para o problema de classificação de tumores cerebrais sendo que, considerando as métricas de avaliação de classificadores, obtivemos na base de dados de teste, para o caso da CNN, uma acurácia de 96.41%, sensibilidade de 96.17%, F1-score de 96.61% e precisão de 96.24% enquanto que para a CNN com mecanismo de atenção obtivemos uma acurácia de 98.39%, sensibilidade de 98.35%, F1-score de 98.33% e precisão de 98.31%, o que representa uma melhoria de 1.98% em acurácia, 2.18% em sensibilidade, 1.72% em F1-score e 2.07% em precisão em relação a CNN sem mecanismo de atenção.

     

    ------------------------------------------------------------------------------------------

    Artigo aceito para XXIX Congresso Brasileiro de Engenharia Biomédica

    Titulo do artigo:

    Brain Tumor Classification: A CNN and attention-based CNN comparison

    Data: 02/09/2024 – 06/09/2024

  • CARLOS ROOZEMBERGH PORTO DA SILVA JUNIOR
  • Robust Controller  Project for Cascade Converters

  • Orientador : WALTER BARRA JUNIOR
  • Data: 23/08/2024
  • Mostrar Resumo
  • Conversion systems are critically important devices in electrical systems across various environments, especially in modern times, as multiple components with different voltage levels and sources are interconnected within a single system. Consequently, dynamic study methods of this network are examined using approaches that simplify the network based on speed modes and switching of other conversion systems, wherein fast systems are simplified to constant power loads (CPL). This method evaluates the network’s stability conditions. The study reveals that CPLs act as negative incremental resistances, and when analyzed through a linear model, it is observed that such loads reduce system damping, thereby decreasing stability margins and potentially rendering the system unstable. Additionally, uncertainties in the physical components of the circuit further affect the stability and performance of microgrids. Hence, designing regulators to mitigate oscillations caused by these effects becomes crucial to ensure the proper performance of these systems.In this work, a robust controller is designed to handle uncertainties and attenuate oscillations in the presence of constant power loads. This controller is implemented in a microgrid composed of two cascaded DC-DC buck converters, one of which is modeled as a CPL. The system model is utilized for both stability analysis and robust controller design in state space, where the compensator synthesis is structured in the form of a linear matrix inequality, solved using system optimization tools. The controller’s results are compared with another controller based on pole placement in both linear and nonlinear switched models, within the Matlab/Simulink simulation platform. Transient response and control signals are evaluated graphically and through performance indices under various operating conditions, including load disturbances and system parameter variations.

  • THIAGO DE ARAUJO COSTA
  • A Temporal Methodology for Assessing the Performance of Concatenated Codes in OFDM Systems for 4K-UHD Video Transmission

  • Data: 16/08/2024
  • Mostrar Resumo
  • The communication channel is a critical part of the process of information degradation. In the 4K ultra-resolution video transmission domain, the communication channel is a crucial part where information degradation occurs, inevitably leading to errors during reception. To enhance the transmission process in terms of fidelity, advanced technologies such as digital video broadcasting terrestrial (DVB-T) and its evolutionary successor, digital video broadcasting terrestrial second generation (DVB-T2), are utilized to mitigate the effects of data transmission errors. Within this scenario, this research presents an innovative methodology for the temporal analysis of 4K ultra-resolution video quality under the influence of additive white Gaussian noise (AWGN) and Rayleigh channels. This analytical endeavor is facilitated through the application of concatenated coding schemes, specifically, the Bose-Chaudhuri-Hocquenghem concatenated low-density parity check (BCH-LDPC) and Reed-Solomon concatenated convolutional (RS-CONV) coders. A more comprehensive understanding of video quality can be attained by considering its temporal variations, a crucial aspect of the ongoing evolution of technological paradigms. In this study, the Structural Similarity Index (SSIM) serves as the main metric for quality assessment during simulations. Furthermore, the simulated Peak Signal-to-Noise Ratio (PSNR) values validate these findings, exhibiting consistent alignment with the SSIM-based evaluations. Additionally, the performance of the BCH-LDPC significantly outperforms that of RS-CONV under the 64-QAM modulation scheme, yielding superior video quality levels that approximate or surpass those achieved by RS-CONV under QPSK (Quadrature Phase Shift Keying) modulation, leading to an increase in spectral efficiency. This enhancement is evidenced by SSIM gains exceeding 78% on average. The computation of average gains between distinct technologies in video quality analysis furnishes a robust and comprehensive evaluation framework, empowering stakeholders to make informed decisions within this domain. 

  • JOHN LUCAS RODRIGUES PORTILHO DE SOUSA
  • Entropy-based Client Selection Strategy for  Federated Learning over Vehicular Network Environments

  • Orientador : EDUARDO COELHO CERQUEIRA
  • Data: 13/08/2024
  • Mostrar Resumo
  • Federated Learning (FL) emerges as a promising solution to enable collaborative model training for autonomous vehicles while preserving privacy and addressing communication overhead issues. Efficient client selection for participation in the training process remains challenging, especially in scenarios with statistical heterogeneity of data distribution and client failure events. Client failure, an uncontrollable event during training, reduces accuracy, convergence, and speed. This master thesis introduces an entropy-based client selection mechanisms for FL over Vehicular Network environments with client failure and non-IID data distributions. The proposed method is compared to a random selection mechanism in both IID and non-IID scenarios, as well as scenarios with random client drops. The results demonstrate that entropy-based selection outperforms other methods regarding training loss, accuracy, and Area Under the Roc Curve, particularly in high client dropout and non-IID scenarios. These findings highlight the importance of considering entropy data for client selection to address the challenges posed by client failure and statistical heterogeneity in  FL over Vehicular Network.

  • ALVARO CHRISTIAN MONTAÑO SAAVEDRA
  • EXPERIMENTAL INVESTIGATION OF ROBUST CONTROL STRATEGIES APPLIED TO IMPROVING THE PERFORMANCE OF A BUCK DC/DC POWER CONVERTER WITH SINGLE INDUCTOR MULTIPLE OUTPUT STRUCTURE

  • Data: 05/08/2024
  • Mostrar Resumo
  • Recently, DC/DC power converters have gained wide attention, especially in industry, telecommunications, and the control of renewable energy sources. The increase in the use of this technology can be explained by the growing demand for high-quality DC voltage regulation in various applications. Additionally, recent advances in power electronics along with control engineering have accelerated the development of DC/DC power converters. Therefore, they looked for optimize these converters in several ways, for example, improving conversion efficiency and reducing their weight and cost. In the proposed work, control strategies for voltage regulation in a single-inductor, dual-output Buck DC-DC converter system (SIDO) are investigated. Based on a nominal multiple-input, multiple-output plant model and performance requirements, both a Linear Quadratic Regulator (LQR) and a Decoupled PI control strategy are designed to control the power converter system under parametric uncertainties such as variation of voltage source, variations of constant power loads (CPLs) and variations of load resistances. A prototype of a single inductor dual output DC-DC Buck converter was developed for experimental testing. The results indicate that the proposed LQR strategy approach is reasonable and provides adequate performance improvements in SIDO converter controllers under conditions of varying voltage source and varying load resistances, offering robust performance and system stability; however, more research is needed to address variations in constant power loads.

  • WENDLER LUIS NOGUEIRA MATOS
  • UTILIZAÇÃO DE SATÉLITE GEOESTACIONÁRIO PARA AVALIAR A INCIDÊNCIA DE RAIOS EM LINHAS DE TRANSMISSÃO DO SISTEMA INTERLIGADO NACIONAL BRASILEIRO

  • Data: 24/07/2024
  • Mostrar Resumo
  • UTILIZAÇÃO DE SATÉLITE GEOESTACIONÁRIO PARA AVALIAR A INCIDÊNCIA DE RAIOS EM LINHAS DE TRANSMISSÃO DO SISTEMA INTERLIGADO NACIONAL BRASILEIRO

  • RUBENS DE ANDRADE FERNANDES
  • SMARTLVENERGY: UM FRAMEWORK PARA GESTÃO ENERGÉTICA INTELIGENTE E DESCENTRALIZADA DE SISTEMAS LEGADOS DE BAIXA TENSÃO

  • Orientador : CARLOS TAVARES DA COSTA JUNIOR
  • Data: 11/07/2024
  • Mostrar Resumo
  • ARTIGO 1: "A Retrofit Strategy for Real-Time Monitoring of Building Electrical Circuits Based on the SmartLVGrid Metamodel".

    REVISTA:Energiesv. 15, Ed. 23, 2022 - Qualis A1.  (https://www.mdpi.com/1996-1073/15/23/9234);

     

    ARTIGO 2: "A Demand Forecasting Strategy Based on a Retrofit Architecture for Remote Monitoring of Legacy Building Circuits".

    REVISTA:Sustainabilityv. 15,, 2023 - Qualis A1. (https://www.mdpi.com/2071-1050/15/14/11161).

     

    ARTIGO 3: "SmartLVEnergy: AN AIOT FRAMEWORK FOR ENERGY MANAGEMENT THROUGH DISTRIBUTED

    PROCESSING AND SENSOR-ACTUATOR INTEGRATION IN LEGACY LOW-VOLTAGE SYSTEMS".

    REVISTA:IEEE Sensors Journal, 2024 - Qualis A1.

    Website: https://ieee-sensors.org/ieee-sensors-journal/.

    Link do trabalho: www.ieeexplore.ieee.org/document/10539626.

  • VANDERSON CARVALHO DE SOUZA
  • INIBIDOR BIDIRECIONAL DE EVENTOS DE RUNAWAY NO COMUTADOR DE TAP DE REGULADORES DE TENSÃO EM REDES DE DISTRIBUIÇÃO RECONFIGURÁVEIS COM GERAÇÃO DISTRIBUÍDA

  • Data: 25/06/2024
  • Mostrar Resumo
  • INIBIDOR BIDIRECIONAL DE EVENTOS DE RUNAWAY NO COMUTADOR DE TAP DE REGULADORES DE TENSÃO EM REDES DE DISTRIBUIÇÃO RECONFIGURÁVEIS COM GERAÇÃO DISTRIBUÍDA

  • MARCOS DAVI LIMA DA SILVA
  • CSI Compression for Distributed-MIMO with Centralized Processing

  • Data: 18/06/2024
  • Mostrar Resumo
  • In Distributed-MIMO (D-MIMO), a large number of distributed Antenna Points (APs) are coordinated by a Central Processing Unit (CPU) to serve a limited number of users with the same time/frequency resources, improving spectral efficiency. The success of D-MIMO depends on precoding and power allocation, which can be performed either fully centralized at the CPU or distributed across the APs. The centralized approach offers greater spectral efficiency than the distributed implementation, but requires a significant peak in fronthaul traffic due to the exchange of Channel State Information (CSI) between APs and the CPU. In this work, CSI compression schemes are proposed to enable practical and centralized implementation of D-MIMO. It is shown that depending on the compression setup, the spectral efficiency can be as good as in the uncompressed case. Furthermore, this work explores the implementation of multiple-input multiple-output (MIMO) within the framework of the New Radio (NR) architecture. The study evaluates a distributed MIMO deployment both uncompressed and with compression using NR signals and assesses its performance compared to co-located MIMO configurations. Through simulations using NR physical layer signals, the results reveal a notable increase in data rate when using a distributed setup, demonstrating an increase in aggregate rate and improvements in data rates experienced by users with the poorest performance. Finally, the simulations with NR signals highlight important practical aspects and the feasibility of implementing D-MIMO in the 5G architecture.

  • ANDRÉ LUCAS PINHO FERNANDES
  • Designing Feasible Deployment Strategies for Cell-free Massive MIMO networks: Assessing Cost-Effectiveness and  Reliability

  • Data: 14/06/2024
  • Mostrar Resumo
  • Cell-free massive multiple-input multiple-output (mMIMO) networks are a
    promising solution for sixth-generation (6G) communication systems and beyond.
    These networks use multiple distributed antennas to transmit and receive signals,
    which improves spectral efficiency and ensures a fairer distribution of network resources
    among users. However, these innovative networks introduce a new mobile
    communication paradigm that extinguishes the concept of cells. This shift poses significant
    deployment challenges, as conventional tools designed for cellular systems
    are inadequate for planning and evaluating feasible cell-free mMIMO architectures
    since they often fail to address the unique aspects of distributed joint transmission
    characteristics of cell-free environments. In this sense, the literature has been
    developing separated models specific to cell-free systems that deal with system coordination,
    fronthaul signaling, and required computational complexities of processing
    procedures, segmented fronthaul, transitioning from cellular network deployments,
    and integration to O-RAN technologies. These advancements are instrumental in
    moving cell-free mMIMO from theoretical exploration to practical application. Despite
    this, further study is needed to integrate existing models and develop practical
    evaluation tools to assess the viability of these innovative networks and their enablers.
    This thesis aims to address this gap by proposing new tools designed to
    evaluate the feasibility of cell-free mMIMO networks regarding reliability and costs.
    The first tool focuses on evaluating the reliability of cell-free systems and is essential
    for segmented cell-free systems, which have serial fronthaul connections between
    Transmission and Reception Points (TRPs), as these configurations are prone to reliability
    issues. This tool is used in this thesis to improve the understanding of failures
    and the development of protection schemes for these connections. The second tool
    assesses the total cost of ownership (TCO) of cell-free systems and enablers across
    various user demands, considering fronthaul bandwidth limitations, TRP, and CPU
    processing capacities. This thesis uses this tool to evaluate the cost implications
    of two functional splits equivalent to distributed and centralized processing architectures
    and determine under which conditions each configuration might be more
    cost-effective. This thesis analysis and results suggest that segmented fronthaul
    cell-free systems require protection strategies, even when the TRP serial chain is
    integrated into a single piece of equipment. It is shown that a partial duplication
    scheme where 40% of the chain is likely the most feasible protection scheme. Besides
    that, the interconnection between serial chains is shown to be an excellent feasible
    protection alternative when the system has at least seven chains or integrated systems.
    Finally, the cost analysis reveals that a centralized processing approach with
    partial minimum mean square error (P-MMSE) precoding is the most feasible way
    to deploy cell-free systems in terms of processing options most of the time.

  • BRENDA SILVANA DE SOUSA BARBOSA
  • APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE RSSI E SNR EM AMBIENTES DE BOSQUE AMAZÔNICO

  • Data: 11/06/2024
  • Mostrar Resumo
  • The presence of green areas in urbanized cities is crucial to reduce the negative impacts of urbanization. However, these areas can influence the signal quality of IoT devices that use wireless communication, such as LoRa technology. Vegetation attenuates electromagnetic waves, interfering with the data transmission between IoT devices, resulting in the need for signal propagation modeling, which considers the effect of vegetation on its propagation. In this context, this research was conducted at the Federal University of Pará, using measurements in a wooded environment composed of the Pau-Mulato species, typical of the Amazon. Two machine learning-based propagation models, GRNN and MLPNN, were developed to consider the effect of Amazonian trees on propagation, analyzing different factors, such as the transmitter’s height relative to the trunk, the beginning of foliage, and the middle of the tree canopy, as well as the LoRa spreading factor (SF) 12, and the co-polarization of the transmitter and receiver antennas. The proposed models demonstrated higher accuracy, achieving values of root mean square error (RMSE) of 3.86 dB and standard deviation (SD) of 3.8614 dB, respectively, compared to existing empirical models like CI, FI, Early ITU-R, COST235, Weissberger, and FITU-R. The significance of this study lies in its potential to boost wireless communications in wooded environments. Furthermore, this research contributes to enhancing more efficient and robust LoRa networks for applications in agriculture, environmental monitoring, and smart urban infrastructure.

  • MARX MIGUEL MIRANDA DE FREITAS
  • Scalable AP Seletion Strategies for User-Centric Cell-Free Massive MIMO Networks

  • Data: 06/06/2024
  • Mostrar Resumo
  •  User-centric (UC) cell-free (CF) massive multiple-input multiple-output (MIMO) systems are promising technologies for beyond 5G (B5G) networks. In these systems, the user equipment (UE) is associated with a subset of access points (APs) distributed into the coverage area, leading to improvements in macro-diversity and spectral efficiency (SE) compared to conventional cell-based systems. Despite the benefits, challenges such as scalable AP selection strategies, computational complexity (CC), and inter-central processing unit (CPU) coordination may still exist in these systems. In this regard, this thesis proposes a novel and general AP selection framework that affords scalability for UC systems, enabling more efficient use of the network resources, such as transmission power and reduced processing demands. The solution is based on a matched-decision among the most suitable connections for APs and UEs. Moreover, three strategies to fine-tune the AP clusters of UEs are proposed, aiming to reduce the number of APs connected to each UE without compromising the SE. Simulation results reveal that the matched-decision framework improves up to 163% the SE of the 95% likely UEs compared with baseline schemes. A heuristic approach that reduces the effects of inter-CPU coordination is also proposed. It decreases the number of inter-coordinated UEs (i.e., UEs connected to multiple CPUs) on each CPU to reduce signaling demands on backhaul links. Numerical results indicate that the proposed method mitigates inter-CPU coordination while yielding slight degradation in SE and improving energy efficiency (EE). Finally, this thesis investigates the performance of UC systems with limited processing capacity. Specifically, it is assumed that the CC of performing channel estimation and precoding signals does not increase with the number of APs. Thus, the UE can only be associated with a finite number of APs. Furthermore, a method is proposed for adjusting the AP clusters according to the network implementation, i.e., centralized or distributed. The results show that UC systems can keep the SE under minor degradation even if the CC up to 96%. Besides, the proposed method for adjusting the AP cluster leads to further reductions in CC.

  • JUAN CARLOS HUAQUISACA PAYE
  • UM MÉTODO BASEADO EM CRUZAMENTOS POR ZERO PARA LOCALIZAÇÃO DE FALTAS DE ALTA IMPEDÂNCIA EM REDES AÉREAS DE DISTRIBUIÇÃO

  • Data: 05/06/2024
  • Mostrar Resumo
  • UM MÉTODO BASEADO EM CRUZAMENTOS POR ZERO PARA LOCALIZAÇÃO DE FALTAS DE ALTA IMPEDÂNCIA EM REDES AÉREAS DE DISTRIBUIÇÃO

  • THABATTA MOREIRA ALVES DE ARAUJO
  • DETECÇÃO DE DANOS EM SUPERFÍCIES GEOTÉCNICAS COM REDES NEURAIS CONVOLUCIONAIS DE BAIXA COMPLEXIDADE

  • Data: 29/05/2024
  • Mostrar Resumo
  • A maioria dos desastres naturais resulta de eventos geodinâmicos, como deslizamentos de terra e colapso de estruturas geotécnicas. Essas falhas causam catástrofes que impactam diretamente o meio ambiente e causam perdas financeiras e humanas. A inspeção visual é o principal método para detectar falhas em superfícies de estruturas geotécnicas. Todavia, as visitas no local podem ser arriscadas devido à possibilidade de solo instável. Além disso, o design do terreno e as condições de instalação hostis e remotas tornam inviável o acesso a essas estruturas. Quando uma avaliação rápida e segura é necessária, a análise por visão computacional torna-se uma alternativa. No entanto, estudos em técnicas de visão computacional ainda precisam ser explorados neste campo devido às particularidades da engenharia geotécnica, como conjuntos de dados públicos limitados, redundantes e escassos. Neste contexto, esta tese apresenta uma abordagem CNN para a identificação de defeitos na superfície de estruturas geotécnicas com o objetivo de reduzir a dependência de inspeções no local conduzidas por humanos. Para tanto, foram coletadas imagens de indicadores de falha superficial em taludes às margens de uma rodovia brasileira, com o auxílio de VANT e dispositivos móveis. Em seguida, foram experimentadas arquiteturas CNNde baixa complexidade para construir um classificador binário capaz de detectar em imagens falhas aparentes a olho nu humano. A arquitetura composta por três camadas convolucionais, cada uma com 32 filtros, seguidas por duas camadas totalmente conectadas, cada uma composta por 128 neurônios apresentou acurácia de 94,26%. A avaliação de desempenho do modelo com o conjunto de teste obteve métricas de AUC de 0,99 e matriz de confusão que indicam desempenho robusto do classificador na detecção de danos, ao mesmo tempo que mantém uma baixa complexidade computacional, tornando-a adequada para aplicações práticas em campo. As contribuições da tese incluem a disponibilização de banco de imagens que retratam danos visíveis em taludes, a obtenção de um modelo de classificação adequado para dados escassos e processamento com recursos computacionais limitados, e a exploração de estratégias para inspeção remota e identificação de indicadores de falhas em superfícies de estruturas
    geotécnicas.

  • JAINE FEIJAO DE LIMA
  • Development of an Electricity Dispatch Methodology for a Photovoltaic Generation system with Hybrid Energy Storage for Isolated Systems

  • Orientador : THIAGO MOTA SOARES
  • Data: 13/05/2024
  • Mostrar Resumo
  • The present work proposes a methodology for dispatching electrical energy to isolated systems formed by a Diesel generation system, photovoltaic system and hybrid energy storage composed of Lithium Ion batteries and supercapacitors. This methodology proposes the optimized use of battery banks and supercapcitors together with the photovoltaic system to supply electrical energy to an isolated system, seeking to reduce the use of the Diesel generator, and, consequently, reduce the emission of greenhouse gases. Therefore, simulations were carried out in OPENDSS, considering different electrical and economic scenarios, in order to evaluate the performance of the proposed methodology.

  • THIAGO NICOLAU MAGALHÃES DE SOUZA CONTE
  • EXPLORANDO REGRESSORES PARA PREVISÃO DE SÉRIES TEMPORAIS NO SISTEMA ELÉTRICO BRASILEIRO: UMA ANÁLISE EMPÍRICA

  • Data: 05/04/2024
  • Mostrar Resumo
  • O panorama da energia elétrica no Brasil é influenciado por uma variedade de fatores complexos e relações não lineares, o que torna a previsão desafiadora. Com o aumento da demanda por energia e a crescente preocupação ambiental, é crucial buscar soluções baseadas em práticas de energia limpa e renovável, visando tornar o mercado de energia mais sustentável. Essas práticas visam reduzir o desperdício e otimizar a eficiência dos processos envolvidos na operação das tecnologias de distribuição e geração de energia elétrica. Uma abordagem promissora para viabilizar a energia sustentável é a aplicação de técnicas de previsão para diversas variáveis do mercado energético. Esta pesquisa propõe uma análise empírica do uso de regressores para realizar previsões nas bases de dados do Preço de Liquidação das Diferenças (PLD) do mercado brasileiro e da velocidade do vento em aerogeradores do Nordeste do Brasil. Busca-se contribuir com informações significativas sobre as técnicas de aprendizagem de máquina, que podem ser empregadas como ferramentas eficazes para a previsão de séries temporais no setor elétrico. Os resultados obtidos podem incentivar a implantação dessas técnicas para extrair conhecimento sobre o comportamento do sistema de energia brasileiro. Isso é particularmente relevante, dado que o preço da energia frequentemente exibe sazonalidade, alta volatilidade e picos, e a geração de energia eólica é amplamente influenciada pelas condições climáticas. Para modelar a previsão dessas duas séries temporais, utilizamos o banco de dados sobre o PLD, focando especialmente no preço médio da energia do Sistema Nacional Brasileiro. As variáveis mais relevantes estão relacionadas às condições hidrológicas, carga elétrica e preço dos combustíveis das unidades térmicas. Para a coleta das variáveis relacionadas à energia eólica, foram considerados dois locais distintos na região nordeste do Brasil: Macau e Petrolina. Para o estudo de previsão, utilizamos uma Rede Neural Perceptron Multicamadas (MLP), uma Long Short Term Memory (LSTM), o Auto-Regressive Integrado de Média Móveis (ARIMA) e a Máquina de Suporte de Vetores (SVM) para determinar as linhas bases nos resultados da predição. Para aprimorar os resultados destes regressores, utilizamos duas abordagens distintas de previsão. Uma das abordagens consistiu na combinação das técnicas de Redes Neurais Artificiais Profundas, baseada na Meta-Heurística do Algoritmo Genético Canônico (AG), para ajustar os hiperparâmetros dos regressores MLP e LSTM. Já a segunda estratégia focou em comitês de máquinas, os quais incluíam MLP, Árvore de Decisão, Regressão Linear e SVM em um comitê, e MLP, LSTM, SVM e ARIMA em outro. Essas abordagens consideraram dois tipos de votação, voting average (VO) e voting weighted average (VOWA), para avaliar o impacto no desempenho do comitê de máquinas.

  • LUIS EDUARDO DE SENA DOS SANTOS
  • Graphene, filter, terahetz, resonator and waveguide

  • Data: 04/04/2024
  • Mostrar Resumo
  • In this study, a compact nanoscale plasmonic filter was proposed and numerically analyzed. The plasmonic filter is based on graphene nanoribbons coupled to a disc-shaped graphene resonator with horizontal side cuts and 45º degree orientation, deposited on a dielectric substrate of silica $(SiO_2)$ and silicon $(Si)$ , operating in the THz region.We investigated simple structures that allow tuning the resonance frequency of the resonator, which can also be adjusted by modifying the size of the cuts in the cavity and changing the Fermi energy of the graphene. This work provides a viable solution for graphene plasmonic nanofilter structures for future use in highly integrated plasmonic device applications in THz and FIR regions.

  • LUCAS DE LIMA BASTOS
  • Classification and Characterization Methods of Non-Technical Losses on Smart Grid Scenarios


  • Data: 28/03/2024
  • Mostrar Resumo
  • Nowadays, grid resilience as a feature has become non-negotiable, significantly when power interruptions can impact the economy and the society. Smart Grids (SGs) widespread popularity enables an immense amount of fine-grained electricity consumption data to be collected. However, risks can still exist in the Smart Grid (SG), since SG systems exchange valuable data, and distribution system loses a substantial amount of electrical energy. We divide this loss into two categories: technical and non-technical loss. A substantial amount of electrical energy is lost throughout the distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses (NTL) are any electrical energy consumed and not invoiced. They may occur due to illegal connections, fraudulent activities, issues with energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical utilities incur billions in losses due to non-technical reasons. This thesis presents two methods of detection of NTL, namely classification and characterization. For the classification, we create an ensemble predictor-based time series classifier for NTL detection. This predictor uses the user’s energy consumption as a data input for classification, from splitting the data to executing the classifier. Also, it assumes the temporal aspects of energy consumption data during pre-processing, training, testing, and validation stages. The classification method has the advantage of classifying heterogeneous features in data. The characterization method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate this challenge. First, we use a sliding window to convert the user’s energy consumption time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract the used ITQ. Finally, we then apply each metric to the Probability Density Function (PDF) and map the layers to characterize their behavior. The characterization method is advantageous to be used when we have big data.

  • EWERTON CRISTHIAN LIMA DE OLIVEIRA
  • DEVELOPMENT OF MACHINE LEARNING-BASED FRAMEWORKS TO PREDICT PERMEABILITY OF PEPTIDES THROUGH CELL MEMBRANE AND BLOOD-BRAIN BARRIER

  • Data: 27/03/2024
  • Mostrar Resumo
  • Peptídeos compreendem uma classe versátil de biomoléculas com diversas propriedades físico-
    químicas e estruturais, além de inúmeras aplicações farmacológicas e biotecnológicas. Alguns
    grupos de peptídeos podem cruzar membranas biológicas, como a membrana celular e a barreira hematoencefálica humana. Pesquisadores tem explorado esta propriedade ao longo dos
    anos como uma alternativa ao desenvolvimento de novos medicamentos mais poderosos, tendo
    em vista que alguns peptídeos são carreadores de fármacos. Embora existam ferramentas baseadas em aprendizado de máquina desenvolvidas para prevercell-penetrating peptides(CPPs) e
    blood-brain barrier penetrating peptides(B3PPs), alguns pontos ainda não foram explorados
    dentro deste tema. Estes pontos abrangem o uso de técnicas redução de dimensionalidade (RD)
    na etapa de pré-processamento, de descritores moleculares relacionados à biodisponibilidade
    de drogas, e de estrutura de dados que codificam peptídeos com modificações químicas. Portanto, a proposta principal desta tese é desenvolver e testar dois frameworks baseados em RD,
    o primeiro para prever CPPs e o segundo para prever B3PPs, avaliando também os descritores moleculares e estrutura de dados de interesse. Os resultados desta tese mostram que para a
    predição de penetração na membrana celular, o framework proposto atingiu 92% de acurácia
    no melhor desempenho em um teste independente, superando outras ferramentas criadas para o
    mesmo propósito, além de evidenciar a contribuição entre a junção de descritores baseado em
    sequência de aminoácidos e os relacionados a biodisponibilidade e citados na regra dos cinco de
    Lipinski. Além do mais, a predição de B3PPs pelo framework proposto revela que o melhor modelo que utiliza descritores moleculares estruturais, elétricos e associados a biodisponibilidade
    de compostos alcançou valores que superam 93% de acurácia média no 10-fold cross-validation
    e acurácia entre 75% e 90% no teste independente para todos as simulações, superando outras
    ferramentas de machine learning (ML) desenvolvidas para predizer B3PPs. Estes resultados
    mostram que os frameworks propostos podem ser usado como ferramenta adicional na predição de penetração de peptídeos através dessas duas biomembranas e estão disponíves como web servers gratuitos para uso.

  • RAFAEL BARBOSA DE OLIVEIRA
  • PREDIÇÃO DE CONSUMO DE ENERGIA ELÉTRICA E PRODUTIVIDADE EM OFICINA DE PINTURA AUTOMOTIVA

  • Data: 27/03/2024
  • Mostrar Resumo
  • Esta dissertação estuda a previsão do consumo energético (CE) e maximização da produtividade na pintura automotiva, utilizando uma abordagem que combina seleção de variáveis, modelos híbridos, hiperparâmetros destes modelos e otimização por meta-heurística em uma arquitetura com 3 steps. Os processos de pintura automotiva apresentam variáveis em forma de séries temporais que descrevem o histórico do CE. No step 1, escolhe-se o melhor modelo de aprendizado de máquina (RF, LSTM, XGBoost e GRU-LSTM) para prever séries temporais do CE em t+1. No step 2, avalia-se os modelos RF, XGBoost e RNA Densa para selecionar o melhor preditor de quantidade de veículos produzidos (ciclos). No step 3, seleciona-se a melhor meta-heurística entre GA, DE e PSO para otimizar o CE previsto pelo melhor modelo do step 1, usando como medida de fitness o melhor modelo do step 2. A arquitetura final reduziu o CE em até 16% e aumentou o ciclo em 127%, usando os modelos GRU-LSTM no step 1, RNA Densa no step 2 e DE no step 3. Os resultados ressaltam a oportunidade de uso da abordagem proposta para otimizar o CE e a produtividade na pintura automotiva.

  • HEICTOR ALVES DE OLIVEIRA COSTA
  • Bioinspired Self-Tuning Methods for the Genetic Algorithm

  • Data: 25/03/2024
  • Mostrar Resumo
  • This research was motivated by the need to improve the efficiency of the Genetic Algorithm (GA) when dealing with a variety of complex problems. The goal is to develop strategies that allow the GA to automatically adjust itself to the specific challenges of each problem, without the need for manual intervention to readjust its operational parameters, making this algorithm a more dynamic tool. To achieve this goal, this research proposed two bioinspired strategies to enhance the adaptability and efficiency of GA. The first strategy was Adaptive Radiation (AR), a biological phenomenon that causes high rates of mutation in populations, allowing rapid adaptation to survival conditions. The second strategy was a selection technique inspired by Multi-Criteria Decision Models (MCDM) and the natural behavior of choosing partners, observed on different species, which assist in decision making, evaluating solutions based on multiple criteria. The methodology consists of implementing these strategies in GA, creating two new algorithms: GA with Adaptive Radiation (GAAR) and Multicriteria GA (MCGA). These algorithms were then tested on three different categories of problems: ten benchmark functions, which simulate a variety of complex environments; four engineering problems, which represent industry challenges; and a real problem, to test the practical applicability of the algorithms in a high magnitude scenario. The results showed that the GAAR and MCGA algorithms outperformed the standard GA and other optimization algorithms on most of the tested problems. In particular, they were able to effectively adapt to different types of problems and find efficient solutions without the need to manually readjust their parameters. These results suggest that the introduction of bioinspired strategies such as AR and MCDM can significantly improve GA performance, making them a powerful tool for a wide range of real-world applications.

  • CAIO CARVALHO MOREIRA
  • ABORDAGEM INTELIGENTE COM COMBINAÇÃO DE CARACTERÍSTICAS ESTRUTURAIS PARA DETECÇÃO DE NOVAS FAMÍLIAS DE RANSOMWARE

  • Data: 22/03/2024
  • Mostrar Resumo
  • Ransomware é um software malicioso que tem como objetivo criptografar os arquivos do usuário e exigir um resgate para desbloqueá-los. Trata-se de uma ameaça cibernética que pode causar significativos danos financeiros, além do comprometimento de privacidade e integridade dos dados. Embora os scanners de detecção baseados em assinaturas comumente combatam essa ameaça, eles falham na identificação de famílias (variantes) desconhecidas de ransomware. Um método para detectar novas ameaças sem a necessidade de executá-las é a análise estática, que inspeciona o código e a estrutura do software, juntamente com a classificação através de abordagens inteligentes. Para avaliar a Detecção de Novas Famílias de Ransomware (DNFR), é possível simular um cenário realista e desafiador pela categorização e isolamento de famílias de ransomware para treinamento e teste. Desta forma, esta tese tem como objetivo desenvolver um modelo eficiente de análise estática para a DNFR, que pode ser aplicado em sistemas Windows como uma camada adicional de segurança, verificando os arquivos executáveis no momento do recebimento ou antes de sua execução. A detecção precoce do ransomware é fundamental para reduzir a probabilidade de um ataque bem-sucedido. A abordagem proposta analisa abrangentemente os binários executáveis, extraindo e combinando diversas características estruturais, e os distingue entre ransomware ou software benigno empregando um modelo de votação suave que compreende três técnicas de aprendizado de máquina: Logistic Regression (LR), Random Forest (RF) e eXtreme Gradient Boosting (XGB). Os resultados para a DNFR demonstraram médias de 97,53% de acurácia, 96,36% de precisão, 97,52% de recall e 96,41% de F-measure. Além disso, a varredura e a predição de amostras individuais levaram uma média de 0,37 segundos. Essa performance indica sucesso na identificação rápida de variantes desconhecidas de ransomware e na adaptabilidade do modelo ao cenário em constante evolução, o que sugere sua aplicabilidade em sistemas de proteção antivírus, mesmo em dispositivos com recursos limitados. Portanto, o método oferece vantagens significativas e pode ajudar desenvolvedores de sistemas de detecção de ransomware na criação de soluções mais resilientes, confiáveis e com rápido tempo de resposta.


    Projeto associado: Aplicação e Concepção de Meta-heurísticas, Técnicas de visualização de dados e Métodos de Inteligência Computacional para Problemas de Engenharia e Computação


    Artigo 1: "Understanding Ransomware Actions Through Behavioral Feature Analysis"Journal of Communication and Information Systems, ISSN: 1980-6604, DOI: 10.14209/jcis.2022.7, 2022. (Qualis A4)

    Artigo 2: "Improving Ransomware Detection based on Portable Executable Header using Xception Convolutional Neural Network"Computers & Security, ISSN: 0167-4048, DOI: 10.1016/j.cose.2023.103265, 2023. (Qualis A1)

    Artigo 3: "A Comprehensive Analysis Combining Structural Features for Detection of New Ransomware Families"Journal of Information Security and Applications, ISSN: 2214-2126, DOI: 10.1016/j.jisa.2024.103716, 2024. (Qualis A3)


  • VICTOR PARENTE DE OLIVEIRA ALVES
  • IMPACTS OF ROTATIVE LOADS ON POWER QUALITY AND ENERGY EFFICIENCY IN A DIRECT CURRENT DISTRIBUTION NANOGRID

  • Data: 22/03/2024
  • Mostrar Resumo
  • -

  • JONATHAN MUNOZ TABORA
  • EXPERIMENTAL EVALUATION, DIAGNOSIS, AND PREDICTION OF THE IMPACTS OF POWER QUALITY DISTURBANCES IN IE2, IE3, AND IE4 CLASS MOTORS

  • Data: 20/03/2024
  • Mostrar Resumo
  • Os motores elétricos continuam a ser a maior carga do mundo e uma peça fundamental no setor industrial. Além disso, com os avanços tecnológicos, suas aplicações se expandiram para abranger novas categorias como ser os veículos elétricos, transporte, navegação, entre outros. A Europa iniciou o processo de transição para as classes de motores de eficiência IE4, diante disso, espera-se que outras regiões sigam a transição para classes de motores de maior eficiência. Em algumas regiões, a tensão operacional pode ser diferente da nominal, de acordo com a norma IEC 60038-2009, isto somado a outros distúrbios como ser o desequilíbrio e harmônicos de tensão pode resultar em impactos no desempenho dessas novas tecnologias. Nesse contexto, esforços significativos têm sido dedicados à manutenção preditiva, com o objetivo de aprimorar as técnicas existentes com novas propostas que aumentem sua eficácia no diagnóstico da saúde das máquinas rotativas na presença de diferentes distúrbios presentes nos SEP. Este trabalho avalia o impacto da variação de tensão, harmônicos de tensão e diferentes porcentagens de desequilíbrios com sub e sobretensão na temperatura e desempenho de motores elétricos de indução de baixa potência classes IE2, IE3 e IE4. O estudo incorpora uma análise técnica, econômica, estatística e térmica para obter indicadores importantes relacionados ao consumo de energia, à eficiência, ao fator de potência e à temperatura. Na busca por técnicas inovadoras e complementares, este estudo também apresenta um novo Indicador de Degradação de Motor Elétrico (EMDI) baseado na análise no domínio da frequência das formas de onda da corrente do motor elétrico para diagnosticar a integridade das máquinas rotativas. Os resultados mostram que em condições ideais de operação o motor de ímãs permanentes classe IE4 apresenta melhor desempenho em termos de consumo e temperatura, porém apresentando características não lineares. Logo na presença dos diferentes distúrbios o cenário muda ao apresentar um menor desempenho quando comparado com os motores de indução gaiola de esquilo nas mesmas condições de operação. A análise realizada permitirá estabelecer e quantificar os impactos dos diferentes distúrbios presentes nos sistemas elétricos de potência no desempenho das novas tecnologias de motores elétricos a serem introduzidos posteriormente. Com relação ao indicador de diagnóstico de saúde do motor proposto, os resultados apresentados apoiam fortemente a eficácia da abordagem proposta para facilitar a implementação de práticas de manutenção preditiva. Outra importante contribuição da presente tese, é que seus resultados serão base para a implementação de uma nova regulação para a introdução de requisitos mínimos de eficiência dos motores elétricos em Honduras. 
  • ALAN DOS REIS SILVA
  • DESIGN OF A TWO-DIMENSIONAL PHOTONIC CRYSTAL DEMULTIPLEXER BASED ON GRAPHENE FOR APPLICATION IN WAVELENGTH DIVISION MULTIPLEXING SYSTEMS (WDM).
  • Data: 15/03/2024
  • Mostrar Resumo
  • This work presents an eight-channel 2D photonic crystal demultiplexer based on graphene for application in optical systems that use the wavelength division multiplexing technique - WDM. The optical device was designed based on a square crystalline lattice of silicon dielectric rods immersed in air and is formed by three main parts: Bus waveguide; Octagonal resonator rings and L-curve waveguides. The COMSOL multiphysics software and the Legumes python packages were used to study and simulate the designed structure. In analyzing the simulation results, the resonant wavelength, spectral width, quality factor, transmission efficiency, spacing between channels and the level of electromagnetic interference (Crosstalk) for the eight channels of the demultiplexer were evaluated. Furthermore, the analysis of the results occurred from two different perspectives, in the first of which the relationship between the transmission parameters of the demultiplexer with the variation in the chemical potential of graphene was analyzed and in the second the application of the device in WDM systems was explored. In general, the analyzes carried out proved to be considerable regarding the application of the photonic device in optical wavelength division multiplexing (WDM) systems.

  • GUSTAVO GASPAR GIROTTO
  • Transporte de Ozônio em Hidrogerador de 311 MVA: Modelagem Fluidodinâmica Tridimensional de Máquina Elétrica Através do Método dos Elementos Finitos

  • Data: 29/02/2024
  • Mostrar Resumo
  • Neste trabalho, é desenvolvido um modelo numérico tridimensional de fluidodinâmica turbulenta para uma unidade de 311 MVA de uma máquina geradora completa de usina hidrelétrica, utilizando o método dos elementos finitos. O objetivo é estudar e compreender os mecanismos de transporte de ozônio dentro da estrutura da máquina elétrica fechada. O ozônio é produzido por descargas parciais relacionadas a falhas nas barras estatóricas. Para analisar o transporte de ozônio a partir de fontes localizadas, é desenvolvido e apresentado pela primeira vez um modelo tridimensional de fluidodinâmica de um hidrogerador em operação. O modelo possui um alto nível de detalhes geométricos. Além disso, uma nova proposta para simplificar a modelagem de radiadores é implementada e validada. A estrutura modelada é baseada em uma máquina elétrica do hidrogerador de Campos Novos e consiste em 378 barras estatóricas do tipo bobina feitas de cobre revestido por mica e, mais externamente, por uma camada de revestimento semicondutor. Outras partes também são representadas, incluindo o núcleo estatórico e direcionadores de ar feitos de aço inoxidável, radiadores de cobre, o rotor com sua superfície de epóxi, e o piso e paredes externas de concreto. No modelo de dinâmica de fluidos, uma malha de elementos finitos foi projetada para representar as regiões de ar dentro do hidrogerador e as superfícies dos materiais que reagem com o ozônio (com suas respectivas taxas de reação), onde o fluxo de ar e o transporte de ozônio são modelados usando as equações de Navier-Stokes e a lei de conservação de massa. As fontes de descargas parciais são representadas por fontes de ozônio com formas prismáticas, posicionadas nas superfícies das barras estatóricas. As concentrações de ozônio foram calculadas dentro e ao redor da máquina geradora. O raio do rotor é de 3,8075 m e sua frequência de rotação é de 200 RPM. A velocidade do ar radial devido à ventilação interpolar também é considerada (2,2 m/s, conforme verificado experimentalmente no local). A velocidade radial nas proximidades dos radiadores é de 3 m/s. Concluiu-se que o perfil de transporte de ozônio é influenciado pela posição da fonte nas barras estatóricas, de modo que a localização da fonte é possível e depende da determinação das áreas de concentração máxima locais e globais de ozônio nos radiadores.

     

    Artigos publicados:

    [1] DE OLIVEIRA, RODRIGO M. S.; GIROTTO, G. G. ; ALCANTARA, L. D. S. ; LOPES, N. M. ; DMITRIEV, VICTOR, "Ozone Transport in 311 MVA Hydrogenerator: Computational Fluid Dynamics Modelling of Three-Dimensional Electric Machine". Energies, v. 16, p. 1-35, 2023.

    (QUALIS A2).

    https://www.mdpi.com/1996-1073/16/24/8072


    [2] DE OLIVEIRA, RODRIGO M. S.; ZAMPOLO, RONALDO F. ; ALCANTARA, L. D. S. ; GIROTTO, G. G. ; LOPES, F. H. R. ; LOPES, N. M. ; BRASIL, F. S. ; NASCIMENTO, J. A. S. ; DMITRIEV, V., "Analysis of Ozone Production Reaction Rate and Partial Discharge Power in a Dielectric-Barrier Acrylic Chamber with 60 Hz High-Voltage Electrodes: CFD and Experimental Investigations", Energies, v. 16, p. 6947, 2023.

    (QUALIS A2).

    http://dx.doi.org/10.3390/en16196947


  • IVAN RUY DE PARIJOS JUNIOR
  • Influence of photovoltaic microgeneration on the demand profile and its effects on the grid power quality

  • Data: 29/02/2024
  • Mostrar Resumo
  • The connection of small-scale photovoltaic (PV) generation into the grid requires attention to some factors such as changes in load curve and the presence of harmonic components in the output current waveform of the PV inverter and the customer power factor (PF) variation. The objective is to better understand the impacts that the grid-connected PV systems operation, together with demand profiles (intensity and shape of current waveform) of consumers, may cause the PF and THD to be measured at the distribution grid. This work evaluates aspects that can influence the power quality (PQ) due to PV generation's insertion in the distribution grid, considering the consumer demand profile.

  • FREDERICO HENRIQUE DO ROSARIO LOPES
  • Técnica semiautomática de rotulagem e sistema para geração artificial de PRPDs aplicados ao treinamento de classificador de descargas parciais em hidrogeradores


  • Data: 29/02/2024
  • Mostrar Resumo
  • Resumo

    Hidrogeradores são ativos cruciais tanto para empresas geradoras de energia quanto para a população que depende desse abastecimento. No entanto, essas máquinas estão suscetíveis a vários tipos de defeitos que podem resultar em interrupções inesperadas, se nada for feito a respeito. A análise de descargas parciais é uma abordagem já consolidada para avaliar a condição de equipamentos de alta tensão, sendo essencial a detecção automática de diferentes tipos de defeitos, uma vez que diferentes níveis de risco à operação variam de acordo com o tipo de descarga. Redes neurais profundas têm sido propostas visando à classificação de descargas parciais usando diagramas PRPD (phase-resolved partial discharge). Contudo, a obtenção de conjuntos de dados rotulados com grande número de exemplos é um problema que impacta diretamente no desempenho de classificadores treinados de maneira supervisionada. Neste contexto, esta dissertação propõe uma técnica semiautomática para a rotulagem de PRPDs, baseada em estratégias de redução de dimensionalidade e agrupamento de dados, bem como investiga o uso de GAN (generative adversarial network) na ampliação artificial do conjunto de treinamento. O conjunto de dados usado no trabalho é composto por PRPDs reais obtidos por meio de procedimentos de monitoramento online de descargas parciais em hidrogeradores. O desempenho dos sistemas propostos é contrastado com resultados recentes representativos do estado da arte na área. Os resultados demonstram que a aplicação da técnica proposta para rotulagem semiautomática reduz consideravelmente a carga de trabalho e o tempo associados à classificação manual. Além disso, o uso de PRPDs artificiais gerados pela GAN resultou notável melhoria no desempenho do classificador que alcançou 94,72% de acurácia média, em comparação com 89,44% obtido com a melhor técnica concorrente. Foram observados ganhos semelhantes também nas acurácias por classe.

     

    Artigos publicados:

    [1] F. H. R. Lopes, R. F. Zampolo, R. M. S. Oliveira and V. Dmitriev, "Evaluation of transfer learning approaches for partial discharge classification in hydrogenerators," 2022 Workshop on Communication Networks and Power Systems (WCNPS), Fortaleza, Brazil, 2022, pp. 1-6, doi: 10.1109/WCNPS56355.2022.9969682. 


    http://dx.doi.org/10.1109/wcnps56355.2022.9969682

     

    [2] de Oliveira, Rodrigo M. S., Ronaldo F. Zampolo, Licinius D. S. Alcantara, Gustavo G. Girotto, Frederico H. R. Lopes, Nathan M. Lopes, Fernando S. Brasil, Júlio A. S. Nascimento, and Victor Dmitriev. 2023. "Analysis of Ozone Production Reaction Rate and Partial Discharge Power in a Dielectric-Barrier Acrylic Chamber with 60 Hz High-Voltage Electrodes: CFD and Experimental Investigations", Energies, 16, no. 19: 6947. https://doi.org/10.3390/en16196947
    (QUALIS A2)


    https://doi.org/10.3390/en16196947




  • WILSON ANTONIO COSMO MACEDO
  • ESTIMAÇÃO DE DESCARGA DE DISPOSITIVO IOT USANDO DEEP LEARNING COM OTIMIZAÇÃO NSGA-II

  • Data: 28/02/2024
  • Mostrar Resumo
  • O aumento das aplicações de redes IoT (Internet das Coisas) destaca a necessidade de otimizar a gestão de energia nestes sistemas pois a eficiência energética é crucial para sua adaptabilidade. Este estudo analisa as curvas de descarga de uma bateria recarregável em um contexto de rede IoT que utiliza comunicação LoRa (Long Range) e vários sensores, com o objetivo de gerar múltiplas curvas de descarga para estimar o comportamento da bateria nesse cenário. Essas curvas foram utilizadas para treinar uma Rede Neural Artificial (RNA) de várias camadas, implementando técnicas de Deep Learning, na qual a arquitetura da RNA foi delineada usando o algoritmo de Otimização Multiobjetivo NSGA-II (Non-dominated Sorting Genetic Algorithm II), o que resultou em um modelo com capacidade de estimar o tempo de descarga da bateria ao analisar um segmento do processo de descarga observado pelo modelo, com um resultado satisfatório dentro da métrica definida.

  • TATIANE FERRAZ BALBINOT
  • TRANSMISSÃO IOT E SISTEMA FUZZY PARA DETECÇÃO DOS NÍVEIS DE INTERFERÊNCIA EM SENSORES DE TEMPERATURA AFETADOS PELA FORMAÇÃO DE BIOFILME

  • Data: 28/02/2024
  • Mostrar Resumo
  • O desenvolvimento de biofilme na superfície dos sensores em contato prolongado com a água pode acarretar na coleta de dados inconsistentes e até mesmo no desgaste do equipamento. Por isso o monitoramento constante dos equipamentos se torna necessário, e para manter a integridade dos dados a manutenção preditiva é fundamental. Diante deste cenário a IoT (Internet of Things) e suas aplicações se apresentam como uma das alternativas viáveis para o envio de dados em tempo real, pois ela apresenta soluções de comunicação distribuídas, de menor custo e fácil acesso por seus usuários. Este estudo analisa os dados dos sensores de temperatura armazenados na nuvem através de cálculos estatísticos. A partir destas análises são definidos os limiares do sistema Fuzzy desenvolvido que indicará a necessidade de limpeza dos sensores de acordo com o nível de ruído gerado pela presença de biofilme, para que se mantenha a integridade dos dados coletados.

  • ALBERT EINSTEIN COUTINHO DOS SANTOS
  • Otimização Energética em Redes B5G Utilizando RSMA

  • Data: 09/02/2024
  • Mostrar Resumo
  • As redes B5G (Beyond 5G),  enfrentam o desafio de suportar um volume substancial de tráfego de dados. Diante dessa demanda, diversas arquiteturas e estratégias estão sendo propostas, destacando-se o modelo Rate Splitting Multiple Access (RSMA), que busca alocar os blocos de recursos da rede de forma mais eficiente aos usuários. Este trabalho propõe a otimização da potência transmitida aos usuários por meio de algoritmos de otimização incorporados ao modelo RSMA, com foco na eficiência energética. Foi realizada uma análise comparativa entre a otimização da potência proposta e a alocação padrão, evidenciando que a abordagem otimizada resulta em uma eficiência energética superior. Os resultados obtidos indicam melhorias na alocação de recursos, bem como a viabilidade e a eficácia da aplicação de algoritmos de otimização dentro do contexto RSMA. Dessa forma, contribui-se para o aprimoramento da eficiência do espectro e a gestão energética em ambientes de comunicação de próxima geração.
  • LUCAS DE CARVALHO SODRE
  • Identification Techniques Associated with Linear Quadratic Gaussian Control Applied to Quadrimotors: Experiments and Analyses

  • Data: 08/02/2024
  • Mostrar Resumo
  • With the increase in the number of Unmanned Aerial Vehicles performing various automated activities in social life, it is necessary to create algorithms with efficiency and safety in order to avoid damage and losses in society. In this work, non-adaptive and adaptive digital controllers are implemented for the autopilot system of the four-engine unmanned aerial vehicle model AR Drone 2.0 from Parrot, aiming to analyze the impact of different techniques for identifying state systems on the control performance of a multiple inputs and multiple outputs (MIMO) process. The work uses parametric identification techniques such as Least Squares, Recursive Least Squares, Recursive Extended Least Squares, Instrumental Variables and adaptive joint estimation techniques for states and parameters such as the Extended Kalman Filter and the Instrumental Adaptive Kalman Filter, which is the product of the techniques previous ones. The controller project chosen to be used as the basis of the analysis was LQG, as it is a well-known algorithm in the literature for implementations of real-time controllers for MIMO systems, with the characteristics of optimal control and optimal state estimation. , thus, minimizing the designer's interference in tuning the controller gains and using the system parameters as a determinant for tuning. Therefore, the performance and robustness of the control design may vary depending on the parameters arising from the system identification technique used, which, when appropriate, favors the LQG design and, otherwise, compromises the reliability of the algorithm. To support the study carried out on the proposed topic, experiments were carried out using the indices "Integral of Squared Error", "Integral of Squared Control", "Total Variation of Control" and "Integral of Absolute Error", to evaluate performance , and sensitivity and complementary sensitivity curves to evaluate robustness, in addition to an index, called R, designed to evaluate the robustness of adaptive control algorithms for MIMO systems at each moment of the experiment, sample by sample, enabling discussion and comparison of control algorithms. Flight simulations and experiments tested the various parametric estimation techniques associated with LQG control, most of the techniques had acceptable performance and robustness, although suboptimal, while the LQG control project associated with the Instrumental Adaptive Kalman Filter obtained a better result in the segment reference and adaptive robustness due to its theoretical commitment to finding the real parameters of the system, therefore avoiding parametric polarizations.

     

    Keywords: System identification, state estimation, four-engine, adaptive control, autopilot.

     

     

    Published papers:

     

    SILVEIRA, A. S.; NOGUEIRA, C.; SODRÉ, L.; da SILVA, D. "Predictive Minimum Variance Control: a Case Study on Wireless Altitude Hold Autopilot". 16º Simpósio Brasileiro de Automação Inteligente (SBAI 2023), 15 a 18 Outubro, Manaus-AM, 2023.

     

    SILVEIRA, A. S.; SODRÉ, L.; SILVA, A. F.; CONDE, L.; BORGES, J. P.; YURI, S.; KLAUTAU, A. "Smith Predictor-based Adaptive Control of Network-Controlled UAVs". 15º Simpósio Brasileiro de Automação Inteligente (SBAI 2021), 2021, doi: 10.20906/sbai2021/216460.

  • ANDREY DA COSTA LOPES
  • METODOLOGIAS DE CONTROLE DE TENSÃO COM JUSTIÇA DE CORTE DA GERAÇÃO FOTOVOLTAICA EM REDES DE DISTRIBUIÇÃO DE BAIXA TENSÃO

  • Data: 31/01/2024
  • Mostrar Resumo
  • METODOLOGIAS DE CONTROLE DE TENSÃO COM JUSTIÇA DE CORTE DA GERAÇÃO FOTOVOLTAICA EM REDES DE DISTRIBUIÇÃO DE BAIXA TENSÃO

  • GABRIEL BASTOS DE SOUZA SILVA
  • AVALIAÇÃO TEÓRICA EXPERIMENTAL DE SISTEMAS FOTOVOLTAICOS DE BOMBEAMENTO DE ÁGUA

  • Data: 24/01/2024
  • Mostrar Resumo
  • AVALIAÇÃO TEÓRICA EXPERIMENTAL DE SISTEMAS FOTOVOLTAICOS DE BOMBEAMENTO DE ÁGUA

  • JOÃO LÚCIO DE SOUZA JÚNIOR
  • Deep Learning in Education 5.0: Proposing 3D Geometric Shapes Classification Model to Improve Learning on a Metaverse Application

  • Data: 19/01/2024
  • Mostrar Resumo
  • The Brazilian educational system faces significant challenges, as evidenced by low educational development assessment scores. Due to the traditional educational model employed in the country, there are difficulties in the effective transmission of complex content, leading to high rates of academic failure and subsequent school dropout. The lack of innovation, especially in basic education settings, contributes to a scenario of low mathematical proficiency among Brazilian students. In this context, this work arises as a result of an innovation developed to enhance the Geometa application, developed by the Inteceleri company, through the integration of Metaverse and Artificial Intelligence technologies to create an immersive and interactive educational environment. The intention is to fine-tune Artificial Intelligence for the real-time recognition of three-dimensional geometric shapes from real objects. The proposal aims to mitigate challenges faced in basic Mathematics education in Brazil by adopting innovative technological approaches aligned with Education 5.0, which can be replicated for similar technologies involving the Metaverse. Furthermore, it is also intended to create a dynamic and sustainable educational environment that not only facilitates the understanding of mathematical concepts but also promotes active student participation, encouraging their creativity and autonomy in the learning process. As contributions of this work, the following were accomplished: (i) the training of defined models for the classification of three-dimensional geometric shapes; (ii) the evaluation of models through performance metrics, inference time, and dimension; and (iii) the selection of the model with the best performance based on accuracy and inference efficiency. According to the obtained results, the ResNet model exhibited the 84% precision, presenting the highest performance obtained among the evaluated models, in addition to 9 inferences per second, which reflects on the lowest consumption of computational resources for the task.

  • ADRIANO MADUREIRA DOS SANTOS
  • DEEP LEARNING IN EDUCATION 5.0: PROPOSING 3D GEOMETRIC SHAPES CLASSIFICATION MODEL TO IMPROVE LEARNING ON A METAVERSE APPLICATION

  • Data: 18/01/2024
  • Mostrar Resumo
  • The Brazilian educational system faces significant challenges, as evidenced by low educational development assessment scores. Due to the traditional educational model employed in the country, there are difficulties in the effective transmission of complex content, leading to high rates of academic failure and subsequent school dropout. The lack of innovation, especially in basic education settings, contributes to a scenario of low mathematical proficiency among Brazilian students. In this context, this work arises as a result of an innovation developed to enhance the Geometa application, developed by the Inteceleri company, through the integration of Metaverse and Artificial Intelligence technologies to create an immersive and interactive educational  invironment. The intention is to fine-tune Artificial Intelligence for the real-time recognition of three-dimensional geometric shapes from real objects. The proposal aims to mitigate challenges faced in basic Mathematics education in Brazil by adopting innovative technological approaches aligned with Education 5.0, which can be replicated for similar technologies involving the Metaverse. Furthermore, it is also intended to create a dynamic and sustainable educational environment that not only facilitates the understanding of mathematical concepts but also promotes active student participation, encouraging their creativity and autonomy in the learning process. As contributions of this work, the following were accomplished: (i) the training of defined models for the classification of three-dimensional geometric shapes; (ii) the evaluation of models through performance metrics, inference time, and dimension; and (iii) the selection of the model with the best performance based on accuracy and inference efficiency. According to the obtained results, the ResNet model exhibited the 84% precision, presenting the highest performance obtained among the evaluated models, in addition to 9 inferences per second, which reflects on the lowest consumption of computational resources for the task.

2023
Descrição
  • WEVERSON VIEIRA DO NASCIMENTO
  • Introduction to Computational Neuroscience with the Python language

  • Data: 29/12/2023
  • Mostrar Resumo
  • This work presents a proposal for an introductory course on computational neuroscience, using the Python programming language. The brain is a complex organ, and there is significant interest in understanding the biological mechanisms underlying its functioning. Computational neuroscience is one of the fields of study that seeks to contribute to this understanding. The introductory course is aimed at undergraduate students interested in acquiring basic knowledge in Computational Neuroscience. The course initially provides a theoretical foundation in both neurophysiology and mathematics, as well as algorithmic concepts, to enable students from diverse backgrounds to benefit from its content with minimal prerequisites. The course then introduces models of neurons, ranging from simple to more elaborate ones, and explores how these neurons connect with each other, including some well-known neural connection circuits and how learning is implemented in these neuron networks. It also includes content on artificial intelligence, such as neural and neuromorphic networks, the latter using the models mentioned initially. The course utilizes interactive Python code, which is free and open-source, for simulating the presented content.

  • LUENA OSSANA CANAVIEIRA
  • CLASSIFICAÇÃO DE REGIÕES DE DESMATAMENTO VIA IMAGENS DO SATÉLITE LANDSAT NO NORDESTE DO PARÁ

  • Data: 18/12/2023
  • Mostrar Resumo
  • O desmatamento é um dos principais problemas ambientais enfrentados no mundo, e na Amazônia a perda da cobertura vegetal tem graves consequências para o clima, biodiversidade e sociedade. Nesse contexto, a detecção e classificação de áreas desmatadas é fundamental para o monitoramento e controle do desmatamento. O objetivo deste trabalho foi identificar áreas degradadas e não degradadas na região nordeste paraense por meio de imagens do satélite Landsat 5, 7 e 8, utilizando a metodologia ReLU (Unidade Linear Retificada). O banco de dados abrangeu 210 imagens. Após os resultados foi possível gerar a matriz de confusão, para realizar a classificação digital para avaliação dos resultados das imagens de satélite. Os dados foram extraídos em KDD, o código fonte para o processamento dos dados foi a linguagem Python e rodado na plataforma Colaboratory. Por meio da matriz confusão estimou-se com 69,7% de acurácia os resultados. Os valores determinaram um índice eficaz de classificação das áreas degradadas e não degradadas. O modelo obtido  para o treinamento apresentou algumas interferências na imagens sendo possível identificar áreas desmatadas e não desmatadas. Para estudos futuros recomenda-se novas imagens de satélite da região, com destaque para os índices de resolução espectral correspondentes com os sensores determinados pelos satélites do estudo.  


    Projeto: Soluções Inteligentes para Sensores Ópticos e Redes de Próxima Geração


    Artigo: CANAVIEIRA, L. O. ; COSTA, J. C. W. A. ; SANTOS FILHO, R. C. . Classification of satellite images for deforestation regions in northeastern Pará using deep learning technique. Journal of Engineering Research, v. 3, p. 1-5, 2023 (em qualis)


  • ANTONIO RONIEL MARQUES DE SOUSA
  • Análise multifísica via método de elementos finitos para avaliar os impactos das correntes de Inrush em Transformadores de Potência.

  • Data: 07/12/2023
  • Mostrar Resumo
  • O transformador de potência é um dos equipamentos mais importantes no sistema elétrico, permitindo a viabilidade da conexão dos centros geradores aos centros consumidores, mesmo estando a longas distâncias. Esses equipamentos estão sujeitos a diversos tipos de falhas que podem afetar seus componentes chegando, em alguns casos, a comprometer sua operação e, em consequência, o abastecimento de energia elétrica. Portanto, neste documento é apresentada uma metodologia para investigação em um transformador de potência de 50 MVA por meio do método de elementos finitos para análises muitifísicas acopladas. Para isso, o estudo foi realizado por meio do acoplamento magneto-térmico-estrutural. Desta forma, um modelo em 3D do transformador próximo ao real foi utilizado, levando em consideração as características da laminação do núcleo e o formato de discos dos enrolamentos. Para a construção deste trabalho as análises foram desenvolvidas em três etapas distintas. Na primeira etapa foram realizadas simulações eletromagnéticas, para avaliar o comportamento da densidade de corrente e das forças axiais e radiais nos enrolamentos do transformador. Na segunda etapa foram desenvolvidas simulações térmicas utilizando as perdas dos enrolamentos como condição de contorno com o intuito de analisar a distribuição de temperatura nos mesmos. Por último foram desenvolvidas simulações estruturais, adotando como condições de contorno as forças eletromagnéticas e a dilatação térmica, para avaliar a deformação nos enrolamentos. Para validação da metodologia proposta neste trabalho, os resultados das simulações foram comparados com dados reais de medição coletados direto no equipamento. Torna-se importante ressaltar que em todos os resultados de MEF apresentados neste trabalho, tanto para análise eletromagnética, análise térmica e análise mecânica, foram obtidas por meio de simulações em 3D. Em cada etapa as análises foram desenvolvidas utilizando diferentes condições de operação, corrente nominal e corrente de inrush. Desta forma, este trabalho apresenta uma metodologia que pode auxiliar na análise dos transformadores de potência de uma forma mais próximo do funcionamento real do equipamento, por apresentar um acoplamento magneto-térmico-estrutural nas simulações.

  • JAMELLY FREITAS FERREIRA
  • Beam-selection Optimized by Machine Learning: A Multimodal Approach

  • Data: 30/10/2023
  • Mostrar Resumo
  • This dissertation aims to investigate the use of machine learning models using multimodal data as input to optimize the Beam-selection process in millimeter-wave based networks. The use of data of different natures is interesting as we can adjust the model according to the quality/availability of these data. After executing the experiments and obtaining the results, it was observed that it is possible to obtain significant performance in different metrics even with simpler data such as image and coordinate.

  • AMANDA MONTEIRO PINTO BARROS
  • Evaluation of the Impacts of Electric Vehicle Charging on Distribution Transformers Life: A Case Study.

  • Data: 30/10/2023
  • Mostrar Resumo
  • The objective of this dissertation is to provide a comparative assessment of the impacts caused by charging practices of short-range and long-range electric vehicles under different power levels on life expectancy of distribution transformers. This research is based on the use of real data of residential energy consumption collected from the region of East Midlands, United Kingdom, as well as electric vehicle charging data collected through an experimental project also conducted in the United Kingdom. This study examines transformer hottest-spot temperature and evaluates the transformer accelerated aging factor that influences the equipment's lifespan according to the thermal model presented in IEEE Standard C57.91. As a result, this study reveals that the effects caused by long-range vehicles are more pronounced, as they charge at higher power level and the charging process is longer. As the penetration level of electric vehicles increases, transformer load and hottest-spot temperature increases, especially during winter season, where residential demand escalates. In the case of vehicles with 75 kWh, penetration levels starting from 30% already causes severe violations on transformer hottest-spot temperature, contributing to a reduction in the equipment's lifespan

  • LUIZ EDUARDO MOREIRA DE JESUS
  • MODELING BY MOM OF A GRAPHENE DIPOLE WITH MULTIPLE DIFFERENT CHEMICAL POTENTIALS

  • Data: 27/10/2023
  • Mostrar Resumo
  • In this dissertation, the terahertz potential of graphene was explored, especially its unique ability to control the radiation diagram and impedance of a graphene dipole antenna, through varying the chemical potential in six controllable segments. The study used the Method of Moments with graphene surface impedance values. The chemical potentials were divided into symmetric and asymmetric groups by adjusting the second resonance and the maximum gain angle of the radiation diagram. Compared to four-segment antennas, the gain of symmetric antennas increased with little variation in the second resonance. Furthermore, the gain of the six-segment antennas had a notable increase at the point of greatest deviation, keeping the angular displacement practically constant. This study paves the way for highly tunable and efficient graphene antennas, with promising applications in communications and radiation technology. Future work can explore varying chemical potentials, other antenna geometries and optimization techniques in the simulation.

  • DIEGO RAMIRO MELO MONTEIRO
  •  Previsão de Geração de Energia Fotovoltaica através de Redes Neurais Convolucionais baseadas em Transformação de Séries Temporais em Imagens.

  • Data: 26/10/2023
  • Mostrar Resumo
  •  

     

    Este trabalho apresenta uma nova abordagem baseada em Rede Neural Convolucional 2D (Convolutional Neural Network – CNN) e técnicas de transformação de séries temporais em imagens, como Campo Angular Gramiano (Gramian Angular Field – GAF) e Gráfico de Recorrência (Recurrence Plot – RP), para previsão em curto prazo da geração de energia elétrica de uma microusina fotovoltaica conectada à rede elétrica, localizada no Centro de Excelência em Eficiência Energética da Amazônia – CEAMAZON, da Universidade Federal do Pará (UFPA). As técnicas de GAF e de RP foram utilizadas para transformação das séries temporais em imagens para serem utilizadas como entrada para a CNN. A previsão de geração de energia elétrica com maior precisão possibilita ao usuário conhecer com maior grau de acerto quais os possíveis custos para implantação da rede e os prazos para retorno financeiro, além de avaliar com maior assertividade a disponibilidade de carga que poderá ser conectada ao sistema. Os resultados da previsão com a utilização de GAF e RP em rede CNN 2D foram comparados com resultados utilizando outros tipos de rede neurais já consolidadas na área, como a Perceptron Multicamadas e a CNN 1D, tendo a CNN 2D obtido, em alguns casos,  valores de RMSE próximos ou um pouco inferiores, mostrando assim a aplicabilidade da utilização de imagens obtidas através de transformação das séries temporais de energia fotovoltaica em rede CNN 2D para o problema.

     

     

     

    Artigo aceito :

    Previsão de Geração de Energia Fotovoltaica Utilizando Transformação de Séries Temporais em Imagens e Redes Neurais Convolucionais

    XVI Congresso Brasileiro de Inteligência Computacional (CBIC)

    Salvador/BA, 08 a 11/10/2023

     

     

     

     

     

     

     

     

     

     

     

  • RAFAEL NINNO MUNIZ
  • Índice Amazônico de Sustentabilidade Energética utilizando Lógica Fuzzy

  • Data: 03/10/2023
  • Mostrar Resumo
  • Indicadores de sustentabilidade energética são ferramentas utilizadas para avaliar e medir o desempenho de sistemas energéticos, incluindo aspectos ambientais, sociais e econômicos. Eles podem ser utilizados para avaliar a sustentabilidade de diferentes fontes de energia, como fontes renováveis ou fontes fósseis, ou para avaliar o desempenho de sistemas energéticos em diferentes regiões ou países. A presente tese teve como objetivo desenvolver um quadro de indicadores de sustentabilidade energética e elaborar um índice final para a Amazônia utilizando lógica fuzzy. A metodologia utilizada incluiu a revisão da literatura com uma seleção de indicadores de sustentabilidade energética adaptados à região amazônica, coleta e análise dos dados utilizando lógica fuzzy e a proposição do Índice Amazônico de Sustentabilidade Energética. O sistema de inferência fuzzy utilizado permitiu operacionalizar os conceitos subjetivos da sustentabilidade através da criação do índice final, utilizado para avaliar o desempenho dos estados da Amazônia Legal e compará-los entre si. Como resultado, temos o Mato Grosso em primeiro lugar no ranqueamento, seguido pelos estados do Tocantins, Amapá, Rondônia, Roraima, Pará, Acre, Amazonas e na última posição o Maranhão. Os resultados encontrados mostraram que os indicadores selecionados e o índice final elaborado são úteis para avaliar a sustentabilidade energética na Amazônia e balizar os estados da Amazônia Legal, no sentido de auxiliar os gestores públicos para a tomada de decisões e elaboração de políticas públicas voltadas ao desenvolvimento regional sustentável da região amazônica.

     

    Artigo Publicado:
    MUNIZ, R. N. et al. Tools for Measuring Energy Sustainability: A Comparative Review. Energies, v. 13, n. 9, p. 2366, jan. 2020. Qualis A1.

    Artigo Submetido:
    MUNIZ, R. N. et al. Amazon Energy Sustainability Index. Journal of Intelligent Fuzzy Systems. Qualis A2.
    .

  • RODRIGO RODRIGUES PAIVA
  • Multifunctional THz Graphene Antennas with Continuous 360-degree Azimuthal Beam Radiation Pattern Steering and Beam Elevation Control.

  • Data: 28/09/2023
  • Mostrar Resumo
  • A novel graphene antenna composed of a graphene dipole  and four auxiliary graphene sheets oriented at 90° to each other  is proposed and analysed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas has been fulfilled. By electric field control of the chemical potentials of the graphene elements, the antenna  can provide quasi-omnidirectional diagram, one- or two-directional beam regime,  dynamical control of the beam width and, due to vertical orientation of the dipole with respect to the base substrate,  360° beam steering in the azimuth plane. An additional graphene layer on the base permits control of the radiation pattern in Θ-direction. Radiation patterns in different working states of antenna  are considered using symmetry arguments.  We discuss the antenna parameters such as input reflection coefficient, total efficiency, front-to-back ratio and gain. An equivalent circuit of the antenna is suggested. An evaluation is performed on the effects of designed and implemented periodic structures to the substrate.


    Published Paper (QUALIS A2):  V. Dmitriev, R. M. S. de Oliveira, R. R. Paiva, and N. R. N. M. Rodrigues, “Multifunctional THz Graphene Antenna with 360° Continuous ϕ-Steering and θ-Control of Beam,” Sensors, vol. 23, no. 15, p. 6900, Aug. 2023.

    Link:  https://doi.org/10.3390/s23156900

  • PATRICIA DO SOCORRO PEREIRA MACEDO ALMEIDA
  • NANOTECHNOLOGY: THE SILENT REVOLUTION IN WORK SAFETY

  • Data: 28/09/2023
  • Mostrar Resumo
  • The exploratory research aims to analyze existing regulations regarding nanotechnology and its impact on worker safety. The study will focus on examining the specific challenges associated with nanotechnology, including the lack of adequate toxicological data to assess risks, the complexity of characterizing nanomaterials, and the limitations of existing monitoring techniques. One of the main challenges faced is the lack of sufficient data on the health effects of workers exposed to nanomaterials. Nanotechnology is a relatively new field, and much remains to be learned about the potential adverse health effects these materials can cause. The lack of adequate toxicological data makes it difficult to accurately assess risks and implement effective protective measures. Furthermore, the characterization of nanomaterials is also a complex task. Its unique physical and chemical properties require specialized analysis methods and advanced techniques. The lack of standardization in this field makes it difficult to fully understand nanomaterials and their relationship to health effects. Another challenge is the limited monitoring techniques available to assess workers' exposure to nanomaterials. Traditional monitoring methods may not be adequate to detect and quantify the presence of nanomaterials in the work environment due to their small size and unique properties. This makes it difficult to accurately assess worker exposure and implement appropriate control measures. The study also sets out to examine the strategies and approaches adopted by different countries and international organizations to address these challenges and ensure the safety of workers exposed to nanotechnology. This may include developing specific regulations, promoting toxicological research and studies, creating good practice guidelines, and implementing engineering control and personal protection measures. In summary, the exploratory research aims to analyze existing regulations and challenges related to worker safety in the field of nanotechnology. Understanding and addressing these challenges is critical to ensuring worker protection and promoting the safe and responsible use of nanotechnology in industry.

  • FABIO PEREIRA FERREIRA DA SILVA
  • SISTEMA FUZZY PARA DISPOSITIVO MÓVEL DE DUAL-INTERFACE COM CONEXÃO SIMULTÂNEA EM REDES HETEROGÊNEAS SEM FIO
  • Data: 26/09/2023
  • Mostrar Resumo
  • SISTEMA FUZZY PARA DISPOSITIVO MÓVEL DE DUAL-INTERFACE COM CONEXÃO SIMULTÂNEA EM REDES HETEROGÊNEAS SEM FIO
  • DANIEL DA SILVA SOUZA
  • HEURISTIC FOR HANDOVER PRIORITY IN MOBILE HETEROGENEOUS NETWORKS

  • Data: 20/09/2023
  • Mostrar Resumo
  • The handover process was designed with the aim of ensuring service quality in cellular telephony networks. In scenarios with multiple Base Stations (BS), the handover decision-making process is a problem that has been studied in various researches, given that neglecting the use of efficient handover strategies can influence performance metrics and, consequently, lead to a decrease in the quality of services provided. To develop efficient handover strategies, the correct use of a set of metrics is essential, as well as the choice of decision-making methods that can optimize handover and result in a better connection for users. With this in mind, this thesis proposal seeks to identify and analyze a set of handover metrics that, when combined with decision-making methods, can optimize performance metrics for heterogeneous mobile networks. As results, two heuristics for handover were developed. The first one is called H2ATF (Heuristic for handover based on AHP-TOPSIS-FUZZY), which uses a specific set of metrics (Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal-to-Interference-plus-Noise Ratio (SINR), and User Speed) and employs the following methods: (a) Analytical Hierarchical Process (AHP) for defining criteria weights; (b) Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for ranking the Base Stations; and (c) the use of an adaptive hysteresis, calculated through Fuzzy logic based on parameters that directly impact the handover process. The second heuristic, H2AG (Heuristic for handover based on Genetic Algorithm), utilizes genetic algorithms to minimize handover metrics. Through the development of these handover strategies, it was possible to determine the best timing and, collectively, the best BS to perform the handover. The performance evaluation results of the algorithms demonstrate that H2ATF achieved better results in terms of Handover Ping Pong rate (HPP), while H2AG showed lower average Handover Failure rate (HOF) in the evaluated scenarios.

  • VICTOR HENRIQUE RODRIGUES CARDOSO
  • Development of optical sensors to measure the diameter variation of cylindrical structures: applications in monitoring plant species and gas pipelines

  • Data: 19/09/2023
  • Mostrar Resumo
  • The control and monitoring of expansion and compression of structures is observed in several applications. In many areas, such monitoring plays an important role. For example, in oil or gas transport infrastructure, the pressure in the pipeline is high, causing deformation or fatigue and, consequently, rupture. The pipelines deform when the deformation exceeds the established limit, which can be caused by the environment when natural disasters occur, such as landslides and earthquakes or theft of material transported in the pipelines. The corrosion process is also one of the main factors contributing to pipeline accidents. In either case, they can cause significant environmental damage, product loss, financial problems, and sometimes loss of life in explosions.
    Another example is that monitoring the change in the diameter of trees is directly related to irrigation since it depends on the water deficit of the soil, and trees are essential in the global circulation of heat and water. In addition, tree growth is affected by the rate of carbon dioxide, CO2, and pollutants. In this scenario, sensors based on fiber optics stand out as alternatives due to their characteristics and advantages compared to traditional sensors. The use of optical sensors for these cases is interesting, as they have features such as immunity to electromagnetic interference, compact size, resistance to pressure, heat, and corrosion, and the possibility of transmission over long distances. The combined use of sensors with additive manufacturing has been investigated in recent years to improve measurement optimization by developing and manufacturing sensors combined with a 3D printing technique and employing the materials as substrate. Integrating fiber optic sensors in different additive manufacturing structural materials allows the measurement and analysis of deformation, fatigue damage, and structural integrity evaluation. Therefore, this proposal aims to develop and apply new methods for monitoring cylindrical structures through diameter variation, emphasizing irrigation control of specimens from the Amazon using fiber-based sensors combined with additive manufacturing. Correct and accurate monitoring will increase productivity, reduce costs, prevent environmental disasters, and reduce water waste.

  • ROMARIO DA COSTA SILVA
  • IDENTIFICAÇÃO DE LARVAS DE MOSQUITO DO GÊNERO AEDES UTILIZANDO REDES NEURAIS CONVOLUCIONAIS

  • Data: 19/09/2023
  • Mostrar Resumo
  • IDENTIFICAÇÃO DE LARVAS DE MOSQUITO DO GÊNERO AEDES UTILIZANDO REDES NEURAIS CONVOLUCIONAIS

  • FERNANDA COSTA DE LIMA
  • TECNOLOGIAS DE PROPULSÃO ELÉTRICA AQUAVIÁRIA: PROJETO CONCEITUAL DE EMBARCAÇÃO HÍBRIDA COM FOCO EM ATENDIMENTO AS PRÁTICAS AMBIENTAIS, SOCIAIS E DE GOVERNANÇA (ESG)

  • Data: 14/09/2023
  • Mostrar Resumo
  • Esta pesquisa investiga o papel das tecnologias de propulsão elétrica na mobilidade aquaviária sustentável, com um foco específico na utilização de terras raras. Mediante  a isso, a pesquisa propõe duas análises: sendo a primeira a modificação de um sistema propulsivo de um barco a combustão para elétrico, equipado com módulos fotovoltaicos.  Este tem por finalidade realizar viagens com trajetos curtos, transportando turistas ao longo da Costa do Rio Guajará, localizado na região de Belém/Pará. Para a proposta de eletrificação, ilustra as principais tecnologias do setor Marítimo, que abrange as pequenas embarcações de arquitetura naval com sistema propulsivo elétrico. Dito isso, fazem parte do sistema propulsivo: o banco de baterias de íons de lítio, motores elétricos e módulos fotovoltaicos. Ademais, foram ressaltados os benefícios da propulsão elétrica em termos de eficiência energética, redução de emissões e sustentabilidade. E por fim, apresentadas recomendações para implementação efetiva do futuro projeto, considerando também os aspectos econômicos e operacionais. Para a segunda análise, foi direcionado para o ciclo final dos componentes de eletrificação do barco elétrico, onde requerem alta demanda de matéria prima mineral para aperfeiçoar as tecnologias estratégicas, nos quais, coincidem com os desafios da exploração mineral e segurança energética nas próximas décadas. Essa exploração inclui os elementos críticos e aqueles que estão associados em particular com produção dos ímãs permanentes: Pr, Nd, Tb e Dy. Mediante a isso, as oportunidades estão em torno da recuperação desses elementos, através de pesquisas que apontam a necessidade da aplicação da reciclagem como forma de mitigar um possível racionamento de terras raras e visando um planejamento futuro. No entanto, um dos grandes desafios, estão em torno da viabilidade metodológica e preservar as propriedades magnéticas, para assim retornar a cadeia produtiva. É importante frisar, que a implantação deve estar alinhada dentro dos princípios ESG no setor mineral e metalúrgico, pois tais pilares estão direcionados para o desenvolvimento de cadeia de suprimento sustentável e justa. Embora existam desafios de viabilidade econômica e estratégias das stakeholders, na qual a recuperação desses materiais poderia ser uma fonte de abastecimento significativa por um determinado período para acelerar o processo de transição energética.

  • DANIEL ABREU MACEDO DA SILVA
  • Análise de Técnicas de Controle Clássicas e Avançadas Sintonizadas com Aprendizado por Reforço

  • Data: 01/09/2023
  • Mostrar Resumo
  • A teoria de controle é utilizada para estabilizar sistemas e obter respostas específicas para cada tipo de processo. Controladores clássicos, como o PID e o IMC utilizados nesta pesquisa, são difundidos globalmente nas indústrias, isto por possuírem topologias bem estudadas pela literatura e serem facilmente aplicados em microcontroladores; já os avançados, como GMV, GPC e LQR também utilizados neste trabalho, possuem certa resistência em aplicações comuns das indústrias de base, mas são muito utilizados em sistemas de energia, aerospaciais e robóticos, pois a complexidade e estrutura desses métodos gera robustez e alcança desempenhos satisfatórios para processos de difícil controle. Neste trabalho, esses métodos são estudados e avaliados com uma abordagem de sintonia que utiliza o aprendizado por reforço. São aplicadas duas formas de sintonia para os controladores, estas são o método do laço offline e o método de jogos diferenciais. O primeiro utiliza iterações offline, onde o agente do processo é a técnica de controle utilizada, que utiliza os índices de desempenho e robustez como ambiente (métrica de como o processo está evoluindo), sendo capaz de organizar uma política de ajuste para o controlador, que se baseia em recompensar o fator de ponderação até obter o critério de parada do processo (resposta desejada). O segundo método se  baseia em utilizar estratégias de reforço que recompensam o controlador conforme a resposta se modifica, assim o LQR aprende as políticas de controle ideais, adaptando-se às mudanças do ambiente, o que permite obter melhor desempenho por recalcular os tradicionais ganhos encontrados com a equação de Ricatti para sintonia do regulador; neste método, os jogos diferenciais são utilizados como uma estrutura para modelar e analisar sistemas dinâmicos com múltiplos agentes. Para validar o que é apresentado, o Motor Tacogerador e o Ar Drone são utilizados. O MTG é modelado utilizando a estimação dos mínimos quadrados com uma estrutura ARX-SISO para avaliação do primeiro método de sintonia. O Ar Drone é modelado utilizando o estimador de Kalman com uma estrutura ARX-MIMO para avaliação do segundo método de sintonia.

     

    Palavras-chave: Teoria de Controle. Aprendizado por Reforço. Laço Offline. Jogos Diferenciais. Equação de Ricatti.

     

     


     

    Artigos publicados/submetidos:


    1. SILVA, D. A. M. ; SILVEIRA, A. S. ; NASCIMENTO, A. C. . State Space Predictive Minimum Variance Controller Applied to a Tacho Generator Motor. In: Seminar on Power Electronics and Control, 2022, Santa Maria. 14th Seminar on Power Electronics and Control, SEPOC 2022, 2022. [Publicado]


    2. SILVA, D. A. M. ; ARAÚJO, R. B. ; SILVEIRA, A. S. . Análise de Desempenho e Robustez do Controlador Preditivo Generalizado Aplicado em Plantas Benchmarks. In: 15th IEEE/IAS International Conference on Industry Applications, INDUSCON 2023. November 22-24, São Bernardo do Campo, São Paulo, Brazil, 2023. [Em revisão] 


    3.SILVA, D. A. M; ALMEIDA, K.; SILVEIRA, A. S.. Analysis of Reinforcement Learning for One Parameter Controllers Tuning. In: 30th Brazilian Symposium on Intelligent Automation, SBAI 2023. October 15-18, Manaus, Amazônas, Brazil, 2023. [Em revisão]

  • JULIO CESAR DA SILVA DOS SANTOS
  • GRAPHENE-BASED CONTROL DEVICES FOR THZ

  • Data: 31/08/2023
  • Mostrar Resumo
  • In this work, we theoretically investigate two new control devices based on graphene elements. The first device, consists of a circular graphene resonator and four graphene nanoribbons that serve as waveguides. These waveguides are frontally coupled to the resonator with a small gap between them forming a 90 0 angle between them. In addition,the Fermi energy in graphene can be dynamically tuned by applying an electric potential difference between the graphene and a thin polysilicon layer that acts as an electrode. The resonator can work with dipole and quadrupole resonant modes that are used to provide the adjustable bandpass filter, adjustable power divider, and switch functions. Through the description of the scattering matrix of the four-port device and also the circuit theory and the full-wave analysis, we show that for the center frequencies of 10.72 THz and 14.52 THz we have respectively the excitations of the dipole and quadrupole modes, where we calculate the following pairings: transmission, reflection, isolation, Q-factor, which due to the use of a resonant structure has the following value (6 : 8). The match in the passband with return loss is -17 dB and low insertion loss which is approximately -1.0 dB. In the OFF regime, the transmission coefficients for the output ports are less than -42 dB. The component provides center frequency control and the power ratio between the three output ports can be designed over a wide frequency range. The second device is a graphene-based phase modulator freestanding (standalone) that consists of two circular resonators R 1 and R 2 of the same radius and are made of graphene in which they are separated at a distance of 400 nm and two nanoribbons also made of graphene that perform the function of waveguide. In the R 1 resonator two waveguides are coupled that form a 180 0 angle to each other and the R 2 resonator is not coupled to waveguides. For this device, two resonance peaks were observed for the dipole mode and two resonance peaks were observed for the quadrupole mode. In dipole mode, the resonance frequencies were 10.04 THz and 11.54 THz with reflection coefficient of -15.93 dB and -12.17 dB, respectively. In the quadrupole mode, the resonance frequencies were 14.46 THz and 15.16 THz, with reflection coefficient of - 17.8 dB and -14.8 dB. Furthermore, it was observed that at the center frequencies for the dipole regime of 10.04 THz the resonators are in opposite phases and at 11.54 THz the resonators are in the same phase. This behavior is repeated for the case of the center frequencies in the quadrupole regime.

  • DARLAN HOLANDA CARDOSO
  • IMPLEMENTAÇÃO DO PHAGRAFENO NO PATCH DE UMA ANTENA DE MICROFITA
  • Data: 25/08/2023
  • Mostrar Resumo
  • Esta pesquisa corresponde à implementação do Phagrafeno no Patch de uma antena de microfita,
    a partir das perspectivas analisadas de uma antena microfita de grafeno. O Phagrafeno, é um novo
    alótropo de carbono e sua estrutura distorcer os cones de Dirac, tendo características de ligação e
    densidade de empacotamento compatíveis com a do grafeno. Neste trabalho, o simulador usado é
    o software COMSOL multifiphsysics, onde ele realiza modelagem multifísicas, no qual para
    implementar o Phagrafeno na biblioteca do programa, é necessário ter as propriedades ópticas,
    como: condutividade elétrica, permissividade relativa e permeabilidade relativa. Usou-se o pacote
    SIESTA, para otimização da geometria e determinação das propriedades ópticas a partir da célula
    unitária do Phagrafeno. Os resultados obtidos do Phagrafeno, comparados com grafeno, expõem
    que propriedades eletrônicas e magnéticas se tornam úteis para o designer de antenas microfitas.
    Dessa forma, foi simulado duas antenas de microfita: uma com o Patch feito de Phagrafeno e a
    outra de grafeno. O objetivo era fazer um termo comparativo entre elas e assegurar que o
    Phagrafeno é mais estável numa largura de banda THz. Como os resultados obtidos (Perda de
    retorno, Impedância, VSWR e diagrama de radiação de ganho) da antena de Phagrafeno foram
    satisfatórios, foi realizado mais três simulações, variando seu designer: (i) uma com estruturas
    periódicas, sendo uma com furos de ar (Antena PBG), (ii) outra com a adição duas Nanofitas de
    Phagrafeno nas bordas do Patch da antena (Antena Nano), e por fim, a última antena projetada
    (iii), a junção das antenas (i) e (ii) chamada de (Antena PBG+Nano). Portanto o uso dessas variações
    mostrou-se interessante para as aplicações nessa faixa de frequência por obter resultados bons,
    abrindo um leque de aplicabilidade.
  • YAN DOS SANTOS SILVA
  • SYSTEM FOR MONITORING AND ESTIMATING ELECTRICITY PRODUCTION FROM GRID-CONNECTED PHOTOVOLTAIC SYSTEMS IN THE GEDAE/UFPA BUILDING

  • Data: 22/08/2023
  • Mostrar Resumo
  • -

  • EDINHO DO NASCIMENTO DA SILVA
  • UM SISTEMA WEB DE SUPORTE A MOBILIDADE MULTIMODAL EM SMART CAMPUS USADO ALGORITMOS BASEADOS EM INTELIGÊNCIA ARTIFICIAL E ANÁLISE ESTATÍSTICA

  • Data: 16/08/2023
  • Mostrar Resumo
  • To serve the Internet of Things (IoT) networks, there are several intelligent systems that are still under development and when implemented in a practical way, they will require the use of robust structures for storing, managing and presenting the data collected in the form of information/knowledge. Such systems are based on the use of different technologies to ensure an orchestrated operation, that is, mainly considering the efficient use of resources under network monitoring, such as battery level and device memory. To this end, this work presents a web system for managing data captured in real time with support for decision making based on Artificial Intelligence and Statistics. For this, it makes use of General Regression Neural Network (GRNN), Linear Regression and Moving Average techniques, among others. The results indicate that the proposed system can be a real-time decision support tool.

  • LUCAS DOS SANTOS CONDE
  • Simulation of UAV Missions in Fictional 3D Environments and Digital Twins with Pixel Direct Georeferencing

  • Data: 14/08/2023
  • Mostrar Resumo
  • The world is rapidly entering a reality where Artificial Intelligence is becoming increasingly present in various systems, from the domestic environment to sectors such as industry, urban mobility, and agriculture. In this context, with the advancement of computational power, simulators for developing and testing autonomous systems have garnered significant interest from large companies and the scientific community due to the visual and physical fidelity they offer. These simulators are often regarded as "digital twins" of real scenarios and systems and have brought significant advantages in terms of cost and time, saving physical and human resources during the conception and improvement of algorithms. Among these systems are Unmanned Aerial Vehicles (UAVs), which have proven to be of great utility in contexts such as urban and rural mobility and monitoring. They are applied, for example, in detecting defects in photovoltaic panels, identifying weeds in crops, extending the mobile network and in search and rescue missions. Therefore, this work presents the conception of a methodology that integrates realistic mission simulation with UAVs, using the AirSim simulator in conjunction with the Unreal Engine graphics engine and computer vision capabilities. The objective is to perform object detection (employing the YOLO AI model) associated with their georeferenced location and generate geolocated image files. The results were evaluated using the WebODM software for scene reconstruction from geolocated image files (generating orthophotos). And to evaluate the direct pixel georeferencing algorithm, the ability of the drone to return to the position of the detected person (or object) after the algorithm provided the GPS position was tested, with errors smaller than 5 meters in relation to the real position (in UTM coordinates) of the element in the 3D environment.

  • LUCAS DOS SANTOS BULHOSA
  • MODELING AND SIMULATION FOR PERFORMANCE EVALUATION OF SIGFI-45 PHOTOVOLTAIC SYSTEM OPERATING WITH DIFFERENT CONFIGURATIONS

  • Data: 14/08/2023
  • Mostrar Resumo
  • -

  • JESSE DA COSTA ROCHA
  • RECONHECIMENTO FACIAL DE ALUNOS DE ESCOLA PÚBLICA NO USO DE ÔNIBUS ESCOLAR EM CIDADE INTELIGENTE

  • Data: 04/08/2023
  • Mostrar Resumo
  • In the present days, the disappearance of children and adolescents and school dropout are major problems faced by countries worldwide, in particular, developing countries. This article proposes an intelligent platform for monitoring students' steps as a tool to mitigate these problems. This platform can identify students and notify those responsible and competent authorities in various situations of school life, such as: entering and leaving the school bus, entering and leaving school, entering the school cafeteria, etc. The first application aims to control access to the school bus through facial recognition. Facial recognition, in turn, employs different artificial intelligence techniques to recognize students, such as: HOG (Histograms of Oriented Gradients), SVM (Support Vector Machine), CNN (Convolutional Neural Network) and KNN (K-Nearest Neighbors). In the tests carried out, the recognition system achieved excellent results in all metrics. The next step is going to be the installation of the system prototype in 8 school buses in the city of Canaã dos Carajás located in the northern region of Brazil.

  • EDEMIR MARCUS CARVALHO DE MATOS
  • MODELING QUALITY LOSS OF ULTRA-RESOLUTION VIDEO WITH CODEC H.264/AVC: AN APPROACH BASED ON THE EVALUATION OF GOP AND QP STRUCTURES

     

  • Data: 17/07/2023
  • Mostrar Resumo
  • The increase in digital multimedia information flow over wireless networks, driven by the IEEE 802.11 standards and the widespread use of devices operating in these networks, has led to the common use of ultra-resolution video streaming. This has driven the development of more efficient CODECs for data compression in wireless transmission. While many research efforts are focused on improving video codecs, the perceived video quality experienced by users in wireless networks is affected by the characteristics of the wireless channel. Many of these research studies aim to establish a relationship between Quality of Service (QoS) metrics and user Quality of Experience (QoE) in video streaming services, proposing enhancements to network techniques and protocols. However, few studies consider specific video information, such as frame loss, the Group of Picture (GOP) structure, and video characteristics themselves. In this thesis proposal, we analyze the behavior of video streaming using the H.264/AVC CODEC at 2160p (4K) resolution, with variations in the GOP structure and a fixed Quantization Parameter (QP) value. The selected videos are subjected to simulated packet loss to mimic a network with transmission errors, and QoE metrics are extracted to correlate with QoS metrics. We propose a mathematical model to predict video quality loss in error-prone networks, utilizing the Peak Signal-to-Noise Ratio (PSNR) metric as a QoE measure, taking into account the total number of lost frames and the variation in the GOP structure for different videos. The accuracy of the model is evaluated using the Root Mean Square Error (RMSE) metric.

  • WUANDA LETICIA DA SILVA MORAES
  • GESTÃO DO ARMAZENAMENTO DE ENERGIA INTEGRADO COM FONTES RENOVÁVEIS INTERMITENTES

  • Data: 13/07/2023
  • Mostrar Resumo
  • O presente trabalho irá abordar a configuração do armazenamento de energia integrado à fontes renováveis intermitentes, especialmente sistemas fotovoltaicos, conectados à rede de distribuição de energia elétrica. Este é resultado de um Projeto Pesquisa e Desenvolvimento (P&D) de Mobilidade Elétrica Multimodal na Região Amazônica (SIMA), desenvolvido no Centro de Eficiência Energética da Amazônia (CEAMAZON), onde há uma mini rede com geração fotovoltaica, geração à diesel, eletro postos, armazenamento de energia em banco de baterias íon-lítio, e ponto de acoplamento com a rede CA da cidade universitária Profo Dro José da Silveira Netto. O gerenciamento da mini rede conta com a tecnologia de um inversor híbrido associado a um controlador de carga, capaz de informar e gerir a potência que está sendo gerada pelos arranjos FV, o estado de carga do banco de baterias, que também possuem um gerenciamento próprio, através de BMS (Battery Management System); e a potência que está sendo injetada no barramento CA. De posse do estudo de caso, serão definidas as estratégias de gerenciamento e energia através do gerenciamento pelo lado da demanda (GLD), análise de viabilidade econômica e estratégias que visem as políticas de baixo carbono.

  • WOLDSON LEONNE PEREIRA GOMES
  • IOT AUTOMATION SYSTEM FOR ASSET MANAGEMENT IN THE INDUSTRY 4.0 SCENARIO

  • Data: 10/07/2023
  • Mostrar Resumo
  • The fourth industrial revolution has several pillars, the Internet of Things and Big Data
    being one of the most prominent. These technologies make it possible to collect and
    analyze large data sets in real time, allowing the development of models for the most
    diverse situations, from consumer behavior to the prevention of factory failures. In this
    context, the present work proposes an architecture for the implementation of an
    automation system for industry 4.0, based on the collection of temperature, hour meter,
    vibration and current data in electric motors of a primary aluminum industry. From the
    measured variables, vibration data in the frequency domain, phase imbalance and
    constant with Kalman filter can be obtained. A multicriteria decision algorithm was
    adopted to assist in choosing the programming language. After the elaboration of this
    systematic, a set of solutions was obtained that achieved the development of the
    system. Therefore, an automation system was developed, called IOT CORE, which
    performs from the collection of variables in real time, with low latency, high
    performance, and makes it possible to transmit, store and visualize the data in several
    supervisory systems.


    Keywords: Supervisory, Microcontroller, Database, Communication Protocols, Cyber-
    Physical Systems.

  • ÁDREA LIMA DE SOUSA
  • DETECTION OF HIGH IMPEDANCE FAULTS IN OVERHEAD DISTRIBUTION NETWORKS: LABORATORY EXPERIMENTAL TESTS AND ANALYSIS IN THE TIME AND FREQUENCY DOMAIN

  • Data: 04/07/2023
  • Mostrar Resumo
  • The present work deals with the analysis of high impedance faults (HIFs) in overhead distribution networks. A comprehensive and comprehensive study is conducted on this type of fault, as well as on some important methods of HIF detection. After that, the laboratory developed for experimental testing of HIFs is explained, which reproduces the 13.8 kV medium voltage network present in Brazil, with three phases and a grounded neutral at the substation. From the laboratory, 127 tests were performed in 18 different scenarios, including shunt and series shunt faults with source-side interruption. In order to perform a comparative analysis with the existing literature on high impedance fault detection based on harmonics, a harmonic analysis methodology was developed, based on even harmonics, odd harmonics (especially the third order), and the angle of the third harmonic, obtained through the Fast Fourier Transform (FFT). The main contribution of this work lies in evaluating the peculiarities of the harmonic spectrum of voltage and current signals from real tests in different soil topologies and tree branch configurations, and their correlation with the signal in the time domain, considering the difficulty of capturing real tests due to the non-operation of the overcurrent relay. This provides an important foundation for the development of HIF detection algorithms. The results obtained in the analysis revealed that shunt and series shunt high impedance faults exhibit distinct behaviors in the harmonic spectrum and time domain, and a large portion of the tests performed does not fall within the thresholds established in the literature. Furthermore, it should be noted that the evaluation of the harmonic spectrum of voltage was carried out, which is usually not considered in HIF detection algorithms. 

  • GEORGE TASSIANO MELO PEREIRA
  • CLASSIFICAÇÃO DE RANSOMWARE UTILIZANDO MLP, REDUÇÃO DE DIMENSIONALIDADE E BALANCEAMENTO DE CLASSES

  • Data: 03/07/2023
  • Mostrar Resumo
  • Ransomware é um tipo de malware que impede ou limita o acesso do usuário ao sistema e
    arquivos até que um resgate seja pago. Combater essa ameaça é difícil devido à sua disseminação rápida e às constantes mudanças nas técnicas de criptografia utilizadas. Algoritmos de aprendizado de máquina, como Redes Neurais Artificiais, têm sido apontados como ferramentas promissoras na classificação de ransomware, porque elas podem aprender a identificar padrões e características complexas em grandes quantidades de dados. Isso permite que as redes neurais sejam treinadas com exemplos de amostras de software malicioso, incluindo ransomware, e depois sejam capazes de classificar novos exemplos com alta precisão. Além disso, as redes neurais também são capazes de aprender e se adaptar a mudanças no comportamento do malware, tornando-as ferramentas eficazes para a detecção de novos tipos de ransomware. Neste trabalho, é explorado três tipos de classificação de ransomware por RNA dentro de um pipeline composto com redução de dimensionalidade por Kernel PCA e balanceamento de classes com a abordagem de superamostragem aleatória. A MLP ( Multi-layer Perceptron) alcançou uma média de 98% de acurácia na classificação binária e 85% de acurácia na classificação de família com goodware, onde tais valores superam os resultados anteriores e demonstram assim a eficácia da inclusão do balanceamento de classes na melhoria do modelo de detecção de ransomware.


    Artigo publicado para a defesa:
            1) PEREIRA, G.; SALES, JR., C.Ransomware classification by machine learning and dimensionality reduction. Journal of Engineering Research, v. 2, n. 25, 2022. ISSN 2764-1317. DOI: 10.22533/at.ed.3172252201116


    Projeto vínculado: Aplicação e Concepção de Meta-heurísticas, Técnicas de visualização de dados e Métodos de Inteligência Computacional para Problemas de Engenharia e Computação

  • LUIS PAULO DO VALE MATOS
  • APPLICATIONS OF MAGNETIC GROUP THEORY TO ELECTROMAGNETISM

  • Data: 26/06/2023
  • Mostrar Resumo
  • In this work we propose to study the Theory of Magnetic Groups and to develop methodologies for the application of this tool in problems of electromagnetism, more specifically, the study of selective frequency structures or photonic arrangements. Magnetic groups, also called Heesh-Shubnikov groups, consist of groups formed by symmetry elements whose operators are unitary and anti-unitary with the same order. It is a known fact in the scientific community that the issue of symmetries of physical models provides good guidance on the behavior of phenomena associated with them. The applications of classical group theory are diverse and the methods are well used. However, some problems cannot be studied via classical groups or, at best, their analysis using this tool requires careful rigor. We present some models in electromagnetism analyzed by classical group theory and suggest more elaborate models, in the presence of magnetic field for example, where the use of magnetic group theory is more appropriate. Particularly, a metamaterial model with graphene will be studied for several symmetries, for example C_{4v}(C_{4}), due to magnetization by external DC magnetic field B_{0} . Kerr and Farady effects are explained in the method.

  • ANDERSON VINICIUS DE FREITAS SOUTO
  • OPTIMIZATION STRATEGY FOR UAV ROUTE PLANNING IN DISASTER SCENARIOS, CONSIDERING URBAN MORPHOLOGY, MICROCLIMATE, AND ENERGY EFFICIENCY, USING Q-LEARNING AND MESH NETWORKING TO HANDLE DAMAGED OPTICAL NETWORKS

  • Data: 23/06/2023
  • Mostrar Resumo
  • In smart city paradigms, it is essential to ensure the well-being of the population in terms of social infrastructure. Among the actions that can be taken to make a city more resilient are preventive measures, mechanisms for informing the population, and technologies that accelerate action in emergency situations. The establishment of a communication structure that survives disasters is of utmost importance so that authorities can act immediately in providing assistance and saving lives. In this sense, the use of UAVs as a communication alternative is an ideal solution for scenarios such as natural disasters or intentional attacks that may cause partial or complete disruption of telecommunications services. However, energy autonomy is a limitation that affects the mission's lifespan. With this in mind, our group has developed a new method based on reinforcement learning that aims to reduce energy consumption in UAV missions in disaster scenarios, circumventing the negative effects of wind variations and optimizing the air mesh time in locations affected by interruption of fiber optic-based telecommunications services. The thesis proposal aims to develop a new methodology that considers an emergency solution aimed at dimensioning backup elements in an optical metro network, considering the adoption of UAVs and wireless interfaces to provide temporary air links, and also provides efficient management of backup resources to extend the flying mesh network's life during the catastrophe. The method considers K-means to scale the position of resource stations - from which UAVs are launched. For UAV locomotion, the Q-learning method was used to investigate possible actions that UAVs could take due to randomly distributed urban obstacles in the scenario and due to wind speed, which is related to how UAVs are organized during the mission. For the tests, a metropolitan optical network topology from Stockholm, Sweden was used. The heuristic was combined using three reinforced learning methods (Simple Q-learning, ε-greedy and SARSA) and a naive solution. Numerical results of the experimented simulations proved that the reinforcement learning based solution was able to reduce the energy consumption by up to 15.93% compared to the naive solution, which can lead to a significant increase in the service life of voluntary UAV routes. Results of this work contributed to increase the efficiency of UAV routing, which in turn favors the increased use of UAVs in civil applications, as expected for smart cities.

  • EDNA SOFIA SOLANO MEJÍA
  • PREVISÃO DA IRRADIAÇÃO SOLAR UTILIZANDO MÉTODO ENSEMBLE PARA SELEÇÃO DE ATRIBUTOS E ALGORITMOS DE APRENDIZADO DE MÁQUINA

  • Data: 21/06/2023
  • Mostrar Resumo
  • A precisa previsão da irradiação solar é essencial para operar com segurança sistemas
    de energia sob altas quotas de geração fotovoltaica. Este trabalho compara o desempenho de
    diversos algoritmos de aprendizado de máquina, incluídos modelos que integram diferentes
    algoritmos para previsão de irradiação solar de dias com diferentes padrões climatológicos
    utilizando entradas endógenas e exógenas e propõe um método de seleção de atributos para
    escolher não apenas os parâmetros de entrada mais relacionados, como também seus valores
    de observações passadas. Os algoritmos de aprendizado de máquina utilizados são: AdaBoost,
    SVR, RF, XGBT, CatBoost, VOA e VOWA. O modelo ensemble de seleção de atributos proposto é
    baseado nos algoritmos RF, IM e Relief. A precisão da metodologia proposta é avaliada com base em várias
    métricas utilizando um banco de dados real da cidade de Salvador, Brasil. Diferentes horizontes de previsão 
    são considerados: 1 h, 2 h, 3 h, 6 h, 9 h e 12 h à frente. Os resultados numéricos
    demonstram que a abordagem de seleção de atributos proposta melhora a precisão da previsão
    e que o algoritmo VOWA apresenta melhor desempenho quando comparado com outros algoritmos em diferentes horizontes de tempo de previsão.

  • HUGO ALEXANDRE OLIVEIRA DA CRUZ
  • PROPOSTA DE MODELO DE PROPAGAÇÃO E PLANEJAMENTO BASEADO EM INTELIGÊNCIA COMPUTACIONAL EM REDES IoT EM AMBIENTE DE SMART CAMPUS

  • Data: 12/06/2023
  • Mostrar Resumo
  • In wireless network planning, the most important factor for estimating signal coverage area is the use of an accurately modeled propagation model. It should be adapted to the environment in which it will be implemented, capable of predicting signal nuances along the path to accurately predict signal degradation. Therefore, the objective of this work is to assist in the planning of future IoT networks, similar to the case study of the Smart Intelligent Multimodal Electric Mobility Management System (SIMA) project, which aims to create a Smart Campus to monitor parameters (location, battery level, temperature measurement, etc.) of electric vehicles, such as buses and boats, serving the academic community. Thus, the proposed work develops an empirical model based on measurements in LoRa networks operating at a frequency of 915MHz, specifically for Amazonian environments. The measurements were conducted at the campus of the Federal University of Pará (UFPA), in Belém, Pará, Brazil. To model the wireless signal path loss, an artificial neural network (ANN) technique, a computational intelligence approach, was employed. Four input parameters were used: distance between transmitter and receiver, Spreading Factor (SF), link type (uplink or downlink), and transmitter height. These parameters were evaluated to determine the accuracy of the proposed model, which was compared to Close-in (CI) and Floating Intercept (FI) models, as well as the UFPA Model adjusted through Genetic Algorithm (GA). The proposed ANN-based model stood out and was further employed in a multi-objective bio-inspired optimization algorithm called Evolutionary Particle Swarm Optimization (EPSO) to determine the positioning of gateways, aiming to maximize the LoRa network coverage area on the Smart Campus with the fewest possible gateways. The best result was obtained with four gateways and their respective positions, covering 100% of the established area. 

  • IZIDIO SOUSA DE CARVALHO
  • SIS2GER E SISGAE2B FORMANDO UM ECOSSISTEMA DE SOLUÇÕES PARA GERENCIAMENTO DE INDICADORES ELÉTRICOS, AMBIENTAIS E FINANCEIROS EM SISTEMAS DE GERAÇÃO FOTOVOLTAICA E DE ARMAZENAMENTO DE ENERGIA

  • Data: 02/06/2023
  • Mostrar Resumo
  • Atualmente existe um crescente aumento na demanda por energia elétrica em diversos países do mundo, esse aumento é impulsionado pela maior quantidade de equipamentos elétricos e eletrônicos conectados à rede elétrica em residências, bem como pela utilização de novos maquinários por parte da indústria. Dado ao constante aumento na necessidade por energia elétrica tem-se dado cada vez mais importância para a utilização de fontes renováveis para a geração de energia elétrica a ser suprida pela demanda, dado a este fator, tanto o Brasil quanto outros países ao redor do globo estão em processo de transação energética por meio da geração distribuída com fontes renováveis e sistemas de armazenamento. Com base nesse contexto, este trabalho atua nos aspectos da necessidade de monitoramento e de gerenciamento destes sistemas, uma vez que através de um bom gerenciamento e monitoramento é possível proporcionar melhorias nos aspectos relacionados a uma maior eficiência, segurança e qualidade da energia elétrica. O trabalho apresenta o desenvolvimento de dois softwares, o Sistema de Gestão da Geração de Energia Renovável (SIS2GER) voltado para a gestão de sistemas de geração fotovoltaicas e o Sistema de Gestão do Sistema de Armazenamento de Energia Elétrica (SISGAE2B) voltado para a gestão de sistemas de baterias, tendo como enfoque a capacidade dos softwares desenvolvidos de prover auxílio nas tarefas de gestão dos sistemas monitorados através do uso de indicadores para a realização de análises de qualidade de energia elétrica, de sustentabilidade e financeira, onde tem-se a implantação dos softwares no campus da Cidade Universitária Professor José Silveira Netto da Universidade Federal do Pará (UFPA). Os softwares foram desenvolvidos por meio da utilização de tecnologias voltadas para o desenvolvimento de sistemas escaláveis e de fácil implementação, em que foi utilizado o Docker para a construção dos ambientes de desenvolvimento e produção, o framework Laravel para a codificação dos softwares o Middleware DOJOT para o armazenamento dos dados de medição para cada sistema gerenciado.

  • HUGO LEONARDO MELO DOS SANTOS
  • Multimedia Service Orchestration in Multi-tier Edge Computing Environments

  • Data: 29/05/2023
  • Mostrar Resumo
  • High Definition Video on Demand (VoD) and immersive multimedia services,
    such as Virtual Reality (VR) and Augmented Reality (AR), continuously enhance multimedia visual quality and leads to an exponential usage growth of computational resources of processing, networking, and storage. Low-latency multimedia services rely on heterogeneous multi-tier edge computing datacenters to provide computational resources close to consumers, improving user-perceived Quality of Experience (QoE) and avoiding degraded network Quality of Service (QoS). Multimedia services are composed of specialized functions embedded into a monolithic service or decomposed into Service Function (SF) chains of ordered microservices inter-connected with high-speed network links. Monolithic and SF chains deployed at the network edges can reduce delay and improve the use of computational resources. In this context, multi-tier edge nodes can host services according to consumers’ and providers’ best interests. QoE, QoS, mobility, and multiple criteria are important in instantiating, re-instantiating, and terminating services in multi-tier edge
    computing. Service orchestration controls and manages service requests and chooses edge nodes to execute services fulfilling requirements guarantees and efficiently using computational resources. The orchestrator can be configured to consider service aspects, such as QoE, QoS, fairness, computational edge node constraints, energy, and mobility. There are several issues of providing efficient service orchestration for multimedia in multi-tier edge computing environments, including (i) service orchestration in diverse changing network conditions intended to improve the user-perceived experience and QoS; (ii) mobile users assistance by energy-constrained mobile and static edge nodes in temporary and poor connectivity conditions; and (iii) mobility support in real-time for immersive multimedia SF chaining orchestration to mobile users in urban scenarios.
    This thesis contributes to efficiently meeting future VoD, VR, and AR services needs in multi-tier edge computing. The first contribution lies in choosing an appropriate edge node to stream VoD, considering QoE, QoS, and cost to instantiate VoD services. The second lies in selecting and placing flying edge nodes to assist poorly-served users regarding QoS, considering distance, energy, and service priority. The third lies in mobility-aware Service Function Chaining (SFC) orchestration by mapping, instantiating, and re-instantiating SFs into multiple edge nodes considering QoS. The proposed solutions were widely compared to related works on different scenarios. The results show that the proposed schemes outperform the state-of-the-art.

  • JUAN FERREIRA VIDAL

  • Data: 26/05/2023
  • Mostrar Resumo
  • The task of data classification depends on the development of great classifiers capable of learning patterns among a quantity of information, that is often found in a set with redundancies or with attributes that are irrelevant to the problem. Techniques for feature selection and extraction became important for the optimization process of the data set to be used for the development of classifiers. Therefore, this work proposes a new approach based on Genetic Programming (GP) for features extraction and selection for problems with numeric attribute dataset. The technique considers the optimization of a fitness function based on the silhouette index to create an n-dimensional space of features that are capable of performing intraclass compression while performing interclass separation. The efficiency of the methodology, as well as the importance of the extracted characteristics, are verified through the application of the technique in the development process of a fault diagnosis system in transformers based on the analysis of gases dissolved in oil (DGA - Dissolved Gas Analysis). The Classifier system developed use a Multilayer Perceptron networks, and additionally a Varational Autoencoder (VAE) network was used to deal with the imbalance problem of the database used for training the classifier. The results obtained from the performance evaluation metrics of the classifier demonstrate the efficiency and applicability of the proposed approach

  • KELLE CRISTINA FORTUNATO DA COSTA
  • METHODOLOGY USING TEXT MINING FOR LABELING LARGE VOLUMES OF BIOMEDICAL DATA BASED ON UNSUPERVISED LEARNING

  • Data: 22/05/2023
  • Mostrar Resumo
  • The increase in the volume of literature related to biological and health sciences is a challenge for researchers and biocurators, even queries in specialized databases in biomedical literature, such as PubMed (scientific and medical abstracts/citations) and PubMed Central (full text journal articles) present a large volume of retrieved items that tends to make it difficult to locate relevant information about biological entities. Document selection, also known as like screening, is the first and one of the most important in the biocuration process steps, therefore, developing automated information extraction methods to support the construction of logical databases and discovering new knowledge from online journal collections is, not only a challenge, but a necessity, and the adoption of text mining techniques are viable alternatives, as they can streamline and optimize document screening, as well as assist in different steps of the standard biocuration workflow. In this scenario, this thesis proposal presents a methodology that adopts a text mining approach based on unsupervised learning, to classify the relevance of scientific articles in specific biomedical contexts and generate training sets accurate enough to maximize the efficiency of supervised classifiers. As a way of showing the effectiveness of the proposal, the context of antimicrobial resistance genes is used as a case study.

  • SÉRGIO TEIXEIRA CORRÊA FILHO
  • CLASSIFICAÇÃO DE ARRITMIAS CARDÍACAS ATRAVÉS DE UMA ESTRUTURA COMPETITIVA DE REDES NEURAIS CONVOLUCIONAIS AUTOASSOCIATIVAS

  • Data: 11/05/2023
  • Mostrar Resumo
  • Este trabalho tem como objetivo apresentar a proposta de um sistema para classificação de arritmias cardíacas baseado em uma estrutura competitiva de Redes Neurais Convolucionais Autoassociativas. Três redes neurais foram treinadas para reconstruir sinais de Eletrocardiograma (ECG) para casos de pacientes com batimento supraventricular, ventricular e normal. Após o treinamento, as redes foram alocadas em uma estrutura paralela competitiva para classificação de arritmias. O banco de dados público de arritmia MIT-BIH de sinais ECG foi utilizado para o treinamento e testes das redes, sendo que para cada sinal ECG, de cada paciente, foram extraídos os complexos QRS dos batimentos cardíacos, que foram as características utilizadas como entrada para o sistema, sendo que estes sinais, que se encontravam em formato de sinais temporais (1D), foram transformados para imagens digitais (2D) com o objetivo de utilizar a capacidade das redes neurais convolucionais para reconhecimento de padrões e extração de características em imagens. Para desenvolvimento e análise de desempenho da estrutura proposta foram usados dois paradigmas que veem sendo utilizados em trabalhos já apresentados na literatura: paradigma interpaciente e paradigma intrapaciente. Uma análise comparativa com resultados de sistemas de classificação de arritmia já apresentados na literatura mostra que o sistema proposto apresenta resultados próximos ou em alguns casos superiores aos já obtidos, mostrando assim a aplicabilidade da estrutura proposta para o problema.


     

  • FABIO ROCHA DE ARAUJO
  • Dynamic UAV-enabled Mobile Edge Computing Service Migration for Beyond 5G Networks

  • Data: 09/05/2023
  • Mostrar Resumo
  • The sixth-generation (6G) technology of mobile networks will establish new standards to fulfill unreachable performance requirements by fifth-generation (5G) mobile networks. This is due to the high requirements for a more intelligent network, ultra-lower latency, extreme network communication speed, and supporting a massive number of connected applications. In this context, Mobile Edge Computing (MEC) and service migration strategies have shown promising results in improving the user experience, meeting requirements of beyond 5G networks (B5G), and optimizing infrastructure resources. In addition, Unmanned Aerial Vehicles (UAVs) are a promising solution to provide cloud and edge services in collaboration with MEC scenarios. However, most strategies have ignored resources available on users' devices and contextual information. Motivated by the use of massive-extended reality (XR) and virtual reality (VR) applications in B5G networks, this thesis proposal presents a video service migration strategy based on contextual information and evaluates the influence of user mobility on migration strategies, called Dynamic Video Service Migration (DVSM). Simulation results highlight $74\%$ higher performance of the DVSM compared to state-of-the-art algorithms and a performance equivalent to the optimal solution when the collection and analysis of context information (remaining device's energy, user's location, network conditions, etc) are carried out correctly.

  • FELIPE ROCHA DE ARAUJO
  • Transportation Mode Characterization and Classification Approach centered on Information Theory Quantifiers

  • Data: 02/05/2023
  • Mostrar Resumo
  • The uncontrolled growth caused by migration and the increasing world population demand solutions to improve the infrastructure of cities. The academic and industrial communities are investing in solutions centered on human mobility to improve the life quality of humans. In this context, location-aware services provide valuable information for capturing human mobility patterns. Exploring the dynamics of mobility time series leads to better solutions by understanding the underlying data-generating process and identifying different patterns. Strategies based on Information Theory quantifiers associated with Ordinal Pattern (OP) methods, like Complex-Entropy Causality Plane (CECP) and Fisher-Shannon Causality Plane (FSCP),  have reached relevant advancements in distinguishing different time series dynamics. Therefore, they are promising tools to explain those complex behaviors to improve human mobility-based services. Based on that, this thesis presents an approach to characterize and classify transportation modes through the Information Theory quantifiers computed over their speed time series. This approach presents high-quality data preprocessing to ensure reliability and validity. We characterize each transportation by examining its mobility aspect changes over time and comparing its statistical properties to noises mapped onto the causal planes. Finally, we build and evaluate robust Machine Learning classifiers centered on Information Theory quantifiers computed over the time series. Evaluation results show the potential of our study, allowing us to identify motorized and non-motorized means of transportation regimes, estimate transportation switching based on causal plane mappings, and efficiently classify transportation categories through machine learning models.

  • WELDON CARLOS ELIAS TEIXEIRA
  • INTELLIGENT MULTIAGENTS TO REDUCE FALSE ALARMS IN WIND TURBINE MONITORING SYSTEMS

  • Data: 28/04/2023
  • Mostrar Resumo
  • This study proposes a method for improving the capability of a data-driven multi-agent system (MAS) to perform condition monitoring and fault detection in industrial processes. To mitigate the false fault-detection alarms, a co-operation strategy among software agents is proposed because it performs better than the individual agents. A few steps transform this method into a valuable procedure for improving diagnostic certainty. First, a failure mode and effects analysis are performed to select physical monitoring signals of the industrial process that allow agents to collaborate via shared signals. Next, several artificial neural networks (ANN) models are generated based on the normal behavior operation conditions of various industrial subsystems equipped with monitoring sensors. Thereafter, the agents use the ANN-based expected behavior models to prevent false alarms by continuously monitoring the measurement samples of physical signals that deviate from normal behavior. Finally, this method is applied to a wind turbine. The system and tests use actual data from a wind farm in Spain. The results show that the collaboration among agents facilitates the effective detection of faults and can significantly reduce false alarms, indicating a notable advancement in the industrial maintenance and monitoring strategy.

  • ANDRE MELO DE MORAIS
  • Mitigação da Tensão Induzida nos Isoladores com a Instalação de Para-raios de Baixa Tensão em Paralelo

  • Data: 28/04/2023
  • Mostrar Resumo
  • Nesta Tese é proposto um novo método de mitigação para reduzir a tensão induzida sobre isoladores, sob condição de transitórios de origem atmosférica, baseado na instalação de para-raios de baixa tensão alinhados paralelamente ao isolador. O método tridimensional de diferenças finitas no domínio do tempo (FDTD) é aplicado para modelar numericamente uma estrutura real de ensaios de tensão residual de para-raios. A aplicação de um impulso de corrente, típico de descargas atmosféricas, é considerado no modelo numérico. São avaliados cenários com um ou dois para-raios instalados por fase, em três configurações geométricas e paramétricas diferentes para instalação de para-raios de distribuição. Em adição à divisão de corrente de Kirchhoff, que reduz tanto a energia absorvida quanto o estresse térmico, conforme demonstrado também nos ensaios realizados no Laboratório de Alta e Extra Alta Tensão da Universidade Federal do Pará, os resultados numéricos associados à instalação de dois para-raios alinhados paralelamente ao isolador mostram que a interação entre os campos magnéticos gerados pelas correntes conduzidas pelos para-raios pode produzir uma forte redução adicional na tensão induzida por descargas atmosféricas sobre o isolador, conforme apresentado neste trabalho. Condições para a máxima redução da tensão induzida também são identificadas. Uma breve análise de custo-efetividade também é fornecida.

  • RODRIGO DIAS ALFAIA
  • Resource Management in Mobile Networks Assisted by by UAV Base Stations: Machine Learning for Overloaded Base Stations Prediction Based on Users’ Temporal and Spatial Flow

  • Data: 28/04/2023
  • Mostrar Resumo
  • The rapid growth of data traffic due to the demands of new services and applications poses new challenges to the wireless network. Unmanned aerial vehicles (UAVs) can be a solution to support wireless networks during congestion, especially in scenarios where the region has high traffic peaks due to the temporal and spatial flow of users. In this paper, an intelligent machine-learning-based system is proposed to deploy UAV base stations (UAV-BS) to temporarily support the mobile network in regions suffering from the congestion effect caused by the high density of users. The system includes two main steps, the load prediction algorithm (LPA) and the UAV-BSs clustering and positioning algorithm (UCPA). In LPA, the load history generated by the mobile network is used to predict which base stations are congested. In UCPA, planning is performed to calculate the number of UAV BSs needed based on two strategies: naïve and optimized, in addition to calculating the optimal positioning for each device requested to support the overloaded base stations. For prediction, we used two models, generalized regression neural networks (GRNN) and Random Forest (RF), and the results showed that both models were able to make accurate predictions, and the random forest model was better with an accuracy of over 85%. The results showed that the intelligent system significantly reduced the overhead of the affected base stations, improved the quality of service (QoS), and reduced the probability of blocking users, as well as defined the preventive scheduling for the UAV BSs, which benefited the scheduling and energy efficiency.

  • THAIS PASCOAL DE OLIVEIRA ANDERE
  • ATENUAÇÃO DE OSCILAÇÕES MAGNETOHIDRODINÂMICAS EM CUBA DE REDUÇÃO DE ALUMÍNIO USANDO ESTRUTURAS PERIÓDICAS

  • Data: 27/04/2023
  • Mostrar Resumo
  • A instabilidade magnetohidrodinâmica (MHD) em uma cuba de redução de alumínio surge da interação entre um fluido eletricamente condutor e campo magnético gerado por correntes elevadas que percorrem os barramentos do circuito de alimentação da cuba. Tal fenômeno gera oscilações neste fluido, comprometendo a eficiência do processo de redução do alumínio. As cubas de redução consistem, em sua configuração usual, em um recipiente com paredes planas que acomodam o líquido. Neste trabalho, é proposta uma nova geometria para a parede da cuba baseada em estruturas periódicas, com o objetivo de mitigar tais oscilações. A análise das oscilações do fluido é feita com um software desenvolvido neste trabalho para simular numericamente o processo em duas dimensões. A formulação numérica empregada é baseada no método de diferenças finitas no domínio do tempo para resolver as equações de Navier-Stokes (N-S) através do método de projeções de Chorin. O volume e a superfície do fluido são mapeados usando o método MAC. O líquido é tratado como incompressível e viscoso, além de ser eletricamente condutor. As acelerações causadas pelo campo magnético e as correntes elétricas são acopladas a N-S pelo cálculo da Força de Lorentz.Os resultados são analisados e comparados através da diferença entre a variação da altura do fluido condutor em dois cenários: com paredes planas e com estruturas periódicas aplicadas nas paredes da cuba.


  • ADILSON DE ALMEIDA NETO
  • Development of a Library for Automatic Generation of Test Cases with Genetic Algorithms

  • Data: 20/04/2023
  • Mostrar Resumo
  • In this work a library capable of automatically generating test cases for the Python programming language is developed, these tests are generated utilizing an genetic algorithm which uses an ad-hoc mutation operator based on social interaction. The algorithm is applied with success to the problem of automatically generating software tests, showing promising results when compared to the state of the art, revealing itself as a possible path of exploration when solving this category of problem. 

  • CAIO HENRIQUE ESQUINA LIMÃO
  • DEEP LEARNING BASED SLOPE EROSION DETECTION

  • Data: 31/03/2023
  • Mostrar Resumo
  • The recent catastrophes triggered by the rupture of the Fundão and Córrego do Feijão dams caused around 300 deaths and countless irreparable socio-environmental damages. Since the use of more accurate monitoring systems and the proper execution of preventive and corrective maintenance would allow identifying, and even mitigating, the damage caused to society, it can be stated that there is a need for greater investment and incentive to create solutions of Structural Health Monitoring (SHM) capable of diagnosing occurrences that compromise the most crucial civil structures, such as bridges, buildings, dams and slopes. High-performance Artificial Intelligence (AI) techniques have been able to solve these structural analysis problems and presented superior results to previous solutions, their use has increased dramatically in the most diverse (SHM) scenarios. When it comes to image analysis and classification solutions, Convolutional Neural Network (CNN) is the type of neural network that delivers the best results. Therefore, this dissertation will describe the development process of a CNN with three convolutional layers that combines the use of the most consolidated technologies in the current scenario of computer vision, such as the Adam optimizer and batch normalization, with the activation function and the most appropriate hyperparameters for its purpose, which is to identify apparent structural damage on slopes. The proposed CNN was trained with a database set up specifically for this dissertation, consisting of images of public work reports made by the Brazilian government, portfolios of companies that work with construction and maintenance of slopes and reports on landslides and/or catastrophes. The results obtained were quite satisfactory, presenting an accuracy of 96.67% and proving that this solution is capable of identifying in a precise and improved way the instability indicators presented by the analyzed slopes, allowing a more adequate planning of the maintenance for each case, in the prevention of possible disasters, more efficient manpower management, cost reduction, greater safety and structural health to ensure its long-term integrity.

  • TARCISIO CARLOS FARIAS PINHEIRO
  • Stochastic Model Predictive Control Using Laguerre Function with Minimum Variance Kalman Filter Estimation

  • Data: 31/03/2023
  • Mostrar Resumo
  • This work proposes a stochastic model predictive control using the Laguerre function with optimal Kalman filter state estimation. The controller design uses an ARMAX state-space model, incorporating moving average into the stochastic formulation by a state disturbance matrix in innovation form, which calculates a stochastic term introduced in the control law. The optimal Kalman filter gain design copes with the minimum variance case, where the Kalman filter weighting matrices are tuned based on the state disturbance matrix and the covariance of estimated states of an ARMAX model. Furthermore, it shows that the proposed strategy also can be applied in the classic MPC design.

    Hildreth’s Quadratic Programming is the method used to solve the constrained optimization problem in a stochastic scenario. This method is used together with the Laguerre function, simplifying finding the optimal problem in constrained cases. Moreover, the Laguerre function improves the control horizon prediction, reducing the output variance, and preserving a better trade-off between the control effort and closed-loop performance. It is because of its orthogonal property, making it a universal approximator that results in a parsimonious representation of the control trajectory.

    This work uses a highly oscillatory mechanical system, a robot joint, and a Hydropower MIMO system as numerical examples to demonstrate the proposed method’s efficiency. Furthermore, two experimental tests are introduced with two different plants that confirm these results: a circuit representing an under-damped coupled multivariable system with two inputs and two outputs and a Twin Rotor MIMO system, comparing the proposed strategy’s effects to the Laguerre deterministic MPC approach, classic MPC, and classic MPC using the ARMAX model with minimum variance Kalman filter estimation.

  • THAISSE DIAS PAES
  • A comparison of dimensionality reduction and blind source separation techniques for vieo-based modal identification

  • Data: 29/03/2023
  • Mostrar Resumo
  • Understading the dynamic properties of a structure or a system is indispensable for a reliable study of the structural behavior. Operational modal analysis has been effectively used as a key method for video-based structural dynamics identification in recent years. With several different approaches, the ones based on the blind source separation strategy have received increased attention for identifying structural characteristics. Blind source separation address the problem of separating or extracting the original source waveforms from a sensor array. Although the literature addresses several techniques to perform the source separation, only one of them (named complexity pursuit) is often employed for video-based solutions. This work aims to explore other blind source separation algorithms to perform video-based modal analysis. In order to perform the modal analysis, a set of blind source separation methods is combined with different dimensionality reduction techniques for full-field high-resolution structural dynamics from video. Specifically, two dimensionality reduction techniques are used for video compression along with six source separation algorithms, resulting in twelve different frameworks tested over a laboratory cantilever beam structure and an bench-scale model of a three-story building structure. This issue is tested here to provide a range of alternatives for the vide-based structural dynamics evaluation. For specific algorithms, the results indicate that both dimensionality reduction techniques and the blind source separation methods play a major role in the mode estimation performance.

  • RODRIGO GOMES DUTRA
  • DEEP LEARNING SOFTWARE-BASED HOLDOVER FOR PTP IEEE 1588 SYNCHRONIZATION IN 5G NETWORKS

  • Data: 28/03/2023
  • Mostrar Resumo
  • DEEP LEARNING SOFTWARE-BASED HOLDOVER FOR PTP IEEE 1588 SYNCHRONIZATION IN 5G NETWORKS

  • WELISSON LOHAN AVIZ DA COSTA
  • ANÁLISE DA VIABILIDADE TÉCNICA DO ILHAMENTO INTENCIONAL EM UMA PLANTA INDUSTRIAL COM COGERAÇÃO DISTRIBUÍDA: UM ESTUDO DE CASO REAL

  • Data: 24/03/2023
  • Mostrar Resumo
  • ANÁLISE DA VIABILIDADE TÉCNICA DO ILHAMENTO INTENCIONAL EM UMA PLANTA INDUSTRIAL COM COGERAÇÃO DISTRIBUÍDA: UM ESTUDO DE CASO REAL

  • MATHEUS MORAES DE BRITO
  • Personalized Route Selection Methods in a Urban Computing Scenario

  • Data: 22/03/2023
  • Mostrar Resumo
  • With population growth in urban areas, the more extensive city infrastructure faces several problems affecting the population's health and quality of life. Urban mobility changes became intense since the worldwide technological revolution brought many tools and methods to prevent harmful tendencies regarding urban transportation. In this context, Internet of Things (IoT) solutions perform a ubiquitous way of sensing the population mobility and the local mobility context as criminality, accidents, and air quality near the road infrastructure, complementing the city mobility. Likewise, Location-based Social Networks (LBSN) dispose of users' geolocated data, allowing the identification of mobility patterns, traffic flows, and alternative modal transport recommendations. In this matter, novel mobility solutions must attend city issues regarding public transportation, criminality, traffic influencing factors, and air quality compromising. Also, route selection methods must consider comfort features, making more pleasant urban trips. This master's dissertation proposes and evaluates two pollution-aware route selection approaches, a multi-modal hybrid routes method and a multi-criteria personalized route selection method, for urban citizens' mobility flow improvement. The hybrid multi-modal solution surpasses the single-modal, offering less expensive and less polluted trip options. The multi-criteria solution personalized profiles outperform the single-criterion choice in the same context considering all calculated route possibilities. 

  • ARTHUR CORREA DA FONSECA
  • Power Quality in a DC Nanogrid under Different Operating Conditions

  • Data: 17/03/2023
  • Mostrar Resumo
  • Este trabalho apresenta um estudo experimental da qualidade da energia elétrica em uma Nanorrede de Distribuição em Corrente Contínua (NDCC) implantada na área de testes do prédio do Grupo de Estudos e Desenvolvimento de Alternativas Energéticas (GEDAE) da Universidade Federal do Pará (UFPA), campus Guamá, cidade de Belém-Pará. Os eventos de qualidade de energia são identificados por meio de ensaios realizados na NDCC e classificados com base na recomendação do IEEE (Institute of Electrical and Electronic Engineers) – Recommendation Practice for Monitoring Electric Power Quality - Std 1159, de 2019. Apresentam-se as características da NDCC e os bancos de cargas submetidos aos ensaios, utilizando cargas comerciais disponíveis no mercado, bem como a instrumentação utilizada para medições e aquisições de dados elétricos e ambientais. Entre os eventos de qualidade da energia elétrica identificados, avaliam-se as variações de longa duração, eventos transitórios durante o acionamento de conversores c.c.-c.c., elevações e afundamentos de tensão com o acionamento e saída de cargas e ripple de tensão ao longo da NDDC. Como estudo de caso adicional, avaliam-se ainda eventos de interrupção em uma NDCC localizada em Ilha das Onças, no município de Barcarena. Assim, diante dos ensaios e medições realizados, evidenciam-se eventos presentes na NDCC suprida por geradores fotovoltaicos e bancos de baterias dispersos, destacando-se a influência desses eventos em diferentes cargas conectadas ao longo da rede de distribuição e para diferentes condições operacionais.

  • ARTUR ANDRADE MACHADO
  • REAL-TIME ADAPTIVE FUZZY CONTROL DEVELOPMENT FOR LORA CHANNEL OPTIMIZATION USING 915 MHZ IN MOBILITY SCENARIOS

  • Data: 17/03/2023
  • Mostrar Resumo
  • With the growing scenario of the Internet of Things (IoT) and the context of low-power wide area networks (LPWAN), LoRa technology stands out as one of the most used to build communication networks for IoT applications. This communication technology uses open radio spectrum to transmit data between devices. However, LoRa technology presents a challenge in its physical layer or LoRaWAN protocol, as there is no official tool that deals with communication stability in mobility situations. To address this issue, the present research aims to develop real-time adaptive controls based on Fuzzy logic for LoRa channel optimization in mobility situations. The goal is to maintain communication between devices and, possibly, reduce response time and efficiently manage LoRa channel attributes. The research uses wireless signal quality metrics, such as signal-to-noise ratio (SNR) and received signal strength indicator (RSSI), along with spreading factors (7, 9, and 11) as inputs to the Fuzzy control. Based on these inputs, three Fuzzy controls were developed and experimentally tested in a target scenario at UFPA. The results obtained through field data collection demonstrate how LoRa technology can benefit from computational intelligence tools for resource optimization, increased reliability, and especially for mobility situations.

  • CAMILA NOVAES SILVA
  • SYNCHRONIZATION ALGORITHMS FOR TDD FRONTHAUL IN PTP-UNAWARE NETWORKS

  • Data: 17/03/2023
  • Mostrar Resumo
  • SYNCHRONIZATION ALGORITHMS FOR TDD FRONTHAUL IN PTP-UNAWARE NETWORKS

  • JOEL ALISON RIBEIRO CARVALHO
  • DATA TRANSMISSION ARCHITECTURE FOR SMART CAMPUS, USING MULTIPLE TRANSMISSION TECHNOLOGIES AND DOJOT AS MIDDLEWARE

  • Data: 16/03/2023
  • Mostrar Resumo
  • Society has been undergoing major transformations in the era of industry 4.0, and the growth of the internet of things has been accentuated, especially in cities, giving rise to smart cities and university campuses (smart campuses). In this work, a data transmission architecture was developed for the UFPA smart Campus, combining different protocols and communication technologies to meet the different requirements of IoT applications found on the Campus. The following technologies were used: LoRa, GSM/GPRS, MODBUS and the Dojot development middleware platform. The results were restricted, since the data were kept under observation in Dojot

  • FELIPE HENRIQUE BASTOS E BASTOS
  • A MODULAR FRAMEWORK FOR AI/ML IN DIGITAL WORLDS APPLIED TO B5G V2X NETWORKS

  • Data: 10/03/2023
  • Mostrar Resumo
  • A MODULAR FRAMEWORK FOR AI/ML IN DIGITAL WORLDS APPLIED TO B5G V2X NETWORKS

  • LEILIANE BORGES CUNHA
  • PARAMETRIC ROBUST GENERALIZED MINIMUM VARIANCE CONTROL

  • Data: 10/03/2023
  • Mostrar Resumo
  • This work presents an investigation directed to the analysis and design of Generalized Minimum Variance Control (GMV) with Parametric Robust Control applied to plants with interval parameters. The proposed control structure, in addition to using the GMV controller, utilizes stochastic augmentation, which adds stochastic properties to deterministic controllers, providing a higher degree of robustness in reference tracking and the ability to properly handle noise and uncertainties. The Project presented in this work uses the GMV based on the analog proportional-integral-derivative (PID) controller, which, through a “digital-analog mask”, transfers its tuning characteristics and robust performance to GMV, and in standard RST form. For this, the robust pole placement technique, integrated with the linear programming techniques solution, is used to calculate the controller parameters. Stability analysis and robust system performance analysis are performed considering factors such as load disturbance, transport delay and non-minimal phase dynamics. With this, the Parametric Robust Generalized Minimum Variance (PRGMV) controller is designed to reduce the variability in dynamics and increase the robustness of system operation for various operating conditions, considering the factors mentioned. Comparisons of this proposed technique with classical controllers such as PID, GMV and LQG are performed to evaluate the results obtained and validate the advantages of using the proposed technique. Results and comparisons are performed in a simulation environment using MATLAB software.

  • AMANDA DE FREITAS ROMEIRO
  • SENSORES DE MULTI-RESSONÂNCIAS PLASMÔNICAS BASEADOS EM FIBRAS PCF TIPO D

  • Data: 28/02/2023
  • Mostrar Resumo
  • Com o objetivo de monitorar o índice de refração e possibilitar a determinação das características de dispersão do meio investigado, esta dissertação apresenta um esquema de excitação para múltiplas ressonâncias plasmônicas ao longo do espectro óptico. Uma fibra de cristal fotônico tipo D com uma face plana parcialmente revestida por várias camadas metálicas, incluindo metamateriais, compõe o arranjo de detecção. O método dos elementos finitos é usado para mostrar como adaptar ressonâncias de plasmon em vários comprimentos de onda, tornando possível detectar vários parâmetros direta e facilmente com pouco cross-talk, como o índice de refração médio e a dispersão óptica de primeira ordem. O principal objetivo dessa configuração de detecção é encontrar um meio-termo entre a miniaturização e o baixo acoplamento entre os muitos modos plasmônicos localizados em nanoestruturas metálicas próximas. Além disso, determinar a dispersão óptica de um meio em uma ampla faixa espectral oferecendo, dessa forma, dados sobre a concentração dos constituintes do meio, o que é vital para o monitoramento em tempo real de meios como soluções aquosas e/ou fluidos.

  • AMANDA EVANGELISTA DA SILVA
  • ANÁLISE DE RESSONÂNCIAS ELETROMAGNÉTICAS EM DISCOS DE GRAFENO MAGNETIZADOS NA FAIXA DE TERAHERTZ

  • Data: 27/02/2023
  • Mostrar Resumo
  • Desde seu isolamento em 2004, o grafeno tem se mostrado um material promissor, pois permite forte interação de portadores de carga com radiação terahertz (THz). Esta extensa interação com a luz se deve à excitação de polaritons de plasmon de superfície (SPPs) proporcionando assim diversas aplicações nas áreas de fotônica THz. Na presença de um campo magnético externo, a ressonância de cíclotron domina nos espectros THz. Neste trabalho analisamos vários modos de ressonância (dipolo, quadrupolo, hexapolo e os modos com simetria azimutal) que podem existir no disco de grafeno em um arranjo com células unitárias quadradas periódicas. Calculamos as ressonâncias com magnetização por campo magnético externo DC variando até 3T e as comparamos com o caso da mesma estrutura sem magnetização onde observou-se que a presença do campo magnético resulta no desdobramento de alguns modos ressonantes. As características ressonantes são obtidas numericamente usando o software COMSOL Multiphysics em dois estudos distintos e complementares: o regime de cálculo de autofrequência referente aos modos naturais de ressonância e o de excitação por onda plana (plane wave) com incidência normal. As condições de contorno Floquet nos quatro lados das células unitárias são usadas para simular a estrutura periódica no plano do grafeno. O lado da célula unitária (ou seja, o período da matriz) usado no cálculo numérico é A = 9µm, o raio do disco de grafeno é D = 3 µm. O problema da excitação de alguns modos por incidência de onda plana é discutido do ponto de vista da simetria circular que, para gerar os picos de ressonância neste regime, precisou ser quebrada através de um corte sutil no formato de fenda retangular de tamanho = nm por = 550nm partindo axialmente da borda. O disco é modelado como elemento bidimensional, e isso fornece uma boa aproximação da espessura atômica de uma única camada desse material. A condutividade é modelada pelo modelo semi-clássico de Drude. A discussão das propriedades do ressonador é cumprida em termos de correntes no grafeno e campos eletromagnéticos fora do grafeno. As aplicações potenciais dos resultados obtidos são rotadores Faraday e Kerr, filtros controláveis e absorvedores para circuitos fotônicos THz.

  • JULIO ANTONIO SALHEB DO NASCIMENTO
  • "MODELO NUMÉRICO DE STREAMERS DE PRÉ-RUPTURA DE DESCARGAS ELÉTRICAS BASEADO NO MÉTODO DAS DIFERENÇAS FINITAS NO DOMÍNIO DO TEMPO (FDTD) E PROCEDIMENTOS EXPERIMENTAIS"

  • Data: 24/02/2023
  • Mostrar Resumo
  • Um modelo numérico baseado no método Finite-diference Time-domain (FDTD) para calcular correntes de descargas produzidas através da ionização do ar é desenvolvido utlizando uma abordagem não linear da condutividade elétrica do canal ionizado entre dois eletrodos (ponta-plano). A condutividade, como função do campo elétrico local, é modelada por  equações específicas, adaptadas e propostas neste trabalho, para cada fase do processo de formação do plasma. O modelo numérico proposto é validado realizando a comparação entre os resultados numéricos obtidos e dados experimentais publicados na literatura. Para realizar a validação, o setup experimental da literatura é reproduzido numericamente através do método FDTD. Ensaios laboratoriais visando estudar o comportamento e características da descarga corona positiva utilizando um dispositivo de descarga tipo ponto-plano são realizados. Os resultados dos nossos ensaios são validados com base em trabalhos experimentais da literatura. Finalmente, são realizados ensaios complementares para diversos valores de tensão e distâncias de gap (diferentes dos existentes nos artigos de referência).

     

    Artigos publicados:

    [1] DE OLIVEIRA, RODRIGO M. S.; NASCIMENTO, J. A. S. ; FUJIYOSHI, D. M. ; LIMA, T. S. ; SENA, A. J. C. . A Finite-Difference Time-Domain Formulation for Modeling Air Ionization Breakdown Streamers. JOURNAL OF MICROWAVES, OPTOELECTRONICS AND ELECTROMAGNETIC APPLICATIONS, v. 21, p. 427-444, 2022.

    https://www.scielo.br/j/jmoea/a/8mTWdBvrtLxLR4sT3yPqpcL/?format=pdf&lang=en

    [2] SENA, A. J. C. ; DE OLIVEIRA, RODRIGO M. S. ; NASCIMENTO, J. A. S. . Frequency Resolved Partial Discharges Based on Spectral Pulse Counting. Energies, v. 14, p. 1-36, 2021.

    https://doi.org/10.3390/en14216864

  • CAIO MATEUS MACHADO CARDOSO
  • REDES NEURAIS APLICADAS À MODELAGEM DE CANAIS DE COMUNICAÇÃO UTILIZANDO VANTS E DISPOSITIVOS IOT

  • Data: 08/02/2023
  • Mostrar Resumo
  • After the occurrence of the fifth generation auction (5G), carried out by the National Telecommunications Agency (ANATEL), operators started to implement the technology on Brazilian soil and it is expected that smart devices will become more connected, promoting the advancement and improvement of internet of things (IoT). However, Narrowband-IoT (NB-IoT) technology, used by 5G for IoT applications, is still not enough to meet all user requirements, with that in mind, LoRa technology emerges as an auxiliary to meet the requirements of users. In addition, the need to combat climate change generated by global warming grows, which causes an increase in the number of forested areas around the world. Given this scenario, this work aims to analyze the behavior of the LoRa signal in a suburban and densely wooded environment. For this, measurement campaigns are carried out at the Federal University of Pará (UFPA) and from the collected data a neural network model capable of reproducing this behavior is proposed. The standard model is compared to baseline models and proves to be superior in the downlink and uplink scenarios with a minimum RMSE error of 1.6623 dB for the first and 1.3891 dB for the second.

  • JORGE HENRIQUE COSTA ANGELIM
  • ESTIMAÇÃO PROBABILÍSTICA DOS EFEITOS DA RECARGA DE VEÍCULOS ELÉTRICOS DE LONGO ALCANCE EM SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

  • Data: 31/01/2023
  • Mostrar Resumo
  • ESTIMAÇÃO PROBABILÍSTICA DOS EFEITOS DA RECARGA DE VEÍCULOS ELÉTRICOS DE LONGO ALCANCE EM SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

  • ELITON SMITH DOS SANTOS
  • USO EFICIENTE DOS GERADORES PARA O DESPACHO ECONÔMICO DE CARGA AMBIENTAL DO SISTEMA ENERGÉTICO, INCLUINDO A GERAÇÃO SOLAR FOTOVOLTAICA

  • Data: 25/01/2023
  • Mostrar Resumo
  • O Despacho Econômico de Carga (ELD) é um processo do sistema elétrico de potência que visa o planejamento e as operações das Usinas Termelétricas (UTE), para atender à demanda com menor custo operacional. Por outro lado, o ELD tornou-se um problema obsoleto por considerar apenas o custo de combustível na geração de energia, desconsiderando parâmetros importantes como custos ambientais e de segurança da rede elétrica. A energia produzida pelas usinas termelétricas é considerada muito cara e poluente, ou seja, possui impactos negativos para a esfera ambiental e o cenário econômico. Considerando a pressão global para redução de emissões de poluentes na atmosfera e sustentabilidade ambiental, a incorporação da geração de Energias Renováveis (ER) ou Energias Verdes na rede elétrica é indispensável. A energia solar está se tornando uma parte importante do portfólio de geração de energia em muitas regiões devido à grande redução de seus custos e aos incentivos políticos que favorecem a geração de fontes de energia limpa e renováveis. Nesse sentido, a proposta da tese é apresentar um comparativo entre diversas técnicas metaheurísticas na otimização do DEA soluções, incluindo a geração de energia solar fotovoltaico e o desligamentos dos motores menos eficientes, bem como ajudar o especialista na tomada de decisão para o funcionamento da planta geradora. Foram utilizados as metaheurísticas baseados em métodos estocásticos como: Ant Lion Optmizer (ALO), Dragonfly Algorithm (DA) e Differential Evolution (DE). Na busca por melhores soluções, foi implementado um novo algoritmo que verifica de forma inteligente a potência dos motores da termoelétrica. Com base na potência demandada para o horário, é utilizado até 70% da capacidade da geração da usina fotovoltaica e o restante é atendido pela usina termelétrica. Assim, encontra-se a potência ideal para o número mínimo de motores suficientes para atender a demanda, reduzindo o nível de combustível e poluentes na atmosfera. As simulações foram geradas no ambiente do MATLAB, utilizando um modelo híbrido composto por seis (06) Unidades Geradoras (UG) e treze (13) Usinas Solares Fotovoltaicas (USF). Por esta razão, os resultados foram comparados com os resultados das simulações de Khan, que utilizaram PSO. Neste sentido, esta tese apresenta resultados comparativos dos métodos utilizados, dentre as técnicas utilizadas, o ED foi o método que apresentou os melhores resultados, garantindo uma redução no combustível fóssil em 3,02%, correspondendo a US$ 8,557.08 e uma redução de poluentes na atmosfera de 1.42%.

2022
Descrição
  • FABIO DE OLIVEIRA TORRES
  • Optimized allocation of radio resources in B5G/6G networks: Sustainable frameworks
    supported by an ensemble of meta-heuristics and a hyper-heuristic

  • Data: 19/12/2022
  • Mostrar Resumo
  • Optimized allocation of radio resources in B5G/6G networks: Sustainable frameworks
    supported by an ensemble of meta-heuristics and a hyper-heuristic
    RESUMO EM INGLÊS: From the moment that the infrastructures of the fifth generation networks of mobile
    communication (5G) started to be constituted as a commercial reality, the academy and the
    telecommunications sector began to conjecture about the development of technologies that could support
    the next generation, that is, networks beyond 5G (B5G) or sixth generation (6G). Among the objectives
    proposed for these environments, we can mention the offering of a high level of quality of experience to
    the users of these infrastructures through the efficient and personalized allocation of radio resources, such
    as the electromagnetic spectrum and transmission powers. Furthermore, this task must have high
    standards of energy efficiency. However, because current radio resource allocation techniques do not
    consider intrinsic characteristics of B5G/6G scenarios, there is a need to develop new tools that can assist in
    the execution of this task. Additionally, due to the B5G/6G scenarios being designed to be highly dynamic,
    this fact makes it difficult to apply static solutions in these environments. For these reasons, the use of
    algorithms that implement computational intelligence techniques, one of the areas of artificial intelligence,
    to control the distribution of radio resources in B5G/6G networks has become plausible. However, based
    on the "No Free Lunch" theorem, translated as "No free lunch", the application of a single heuristic or
    meta-heuristic in the search for good solutions tends to present good performance only for a certain class
    of problems. In this way, supported by the high data processing power expected to be used in B5G/6G
    networks, the application of a set of algorithms to help control the distribution of some radio resources, in
    which their elements work concurrently or alternately, has become a good option. This thesis proposes two
    new frameworks dedicated to maximizing throughput, energy efficiency indices, and the quality of
    experience offered to users of B5G/6G scenarios. To achieve these goals, the frameworks perform the
    distribution of bands of the electromagnetic spectrum to the communication devices of a B5G/6G network
    and allocate transmission power levels that will be used in the base stations. The difference between the
    frameworks is presented in the application scenarios of each one and by the computational intelligence
    techniques applied in the transmission power allocation task, as one makes use of an ensemble of meta-
    heuristics (EM) and the other of a hyper-heuristic (HH). These two techniques, when compared to others offer the highest level of quality of experience to network users and still perform their tasks with a significant increase in the energy efficiency of the entire system.

  • MARCOS EDUARDO COELHO GARCIA
  • EQUAÇÕES SEMI-ANALÍTICAS PARA PROJETAR ANTENAS DIPOLO DE GRAFENO EM TERAHERTZ SOBRE SUBSTRATO DE VIDRO

  • Data: 15/12/2022
  • Mostrar Resumo
  • Neste trabalho, é desenvolvida uma formulação semi-analítica para auxiliar no processo de projeto de antenas dipolos retangulares baseadas em grafeno com substratos de vidro. A formulação fornece diretamente o comprimento do dipolo necessário para obter ressonância em uma frequência desejada, uma vez que a largura da antena e o potencial químico das folhas de grafeno são conhecidos. Usando o método das Diferenças-Finitas no Domínio do Tempo (Finite-Difference Time-Domain: FDTD), foi realizado um grande número de simulações computacionais considerando várias combinações de dimensões de antena e valores de potencial químico, para obter os valores de referência. A formulação é baseada em: lei de escalonamento eletrostático, cálculo da constante de fase plasmônica, capacitância entre eletrodos metálicos e cálculo de suas auto-indutâncias. O método dos mínimos quadrados é aplicado para otimizar os coeficientes da formulação. Com os coeficientes otimizados, foram obtidos níveis de precisão muito satisfatórios. No intervalo de frequências entre 0,5 THz e 3,0 THz, o erro médio relativo absoluto é de 1,50%, com um erro relativo absoluto máximo de 6,77%.

    Publicação:

    GARCIA, M. E. C. ; DE OLIVEIRA, RODRIGO M. S. ; RODRIGUES, N. R. N. M. . Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate. Journal Of Microwaves, Optoelectronics and Electromagnetic Applications, v. 21, p. 11-34, 2022.

    http://dx.doi.org/10.1590/2179-10742022v21i11335

  • JOSÉ ALANO PERES DE ABREU
  • APPLICATIONS OF ESTIMATORS OF STOCHASTIC STATES AIDED BY ARTIFICIAL NEURAL
    NETWORKS IN TRACKING AND IMPROVING THE PREDICTION OF THE POINT OF IMPACT OF BALLISTIC
    ROCKETS

  • Data: 02/12/2022
  • Mostrar Resumo
  • One of the current ways to continue space research is to launch ballistic rockets that
    carry scientific payloads. To improve the accuracy of the instantaneous evolution of the payload impact on
    the Earth's surface, it is necessary to estimate the indirect measures of velocity of a space vehicle more
    efficiently. In this thesis a broader approach is proposed to determine the impact point prediction of
    ballistic rocket payloads. This approach combines tracking algorithms based on stochastic estimators aided
    by artificial neural network (ANN) models to predict the rocket's trajectory and consequently predict its
    impact point. Initially, four stochastic estimators existing in the literature were implemented as tracking
    algorithms, namely, a recursive Kalman filter (RKF), an extended Kalman filter (EKF), an unscented Kalman
    filter (UKF) and a particle filter ( PF). Then, these existing estimators were compared with four proposed
    stochastic estimators. These include a recursive Kalman filter aided by an ANN (RKFN), an extended Kalman
    filter aided by an ANN (EKFN), an unscented Kalman filter aided by an ANN (UKFN), and a particle filter
    aided by an ANN (PFN). Finally, this study shows that the results obtained using the proposed tracking
    algorithms RKFN, EKFN, UKFN, and PFN are better than the existing tracking algorithms RKF, EKF, UKF, and
    PF. The proposed estimators can be an efficient and low-cost tool to mitigate modeling inaccuracies during
    the tracking of the ballistic rocket until the impact of its payload.

  • BRUNO GOMES DUTRA
  • METHODOLOGIES FOR REAL TIME FORCE AND MOVEMENT CONTROL OF MULTIFUNCTIONAL MYOELECTRIC HAND PROSTHESIS.

  • Data: 02/12/2022
  • Mostrar Resumo
  • The loss of an upper limb incapacitates an individual to do functions of grip and manipulate objects, causing disorders and limiting the capacity to do daily tasks. Therefore, in this work it is proposed a complete control system for multifunctional myoelectric hand prosthesis with the user. The proposed system presents one superior layer of decision-making, an inferior layer of prosthesis actuators control, and the integration logic of layers. In the superior layer, it is realized both the classification of 8 movements of the hand and the estimation of the grasping force. In the inferior layer, two control loops are implemented with the predictive controller MPCSS, one for the prosthesis fingers’ angular control position, and the other to control the grasping force of it. The integration logic runs intuitively to control the prosthesis, according to the user’s grasping force and movements patterns. For the development of the proposed system, this work investigated the methods of real-time classification with the neural networks MLP and ELM, and the Machine learning techniques of the KNN and SVM types. To estimate the user’s grasping force, a model in the state space with Kalman filter is proposed. In the control layers, it is utilized a multivariable predictive controller in state space formulation to control the angular position model and the grasping force model of the prosthesis. Furthermore, in the grasping force control loop, it is proposed the application of the Kalman filter to estimate and filter the system’s global force, by sensor fusion of sensors placed in the prosthesis fingers. The performance of the system was evaluated with data recorded from ten experimental healthy subjects. In the classification results, it was shown that the most viable technique and with the best performance was the SVM, that obtained a mean accuracy and  of 97%. The estimation force model, proposed in the state space with Kalman Filter, presented a Pearson’s correlation coefficient, R^2, of 0.92 ± 0,0318, and a NRMSE index of 0,277 ± 0,056, demonstrating good performance and a better option in comparison with other models previously seen in the literature. The proposed control loops presented robust performance indices and precision in the tracking of both angular position and force control. Furthermore, the Kalman filter presented in the force control loop enhanced the stability and the system performance to hold objects. The proposed system runs in real-time with a mean processing time less than 300 ms, does the classification of 8 patterns of movements of the hand, estimates the user's force, and executes the commands of gesture and force in the prosthesis similarly to the dexterity of the human hand.

     

    Keywords: multifunctional prosthesis, real-time control, movement classification, Kalman filter, predictive control, linear regression, machine learning.

  • WESLLEY LEAO MONTEIRO
  • AVALIAÇÃO DE DESEMPENHO OPERACIONAL DE MICROGERAÇÃO E MINIGERAÇÃO SOLAR FOTOVOLTAICA EM EDIFICAÇÃO COMERCIAL, INDUSTRIAL, RESIDENCIAL E PÚBLICA NO ESTADO DO PARÁ

  • Data: 18/11/2022
  • Mostrar Resumo
  • AVALIAÇÃO DE DESEMPENHO OPERACIONAL DE MICROGERAÇÃO E MINIGERAÇÃO SOLAR FOTOVOLTAICA EM EDIFICAÇÃO COMERCIAL, INDUSTRIAL, RESIDENCIAL E PÚBLICA NO ESTADO DO PARÁ

  • ULISSES CARVALHO PAIXÃO JUNIOR
  • METODOLOGIA PARA DESENVOLVIMENTO E GESTÃO DE COMUNIDADES DE ENERGIA, COM ESTUDO DE CASO NA UNIVERSIDADE FEDERAL DO PARÁ

  • Data: 04/11/2022
  • Mostrar Resumo
  • Vários países do mundo iniciaram a transição energética utilizando geração distribuída com fontes renováveis e sistemas de armazenamento com baterias, para proporcionar eficiência energética, flexibilidade, segurança operacional, sustentabilidade e redução de custos com energia elétrica. Monitoradas e gerenciadas por um sistema de gestão, as novas tecnologias têm trazido empoderamento ao cotidiano do consumidor, de modo que este possa participar ativamente das decisões de oferta e de demanda de energia em seu convívio individual ou em grupo. Sob a ótica do consumidor, este trabalho apresenta uma metodologia para desenvolvimento e gestão de uma comunidade de energia, operando com geração híbrida de energia elétrica, advinda da rede externa e da geração fotovoltaica, e sistemas de armazenamento. Dada suas características e seu perfil de cidade, um estudo de caso com dados reais do sistema de distribuição do campus da Universidade Federal do Pará (UFPA) é considerado e os sistemas fotovoltaicos e de armazenamento são modelados, com base em uma abordagem probabilística, de acordo com a irradiação solar da região e a demanda de energia da Universidade. A operação do sistema é gerenciada durante o período de doze meses, para simular as características, limitações e particularidades da comunidade de energia. Como conclusão do trabalho, é apresentado o retorno do investimento da comunidade de energia implementada na UFPA, evidenciando a possibilidade de escalabilidade de um novo modelo de negócio.

     

  • MARIA DA PENHA DE ANDRADE ABI HARB
  • AN ANALYSIS OF THE DELETERIOUS IMPACT OF THE INFODEMIC DURING THE COVID-19 PANDEMIC IN BRAZIL: A CASE STUDY CONSIDERING POSSIBLE CORRELATIONS WITH SOCIOECONOMIC ASPECTS OF BRAZILIAN DEMOGRAPHY

  • Data: 04/11/2022
  • Mostrar Resumo
  • Humanity has suffered, throughout its history, from the various epidemics of infectious diseases. For example, black plague, yellow fever, cholera, HIV, among others. During this time, the processes of globalization, together with advances in medicine and technology, have changed the way these pandemics are experienced. With the speed that information travels, the internet has become an important source of research for users all over the world. Currently, a new coronavirus (called Sars-Cov-2) originating in China, has caused the biggest pandemic experienced in the age of technology. In the appearance of an unknown (or little known) disease, the population searches for information related to the disease, such as symptoms, preventive measures, government actions. The researched data can generate a pattern on the behavior of the population and are used to predict and model epidemics, becoming powerful resources to analyze the conduct of individuals in a country. In the current scenario, the World Health Organization (WHO) has declared that it is fighting not only against an international epidemic, but also against an infodemic in social networks and information media. Studies show that research related to COVID-19 skyrocketed as the pandemic was developing. At first, little information was known about the virus, which generated doubts in the population, as well as uncertainties in the information found. The rapid advance of the disease and its consequences and the huge amount of poorly structured information, some of which was misinformation, exposes network users to the myriad of sources of information, increasing the likelihood of also finding false news and disinformation, as well as sharing the same. Thus, it can interfere positively or negatively in the advance of the pandemic. Understanding this aspect of the pandemic is interesting to make it necessary to adopt timely and effective actions to determine what types of responses and control and prevention measures should be required by authorities, researchers. Thus, in this scenario, this thesis proposal presents a model using machine learning techniques to measure the impact of infodemic on the population, using the Covid-19 pandemic in Brazil as a case study.

  • NELSON MATEUS FERREIRA SANTOS
  • PROJETO DE FSS EM 3,5 GHZ USANDO ALGORITMO BIO-INSPIRADO: UMA ABORDAGEM COM REDE NEURAL OTIMIZADO COM O ALGORITMO SAILFISH MULTIOBJETIVO

  • Data: 17/10/2022
  • Mostrar Resumo
  • Este trabalho aborda uma técnica de otimização multiobjetivo híbrida bioinspirada, associada a uma rede neural de regressão geral como proposta para sintetizar a geometria e dimensões de uma superfície seletiva de frequência (FSS), para filtragem de ondas eletromagnéticas em aplicações 5G. Essa nova técnica híbrida associa o algoritmo bio-inspirado conhecido como Sailfish Optmizador (SFO), em conjunto de uma rede GRNN para a obtenção dos parâmetros de construção do filtro. Neste estudo o foco é destinado na aplicação do da técnica como ferramenta para o projeto e síntese da FSS, sendo ela com a forma de uma espira quadrada na célula unitária, impressa em uma placa de substrato de fibra de vidro (FR4). Os objetivos do processo de otimização consistem em ajustar a frequência ressonante do FSS para 3,5 GHz e a largura de banda de operação de 0,8 GHz. Uma Boa concordância entre os resultados simulados e medidos é relatada.

  • FERNANDO DUARTE BRITO
  • Avaliação Probabilística da Capacidade da Hospedagem Combinada de Microgeradores Fotovoltaicos e Veículos Elétricos em Redes de Distribuição de Baixa Tensão Considerando o Efeito do Controle Volt-Var: Um Estudo de Caso

  • Data: 27/09/2022
  • Mostrar Resumo
  • Avaliação Probabilística da Capacidade de Hospedagem Combinada de Microgeradores Fotovoltaicos e Veículos Elétricos em Redes de Distribuição de Baixa Tensão Considerando o Efeito do Controle Volt-Var: Um Estudo de Caso

  • LUANA OLIVEIRA DE ALBUQUERQUE
  • YIELDS ASSESSMENT THROUGH THE CONFIGURATION OF LOAD CONTROLLERS OF ISOLATED PHOTOVOLTAIC SYSTEMS CONNECTED TO A DIRECT CURRENT DISTRIBUTION NANONETWORK

  • Data: 09/09/2022
  • Mostrar Resumo
  • This work evaluates the yields of photovoltaic generators, using different configurations of control in load controllers used in isolated systems, being these controllers interconnected, forming a nanogrid of distribution in direct current. It contextualised the uses of microgrids and the presentation of the nanogrid used, which is installed in the laboratory of the Group of Studies and Development of Energy Alternatives (GEDAE) of the Federal University of Pará. Throughout the work, the main equipment responsible for the formation of a network in this type of system are indicated, being the load controllers, associated with energy storage systems and photovoltaic generators. In this sense, different configurations from those recommended by the manufacturers are adopted, but within acceptable limits, to increase the productivity of photovoltaic generators and thus increase the autonomy of energy storage systems. According to the results obtained, when only one generation and storage system was in operation, an increase in generation productivity was observed; when analyzing the nanogrid with all systems in operation, with different configurations, an increase was observed, however, it was difficult to identify, due to the exchange of energy present in the nanogrid, making it more advantageous to choose a single configuration for all systems.

  • RITA DE CÁSSIA PORFÍRIO DA CUNHA
  • Metaheuristics for BBU-RRH mapping and load balancing between BBUs applied to Centralized Access Networks.

  • Data: 19/08/2022
  • Mostrar Resumo
  • The growing demand for information access, generated by multimedia applications, is one of the challenges of the new generation of mobile networks. The fifth generation (5G) aims to meet increasingly stringent user requirements, such as latencies and low power consumption. One of the proposed architectures to supply the demands that arise with 5G and to support this traffic is the Cloud Radio Access Network (C-RAN), which centralizes processing power to solve the load imbalance, allocate resources accordingly based on network demand. This architecture proposes resource sharing while addressing processing scalability issues. Recently,
    metaheuristic optimization algorithms have been widely used to solve problems of this nature. Meta-heuristic algorithms are used because they are more powerful than conventional methods, which are based on formal logic or mathematical programming, in addition to the fact that the time required for execution is less than that of exact algorithms. In this context, the objective of this study is to develop an optimized resource allocation model that performs load balancing between Baseband Units (BBUs) and Remote Radio Heads (RRHs), based on the Particle Swarm Optimization (PSO) method. For this purpose, a variation of the PSO algorithm, the Discrete Particle Swarm Optimization (DPSO) was used, which optimizes the proposed objective function. Results point to superior performance of this objective function in comparison to the proposed benchmarking, both in high and low traffic densities.

  • MELLINA MODESTO LISBOA
  • ANÁLISE DE DESEMPENHO DE PARA-RAIOS DE ZNO SOB DIVERSOS CENÁRIOS DE POLUIÇÃO UTILIZANDO MÉTODO DE ELEMENTO FINITOS 

  • Data: 16/08/2022
  • Mostrar Resumo
  • O para-raios de Óxido de Zinco é um dos dispositivos de proteção de vital importância para os Sistemas Elétricos de Potência e os equipamentos que os compõe, uma vez que ele assegura a confiabilidade e a continuidade de operação desses sistemas a partir da sua capacidade de atenuar as sobretensões transitórias resultantes de descargas atmosféricas ou surtos de manobra. Esse equipamento é formado por blocos de resistores variáveis de ZnO, associados em série ou em paralelo, cuja curva de tensão-corrente apresenta alta não-linearidade. Tendo em vista a relevância da utilização do para-raios, faz-se necessária a investigação das condições de operação deste. Na literatura, são encontrados diversos procedimentos e técnicas destinadas a tal finalidade, entre as quais destaca-se o monitoramento por meio da medição e análise da corrente de fuga, dado que esta representa um dos fatores principais que contribuem para a degradação deste equipamento. Diante deste contexto, a presente dissertação de mestrado implementa um modelo bidimensional de um para-raios de Óxido de Zinco de 30 kV, utilizando o Método de Elementos Finitos, para obter-se as curvas da corrente de fuga, as distribuições do potencial elétrico, da densidade de corrente e a das linhas de campo elétrico, quando este dispositivo se encontra sujeito às condições de variações de tensão e poluições. Os resultados mostram um aumento das grandezas adquiridas(que aumento? Quais grandezas?) à medida que o nível de poluição se intensifica, bem como, com o aumento dos níveis de tensão.

  • MARCO ANTONIO LOUREIRO LIMA
  • COVID-19 SEVERITY CLASSIFICATION AND ANALYSIS USING MACHINE LEARNING.

  • Data: 16/08/2022
  • Mostrar Resumo
  • In the last years, with the alarming growth of COVID-19 cases, a highly contagious viral disease, new forms of diagnosis and control for this sickness have become necessary to the spread decreases until the population is effectively vaccinated. In this context, Artificial Intelligence (AI) and its subfields appear as possible alternatives to help and provides a response to combat the virus. Some Machine Learning (ML) methods are shown as an answer to control this disease, these methods can perform an analysis based on a set of symptoms presented by the patient and consequently indicating the diagnosis, as well as streamline the treatment process. To achieve this goal in this paper, three models that uses ML methods to predict COVID-19 severity on different degrees are proposed, unlike other works whose purpose was to diagnose only the presence or absence of Covid-19, this paper aims to improve the classification of the patient's disease state. The results in each of these models are evaluated through the metrics established in this work. Furthermore, there are distinct suggestions to improve the analysis and make predictions with greater  accuracy.

  • FABIO ANTONIO DO NASCIMENTO SETUBAL
  • IDENTIFICAÇÃO DE FORÇA A PARTIR DE DADOS DE VIBRAÇÃO USANDO A METODOLOGIA DE SUPERFÍCIE DE RESPOSTA EM CONJUNTO COM O ALGORITMO DE REGRESSÃO DE FLORESTA ALEATÓRIA

  • Data: 11/08/2022
  • Mostrar Resumo
  • Em muitos projetos dinâmicos e de diagnóstico de falhas de estruturas mecânicas, é necessário o conhecimento da força externa atuante. No entanto, a medição dessas forças muitas vezes é difícil ou impossível de ser realizada e, nesse caso, um problema inverso deve ser resolvido. Este artigo propõe um método de identificação de força usando a Metodologia de Superfície de Resposta com base em Design Composto Central em conjunto com o algoritmo de Regressão de Floresta Aleatória. Esse procedimento requer, inicialmente, o modelo modal em elementos finitos da estrutura forçada. Em seguida, análises harmônicas são realizadas, variando os parâmetros de forças e, então, aplica-se a Metodologia de Superfície de Resposta para a geração de um conjunto de dados contendo os valores de amplitude, frequência e localização das forças, além dos valores de aceleração de vibração em vários pontos da estrutura. Este conjunto de dados foi utilizado para treinar e testar um modelo de Regressão de Floresta Aleatória utilizado para predizer qualquer localização, amplitude e frequência da força a ser identificada, tendo como informações somente a aquisição da vibração em determinados pontos da estrutura. Os resultados numéricos mostraram excelente precisão na identificação da força aplicada à estrutura.

  • LUÍS AUGUSTO MESQUITA DE CASTRO
  • CONTRIBUTIONS TO THE GENERALIZED MINIMUM VARIANCE CONTROL: UNRESTRICTED HORIZON PREDICTIVE CONTROL

  • Data: 04/08/2022
  • Mostrar Resumo
  • This work investigates the unrestricted horizon predictive controller, or UHPC. It is designed via state space using the GMVSS method and based on the ARMAX linear model. Its control law is implemented in the RST polynomial controller format for the control of monovariable systems with the objective of carrying out robustness and performance analyzes, consolidating UHPC as a member of the predictive controllers. The proposal presents in detail all the mathematical formalism necessary for a good understanding of the designs of the GMV and UHPC controllers, both in the polynomial and state space approach. The GMVSS design method is based on the premise that the complexity of the controller structure is dictated by the complexity of the design model, with the most significant contribution to design simplicity due to the absence of Diophantine equations in the procedure. Diophantine equations are solved indirectly and naturally by the problem formulation itself, using the Kalman filter obtained from a stochastic representation in the state space. Predictive controllers can be based on ARMAX or ARIMAX models, employing the cost function in positional or incremental form, including or not a weighting filter in the system output. This work also explains how to obtain the RST controller structure from the UHPC control law. In addition, the inheritance of tuning of the PID and IPD controllers for the GMV and UHPC controllers is presented, as well as the inclusion of the weighting filter in the control project, which allows to inherit the dynamic characteristics of any linear controller or even to perform the GMV and UHPC design via pole placement. Finally, the synthesized control law is applied to different classes of linear and non-linear systems through numerical simulations and practical tests, evaluating the characteristics of robustness and performance of the proposed controller via sensitivity functions, Nyquist diagram, map of poles and zeros, small gain theorem and performance indexes from reference tracking tests and disturbance rejection. The results obtained demonstrate that the predictive controller UHPC can deal with model plant mismatches and external noise, contributing positively to the stability margins of the control system.

    Keywords: Unrestricted horizon predictive controller. Predictive and stochastic control. Generalized minimum variance in the state space. Reference tracking. Disturbance rejection. Robustness analysis.

  • LEONARDO NUNES GONCALVES
  •  Software para Planejamento de Redes IoT: Uma solução baseada em Algoritmo Genético, Algoritmo de Múltiplas Tentativas e EPSO

  • Data: 20/07/2022
  • Mostrar Resumo
  • The Internet of Things (IoT) allows the ubiquitous monitoring of environments through sensors arranged in a certain area of interest. Such data collection generates unprecedented content of information that is presented to different algorithms that serve to assist in decision-making associated with economy, health, well-being, among others. To ensure the success of this communication chain, defined from the collection of data to the extraction of valuable decisions, it is necessary to implement an end-to-end communication. For this, the IoT makes use of the Long-Range communication technology (LoRa), which in turn guarantees wireless and cost-free communication between the sensors installed in the endnodes arranged in the area of interest and the data traffic aggregation points installed in the area to be monitored, ie the gateway. Although the solution is practical, it generates the challenges of minimizing the costs associated with the implementation of the smallest number of gateways in the area to be covered, as well as the task of planning the IoT network taking into account the optimal positioning of the gateways. Given this context and to respond to the challenges imposed by the planning of IoT networks, this work aims to propose an optimizing software for planning IoT networks based on Genetic Algorithm, Evolutionary Particle Swarm Optimization (EPSO) and Multiple Trials algorithm, in order to to minimize the number of gateways and determine the geolocation for their installation, thus aiming to guarantee the coverage of all endnodes and their respective sensors arranged in the field.

  • JOINER DOS SANTOS SA
  • DESENVOLVIMENTO DE SOFTWARES E ALGORITMO BASEADO EM REDES NEURAIS ARTIFICIAIS PARA SUPORTE À GESTÃO DA MOBILIDADE URBANA EM SMART CAMPUS COM CARACTERÍSTICA MULTIMODAL

  • Data: 20/07/2022
  • Mostrar Resumo
  • This work presents the development of two software solutions and an algorithm based on artificial neural networks to support the management of urban mobility in a smart campus. The first software, called Norte Rotas, is a web solution whose objective is to support the planning of pedestrian routes, providing relevant information about the physical conditions of the routes of a smart campus. The second solution is an Android mobile software that aims to manage transport modes present in a smart campus. Tests in simulated and real environments were carried out and the results indicate that the proposed tools are good solutions for the planning and management of modal routes in an intelligent university campus. In addition to the software, a computational intelligence algorithm is proposed to determine the best travel route considering the options on foot, by bus and by boat in an IoT system of a smart campus. Data were collected from UFPA's Circular bus routes, and tests with different parameters of an ANN were performed. The results indicate that the RNA-based solution is promising to be implemented in urban mobility aid systems.

  • SUZANA CESCON DE SOUZA
  • Analyses of EEG Oscillatory Actives During Cognitive Training Using Holo-Hilbert
    Spectral Analysis

  • Data: 19/07/2022
  • Mostrar Resumo
  • In this work we developed a protocol for the analysis of a cognitive training
    (TC), in order to raise the performance in bulldozer operators of Vale S.A. This research took part
    of the POAD (High performance operator’s program) Innovation Project of the Vale
    Technological Institute (ITV). The protocols of the TC were based in Neurofeedback (NFB), in
    order to develop the ability to self-regulate cerebral frequencies, based on
    electroencephalogram (EEG) analysis. In this research, the Holo-Hilbert Spectral Analysis (HHSA)
    for the study of amplitude modulation (AM) band frequency (FM) of the rhythms that compose
    the cerebral frequencies. The HHSA was based on empirical mode decomposition (EMD) in two
    layers. First the EEG signal has been decomposed in a series of intrinsic mode function in
    modulated frequency (IMFs) and then every IMF modulated in frequency have been

  • JORGE LUIZ MOREIRA PEREIRA
  • EFEITOS HARMÔNICOS DEVIDO A ALTA PENETRAÇÃO DE GERAÇÃO FOTOVOLTAICA EM SISTEMAS DE DISTRIBUIÇÃO

  • Data: 29/06/2022
  • Mostrar Resumo
  • EFEITOS HARMÔNICOS DEVIDO A ALTA PENETRAÇÃO DE GERAÇÃO FOTOVOLTAICA EM SISTEMAS DE DISTRIBUIÇÃO

  • MATIAS RIBEIRO MÁXIMO DE LAVÔR
  • BALANÇO ENERGÉTICO DE UM LABORATÓRIO DE PESQUISA EM CENÁRIOS PRÉ, DURANTE E PÓS PANDEMIA, VISANDO CERTIFICAÇÃO DE NZEB.

  • Data: 27/06/2022
  • Mostrar Resumo
  • Sistemas de geração solar fotovoltaica desempenham um papel essencial para a melhoria da eficiência energética de uma edificação. Nesse sentido, o presente estudo busca apresentar uma análise de balanço energético em diferentes cenários cronológicos para o prédio do Centro de Excelência em Eficiência Energética da Amazônia - CEAMAZON, entidade pública de Pesquisa, Desenvolvimento e Inovação, vinculada à UFPA, localizado no Parque de Ciência e Tecnologia Guamá. Além disso, é realizada uma breve análise em relação ao novo INI-C relacionada à metodologia de avaliação nZEB, com recente implantação de sistema de geração distribuída, destacando o conjunto de características da edificação que possam classificar sua eficiência energética e demonstrando parâmetros essenciais para certificação.

  • WÊNDRIA CUNHA DA SILVA
  • Numerical Analysis of a Graphene Surface Plasmon Resonance Sensor in Terahertz.

  • Data: 24/06/2022
  • Mostrar Resumo
  • This work proposes a Terahertz plasmonic refraction index sensor based on Single-Layer Graphene operating as a refractometer in the Terahertz range. The configuration used is Kretschmann, where one of the variables that monitors the reflectivity is the chemical potential. The sensor was theoretically analyzed by the finite element method (FEM), modeling in a two-dimensional structure. In it, reflectivities and field distributions were calculated for different parameters, such as thickness, frequency, angle and permittivity. Firstly, a study was made to determine the best operating frequency, angle of incidence and minimum sample thickness. After that, the numerical model was compared with the analytical one. From the numerical results, parametric analyzes were performed to verify variations in sensitivity, full width at half maximum (FWHM) and resolution, all parameters of device quality. Numerical results are compared with theoretical concepts available in the literature and in recently published works.

  • EMERSON SANTOS DE OLIVEIRA JUNIOR
  • Procedural Generation of Realistic Synthetic Data for Training Machine Learning
    Models: Application on precision agriculture based on drone images

  • Data: 21/06/2022
  • Mostrar Resumo
  • This work aims to present the implementation of a framework capable of synthesizing
    data for machine learning models, demonstrate results obtained with semantic segmentation networks
    trained with these synthetic data, and describe preliminary results that exemplify how this methodology
    allows segmentation to be used for classification. In this work, the amount of weeds that infest certain
    areas in planting zones were classified. The methodology takes advantage from the deep convolutional
    neural networks, performing pixel-level calculations in the images to determine infestation percentages
    and estimating when the network does not correctly define the amount of weeds in its predictions.

  • IGOR RODRIGUES DE NARDI
  • PROTEÇÃO DE SISTEMAS DE CARREGAMENTO DE VEÍCULOS ELÉTRICOS CONTRA DESCARGAS ATMOSFÉRICAS

  • Data: 13/06/2022
  • Mostrar Resumo
  • À medida que os veículos elétricos e as energias renováveis se expandem, surge
    também a necessidade de investigar novos métodos de proteção contra raios para essas novas tecnologias. Esse trabalho tem como objetivo avaliar a performance de sistemas de carregamento de veículos elétricos frente às descargas atmosféricas durante seu regime transitório. Modelos de duas estações de carregamento, uma conectada à rede de energia CA e a outra desconectada, foram utilizados nas análises. Além disso, um modelo impulso de tensão proveniente de descargas atmosférias foi usado. Os resultados deste trabalho demonstraram as alterações nas formas de onda de tensão na entrada e na saída dos circuitos, sendo possível avaliar quais pontos são mais vulneráveis, necessitando de maior proteção. Além disso, foi avaliado se dois eletropostos do Centro de Excelência em Eficiência Energética da Amazônia – CEAMAZON – estão adequadamente protegidos contra descargas atmosféricas. Para isso, tomou-se como base os estudos realizados na Ásia, Europa, além da norma brasileira. Constatou-se que, apesar do prédio do CEAMAZON possuir um SPDA adequado, os eletropostos encontram-se vulneráveis, sobretudo contra os efeitos indiretos causados pela ocorrência de descargas atmosféricas nas proximidades dos eletropostos.

  • ANDRE FELIPE SOUZA DA CRUZ
  • Electromagnetic Analysis and Modeling of Plasmonic Sensors Operating in Optical and Terahertz Ranges: Solutions by Generalized Coefficients and Green's Functions

  • Data: 20/05/2022
  • Mostrar Resumo
  • In the present work, the modeling of equivalent electromagnetic structures is presented, used in the analysis and description of the response of plasmonic sensors operating in the optical and terahertz (Far Infrared) ranges. Simulations were carried out to evaluate the electromagnetic response of four sensors, which operate according to the Surface Plasmon Resonance (SPR), and Surface Plasmon Coupled Emission (SPCE) phenomenon, these are: SPCE THz sensor based on DLG (Double-Layer Graphene); Kretschmann THz sensor based on MLG (Multi-Layer Graphene); Gold-based SPCE Optical Sensor; and SLG/Gold based Kretschmann Optical Sensor. The electromagnetic description of the sensors was performed by combining analytical models derived from the Multimodal method, where it is possible to calculate the intensity of the EH (Electric and Magnetic) fields, due to the incidence of a plane wave in a multilayer structure, and from the Out-of-Phase Periodic Green’s Function method, which uses the spectral representation of the EH fields, by the complex Fourier series, over the Floquet modes. In terahertz sensors, graphene is modeled as a surface impedance described by the Kubo model. In optical sensors, graphene and gold are characterized as materials of finite thickness and complex refractive index (RI), both experimental values made available by Laboratório de Síntese e Caracterização Laser de Nanomateriais, at Puc-Rio. The results show the EH field profiles in the structure of plasmonic sensors. In the analysis of the PGF of the SPCE Thz sensor, we verified the appearance of symmetrical and asymmetrical plasmonic poles in the spectral representation of their EH fields. For the Kretschmann THz sensor, we verified a sensitivity S=2.42°RIU −1 for the case with three graphene layers, in addition to a FWHM (Full Width at Half Maximum) of 5.75° for the case with five graphene layers. For the optical SPCE sensor, it was verified that the SPCE excitation occurs for the monochromatic laser source with an incidence ≥ 30◦. Finally, for the SPR sensor based on SLG/Gold, there was an increase of 2% in sensitivity when compared to the case without graphene.

  • CARLINDO LINS PEREIRA FILHO
  • AVALIAÇÃO DA ESTRUTURA TARIFÁRIA  BRASILEIRA  COM CONTRIBUIÇÕES DE PONTOS PARA REVISÃO

  • Data: 20/05/2022
  • Mostrar Resumo
  • A disponibilidade a energia elétrica é indispensável para garantia da dignidade humana no século XXI. Ela é essencial em atividades domésticas e econômicas, a prova está na existência da correlação entre nível de desenvolvimento e consumo per capita de energia elétrica. Em função da importância da eletricidade, a estrutura tarifária de um país deve buscar o equilíbrio entre o interesse de consumidores e empresários. Na estrutura tarifária brasileira as empresas são extremamente protegidas dos riscos de negócio, por outro lado, os consumidores cativos não têm liberdade de escolha na aquisição e são obrigados a pagar pelos riscos das empresas. Este trabalho almeja propor mudanças na estrutura tarifária brasileira para que todos os consumidores possam ter mais direitos e pagar por uma tarifa de energia elétrica mais justa. Para isso é exposto um panorama geral do setor elétrico brasileiro e a estrutura tarifária vigente, que são comparados com países membros do BRICS e OCDE. Observou-se por meio de dados de tarifa de energia e socioeconômicos, que componentes da formação do valor da tarifa fazem com que consumidores de estados mais pobres tenham que pagar tarifas de energia mais altas. Esse acréscimo no preço da energia faz com que a competitividade para atração de empreendimentos de regiões pobres seja menor, o que contribui para aumento de desigualdades entre estados. Um modelo voltado para o setor industrial de incentivos de eficiência energética é proposto como atração para investimento em práticas mais sustentáveis e melhoria na formação tarifária. Por fim, são propostas mudanças nas opções de modalidade tarifária em componentes que compõem a tarifa de energia e critérios de qualidade exigidos.

  • SILVIO DOMINGOS SILVA SANTOS
  • All-dielectric metasurfaces based on trimers with toroidal dipole modes

  • Data: 19/05/2022
  • Mostrar Resumo
  • In this work, it is proposed and studied all-dielectric metamaterials composed by square, rectangular, rhomboidal and hexagonal unit cells based on trimers. These metamaterials are all-dielectric periodic planar arrays of dielectric disks on a dielectric substrate, which are able to sustain two types of toroidal dipole orders (called toroidal - TO and antitoroidal - ATO), that are differentiated by the distribution of toroidal dipole moments in the trimers (symmetric and asymmetric, respectively). The structures, as well as the resonance modes, were analyzed theoretically by using group theory techniques, symmetry-adapted linear combination method (SALC), magnetic dipole moments approximation and circuit theory, for the numerical simulations was used the commercial Comsol Multiphysics software. In particular, a new theoretical approach is proposed to understand the excitations of symmetry-protected toroidal modes, through the so-called magnetic groups. The theoretical and numerical results were validated through microwave experiments in the 8 - 15 GHz range, with good agreement of the results. Due to the unique configuration of the fields of these modes strongly confined in the proposed metasurfaces, they can be considered as an efficient light-matter interaction platform for next generation technologies, with regard to enhanced absorption, non-linear switching, (bio-)sensing and in other applications of photonics.

  • LUISE FERREIRA CARDOZO
  • Robust Control Techniques based on Frequency Response and Interval Pole Placement for Systems with Parametric Uncertainties applied to the voltage regulation problem in Power Converters

  • Data: 12/05/2022
  • Mostrar Resumo
  • Microgrids are a form of distribution system, which belong to the broad concept of smart grids. Multiconverter or multilevel systems are nothing more than DC microgrids composed of several power converters connected in cascade and/or in parallel. In this way, the multiconverter system described in this thesis has a DC - DC converter in the Buck topology, which is used as a source of direct voltage for the main bus of the microgrid, being an element of fundamental importance and whose voltage control is essential, because electronic loads are sensitive to voltage deviations. In order to control the voltage on the DC bus, the system is first modeled using the recursive least squares method, at which time the parametric variations are obtained forming a more comprehensive model called the interval transfer function, which is represented graphically by the extreme set. In a second moment, two robust controllers are developed, one through the extreme stability margins of the model culminating in a PI controller based on frequency response, and the other through an interval pole allocation control project in PID format. The robust performance of the controllers is evaluated through computational simulation, experimentally in the multiconverter system and, finally, using a quantitative analysis through performance indices.

  • RICHARDSON SALOMÃO DE ARAÚJO
  • DIMENSIONAMENTO, SIMULAÇÃO E ANÁLISE ECONÔMICA DE UM SISTEMA FOTOVOLTAICO CONECTADO À REDE COM ARMAZENAMENTO DE ENERGIA

  • Data: 29/04/2022
  • Mostrar Resumo
  • DIMENSIONAMENTO, SIMULAÇÃO E ANÁLISE ECONÔMICA DE UM SISTEMA FOTOVOLTAICO CONECTADO À REDE COM ARMAZENAMENTO DE ENERGIA

  • WANDERLEY SENA DOS SANTOS
  • MODELAGEM DE SISTEMAS FOTOVOLTAICOS DE BOMBEAMENTO DE ÁGUA E DESENVOLVIMENTO DE UM CONVERSOR DE FREQUÊNCIA PARA ESTA APLICAÇÃO ESPECÍFICA

  • Data: 11/04/2022
  • Mostrar Resumo
  • MODELAGEM DE SISTEMAS FOTOVOLTAICOS DE BOMBEAMENTO DE ÁGUA E DESENVOLVIMENTO DE UM CONVERSOR DE FREQUÊNCIA PARA ESTA APLICAÇÃO ESPECÍFICA

  • IGOR MEIRELES DE ARAUJO
  • VIRTUALIZAÇÃO DE FUNÇÕES DE REDE: ENCADEAMENTO DE SERVIÇOS E PROCESSAMENTO DE PACOTES EM GPU

  • Data: 01/04/2022
  • Mostrar Resumo
  • O crescimento da demanda da internet tem impulsionado o desenvolvimento de novas arquiteturas de infraestrutura de rede como o network function virtualization (NFV). Nesta arquitetura, as funções de redes são separadas do hardware e implementadas via software de forma que seja executas em um hardware genérico  através de tecnologias de virtualização. Essa nova infraestrutura traz maior flexibilidade além da redução de custos de operação e aquisição comparada com a infraestrutura tradicional composta por middleboxes (dispositivo com hardware proprietário para execução de específica função de rede). Um serviço de telecomunicação é uma funcionalidade ponta-a-ponta oferecida aos usuários pelas operadoras de rede, geralmente consiste em várias funções de rede encadeadas em uma ordem específica. O processo para a construção dessas cadeias é conhecido como service function chaining (SFC). Com a flexibilidade do NFV, as funções de redes podem ser implantadas de forma escalável, remotamente e durante a operação da rede aumentado a complexidade do SFC além de que para garantir a confiabilidade dos serviços às vezes é necessária a realização de SFC para recursos de reserva (backup). Uma outra consideração em relação ao NFV, é o desempenho da função de rede. Espera-se que as funções implementadas via software tenham pelo menos o mesmo desempenho ou melhor do que as presentes em middleboxes. Entretanto, com a migração de um hardware específico para um genérico com propósitos gerais, possibilita a utilização de outros hardware que também vem sendo utilizado para propósitos gerais como as graphic processing units (GPUs). Diante do exposto, esta tese investiga dois pontos do NFV, a confiabilidade e o desempenho. O primeiro ponto foca na topologia de rede como um todo e na otimização de recursos no encadeamento de serviços garantindo a confiabilidade do serviço. Enquanto o segundo ponto foca no desempenho de uma única função de rede virtualizada utilizando processamento paralelo em GPU para reduzir o tempo de processamento de pacotes e consequentemente aumentar o throughput da rede.
  • MARINALDO DE JESUS DOS SANTOS RODRIGUES
  • METODOLOGIAS DE AVALIAÇÃO DE GERADORES FOTOVOLTAICOS EM SITUAÇÃO DE SOMBREAMENTO PARCIAL 

  • Data: 31/03/2022
  • Mostrar Resumo
  • METODOLOGIAS DE AVALIAÇÃO DE GERADORES FOTOVOLTAICOS EM SITUAÇÃO DE SOMBREAMENTO PARCIAL 

  • ALAN SOVANO GOMES
  • Modeling and Robust Parametric Control Applied to Driven-Right-Leg Systems for Noise Rejection in Biopotential Amplifiers

  • Data: 30/03/2022
  • Mostrar Resumo
  • The Driven-Right-Leg (DRL) system is widely applied to mitigate the effects of common mode voltage in biopotential amplifiers. It works as a closed-loop controller, whose objective is to reject disturbances caused by the capacitive coupling of the patient with the power line. In this work, the DRL system is evaluated from a robust parametric control point of view, with the intention of doing a more complete evaluation than the one found in the literature, measuring gain, phase and module extremal margins. The range of interval parametric variations, found in the literature, were used to describe the parametric uncertainties that disturb the studied system. Furthermore, a Lead-Lag controller was designed based on the model under parametric variation obtained, showing how both the analysis and synthesis of DRL controllers can be done with the presented theory. The results obtained were discussed in comparison with the DRL systems found in the specialized literature.

  • LUIZ EDUARDO SALES E SILVA
  • ANÁLISE PROBABILÍSTICA DO IMPACTO TÉCNICO-ECONÔMICO DAS CONEXÕES DE MICROGERADORES FOTOVOLTAICOS E VEÍCULOS ELÉTRICOS EM REDES DE DISTRIBUIÇÃO DE BAIXA TENSÃO

  • Data: 18/03/2022
  • Mostrar Resumo
  • ANÁLISE PROBABILÍSTICA DO IMPACTO TÉCNICO-ECONÔMICO DAS CONEXÕES DE MICROGERADORES FOTOVOLTAICOS E VEÍCULOS ELÉTRICOS EM REDES DE DISTRIBUIÇÃO DE BAIXA TENSÃO

  • MARKOS PAULO CARDOSO
  • Plasmonic multi-resonance sensors using D-type photonic crystal fibers

  • Data: 14/03/2022
  • Mostrar Resumo
  • This thesis proposes an excitation scheme for multiple plasmonic resonances along the optical spectrum for use in the monitoring refractive index and to enabling the determination of the dispersion properties of the analyzed medium. The sensing configuration consists of a D-type photonic Crystal fiber whose flat face is partially covered by distinct metallic layers. Using simulations based on Finite Element Method, it is possible to demonstrate how to customize plasmon resonances at different wavelengths, allowing to measure with low cross-talk more than one parameter in a simple and direct way, such as the mean refractive index and the first or second order optical dispersion. The central aspect of this sensing configuration is to balance miniaturization with low coupling between the different localized plasmon modes in adjacent metallic nanostructures. Furthermore, the determination of the optical dispersion of a given medium in a large spectral range provides information about the concentration of the medium constituents, which is of crucial importance for the monitoring of media in real-time, such as fluids.

  • ELEN PRISCILA DE SOUZA LOBATO
  • IMPLANTAÇÃO DE UM MIDDLEWARE IOT ESCALÁVEL PARA APLICAÇÕES DE MOBILIDADE ELÉTRICA MULTIMODAL

  • Data: 25/02/2022
  • Mostrar Resumo
  • IMPLANTAÇÃO DE UM MIDDLEWARE IOT ESCALÁVEL PARA APLICAÇÕES DE MOBILIDADE ELÉTRICA MULTIMODAL

  • ALEXANDRE DE SOUZA BRASIL
  • ADEQUAÇÃO DO LABORATÓRIO DE ALTA TENSÃO DA UFPA - LEAT AOS REQUISITOS GERAIS PARA A COMPETÊNCIA DE LABORATÓRIOS DE ENSAIO E CALIBRAÇÃO DA NORMA ABNT NBR ISO/IEC 17025

     

  • Data: 24/02/2022
  • Mostrar Resumo
  • Fenômenos que desequilibrem o sistema elétrico de potência ocorrem constantemente, o que gera a necessidade de estudá-los com o objetivo de permitir o desenvolvimento de redes e equipamentos elétricos que se comportem de forma mais confiável e robusta diante de tais distúrbios. Estes estudos são, em geral, realizados em laboratórios especializados de Alta Tensão e Alta Potência. No decorrer dos anos, o mercado passou a demandar que estes estudos também fornecessem resultados que cumprissem padrões de qualidade certificados por órgãos oficiais. Nesse sentido, esta dissertação objetiva propor a adequação necessária do Laboratório de Ensaios em Alta e Extra Alta Tensão da Universidade Federal do Pará aos requisitos para a competência de laboratórios de ensaio e calibração definidos pela norma ABNT NBR ISO/IEC 17025, com foco no desenvolvimento e implantação de um Sistema de Gestão da Qualidade; criação de procedimentos operacionais e diretrizes de segurança; estabelecimento de um programa de calibração para os equipamentos do laboratório; e identificação das motivações, vantagens e impactos relacionados a implementação dos requisitos da referida norma, bem como as dificuldades e soluções encontradas. Para isso, primeiramente foi realizado um levantamento literário que buscou conhecer o panorama nacional de instituições de ensino superior com laboratórios acreditados sob a referida norma. Em seguida, iniciou-se o processo de implementação dos requisitos da norma, o qual se baseou na metodologia adaptada de Grochau (2011). Por fim, a experiência vivenciada permitiu observar que a adequação aos requisitos da norma em laboratórios vinculados a instituições públicas, apesar de complexa em um primeiro momento, é plenamente capaz de proporcionar diversos benefícios e vantagens, desde que sejam respeitadas as peculiaridades deste tipo de instituição como: burocracia; limitação de recursos; capacitação do pessoal envolvido e; conciliação das atividades de pesquisa e ensino com a prestação de serviço.

     

    Artigos Publicados:

    BRASIL, A, S; BRASIL, F, S; MANITO, A, R, A; NUNES, M. V. A. Processo de Acreditação de um Laboratório de Ensaios em Alta Tensão conforme a ABNT NBR ISO/IEC 17025: Implantação de um Sistema de Gestão da Qualidade e Calibração de Equipamentos. In: VIII Simpósio Brasileiro de Sistemas Elétricos 2020 (SBSE 2020). Santo André – SP.

     

    BRASIL, A, S; BRASIL, F, S; MANITO, A, R, A; NUNES, M. V. A. Gestão de Segurança em Alta Tensão – Adequação à NR 10: Segurança em Instalações e Serviços em Eletricidade do Laboratório de Ensaios em Alta Tensão da UFPA. ISO/IEC 17025: Implantação de um Sistema de Gestão da Qualidade e Calibração de Equipamentos. InVIII Simpósio Brasileiro de Sistemas Elétricos 2020 (SBSE 2020). Santo André – SP.

     

  • MARCEL AUGUSTO ALVARENGA VIEGAS
  • ESTAÇÃO SUSTENTÁVEL E INTELIGENTE DE CARREGAMENTO RÁPIDO DE VEÍCULOS ELÉTRICOS

  • Data: 24/02/2022
  • Mostrar Resumo
  • ESTAÇÃO SUSTENTÁVEL E INTELIGENTE DE CARREGAMENTO RÁPIDO DE VEÍCULOS ELÉTRICOS

  • DIEGO BRANCHES VILAR
  • ESQUEMA DE TARIFAÇÃO DINÂMICA DE ENERGIA PARA PROGRAMAS DE RESPOSTAS À DEMANDA CONSIDERANDO A INTEGRAÇÃO DE FONTES DE ENERGIA RENOVÁVEIS

  • Data: 22/02/2022
  • Mostrar Resumo
  • ESQUEMA DE TARIFAÇÃO DINÂMICA DE ENERGIA PARA PROGRAMAS DE RESPOSTAS À DEMANDA CONSIDERANDO A INTEGRAÇÃO DE FONTES DE ENERGIA RENOVÁVEIS

  • RONILSON WILLIAME DA SILVA PEREIRA
  • QOE ASSESSMENT FOR VIDEO STREAMING OVER DUAL CONNECTIVITY 5G MMWAVE OVERHEAD NETWORKS

  • Data: 18/02/2022
  • Mostrar Resumo
  • The evolution in mobile telecommunications has allowed the emergence of new network formats aimed at meeting the growing demand for wireless data, mainly fueled by more video content viewing. The scarce spectrum available on current cellular networks does not seem to be able to handle this explosion of wireless data, prompting a shift to explore new frequency bands. The communication of millimeter waves (mmWave), frequency bands, between 30 and 300 GHz appears as an essential part for the next generation of fifth-generation (5G) cellular networks, as they adopt higher carrier frequencies offering high width bandwidth, lower latency. However, system performance degrades due to high propagation loss and the sensitivity of the links to obstacles. To mitigate such factors, this dissertation proposes a dual connectivity 5G mmWave architecture using LTE (Long Term Evolution) and the use of UAVs (Unmanned Aerial Vehicles) as airbase stations to provide connectivity and guarantee experience quality in video streaming. Through simulations, an analysis of the Quality of Experience (QoE) about the transmission of 4K videos was presented with the objective of evaluating the transmission and quality of the videos perceived by users. The simulated results show the efficiency of the system for multimedia applications using videos, improving the QoE of wireless users by 43%.

  • VITOR HUGO MACEDO GOMES
  • ANALYSIS OF FACTORS RELATED TO THE PERFORMANCE INDEX OF SCHOOLS IN THE IDEB: A CASE STUDY IN THE STATE OF PARÁ

  • Data: 11/02/2022
  • Mostrar Resumo
  • The complexity of identifying all the factors that are related to the performance of schools on the Basic Education Development Index (IDEB) is enormous. In this study, three databases were analyzed in order to identify several factors that correlate with low performance in state schools in the state of Pará. This study used educational data mining techniques to first select variables with structural characteristics in the teaching environment, comparing schools with higher and lower performance in IDEB identifying possible relationships with school dropouts. Then, the Randon Florest (RF) algorithm was used to select the most important variables that directly or indirectly impact the IDEB index. After the selection phase, the variables were submitted to the Linear Regression (LR) algorithm. The results point out that the income of students is related to the average family income in the analyzed municipalities. Next, variables related to parents' income were used to identify possible relationship between parents' schooling and students' performance. Finally, the analysis ends with the analysis of the impact of the Municipal Human Development Index (HDI) on the variables related to the students' grade, qualification, and experience of the teachers in the school environment. The results reveal that there is a correlation between the index and student learning in the classroom. On the other hand, better indexes in IDEB are directly related to the adequacy of the curriculum to the subject taught, as well as good working conditions for teachers. This study sought, through the MDE, to unveil different factors that are related to the low performance of state schools in the state of Pará. It shows that the socioeconomic situation of families who have children of school age is not only detrimental to the performance of these students, but also to their permanence in the classroom. Therefore, there must be a greater engagement of schools to stimulate the interest of students to persist in the school environment. In addition to subsidies from the government so that teachers can fully exercise their role in society.

  • RAPHAELE SAMUA BARATA GOMES
  • DIAGNÓSTICO DE EFICIÊNCIA ENERGÉTICA COM BASE NO INI-C E RTQ-C: ESTUDO DE CASO DA ENVOLTÓRIA DO CLUBE DE CIÊNCIAS DA UFPA

  • Data: 09/02/2022
  • Mostrar Resumo
  • Poupar energia tornou-se urgente e não está relacionado apenas à redução de custos, apesar de ser um ponto muito apelativo para os investimentos de empresas. Enxergamos uma crescente “popularização” do uso alternativo de energia e isso se dá devido aos impactos causados pela queima de combustíveis fósseis que, além de emitirem gases poluentes apresentam grande instabilidade energética devido às variações bruscas de preços dos derivados de petróleo (LAMBERTS,2004). Diversos acordos e tratados foram feitos entre os países desde a década de 1970 afim de reduzir os impactos do consumo de energia e, devido as edificações serem responsáveis por cerca de 60% do consumo global de eletricidade, segundo o Programa das Nações Unidas para o Meio Ambiente (PNUMA), surgiu programas e medidas de incentivos para esse setor. No Brasil, surgiu em 2001 o Programa Brasileiro de Etiquetagem (PBE) do Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), com o objetivo de testar e classificar eletrodomésticos, eletrônicos, veículos e mais produtos dentro de 24 categorias, de acordo com sua eficiência energética. A etiquetagem de energia de edifícios no Brasil, especifica os requisitos técnicos, métodos de classificação de edificações energeticamente sustentáveis e existe uma regulamentação para edifícios comerciais, de serviços e públicos e, outra para edifícios residenciais (BRASIL, 2010). O Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas (RTQ-C) estabelece critérios e métodos para avaliação e classificação de edificações comerciais, de serviços e públicas quanto à sua eficiência energética visando à etiquetagem dessas edificações. O INMETRO aprovou no dia 09 de março de 2021 a nova Instrução Normativa para a Classificação de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas (INI-C) que aperfeiçoa o RTQ-C. Neste estudo, avaliou-se a envoltória através do método simplificado do INI-C e através do método prescritivo do RTQ-C, da edificação do Clube de Ciências da UFPA a fim de comparar seus resultados e identificar as diferenças na atualização do regulamento. 

  • PEDRO BAPTISTA FERNANDES
  • PLANEJAMENTO DE TRAJETÓRIA PARA ROBÔS MÓVEIS AUTÔNOMOS APLICANDO UM ALGORITMO DE OTIMIZAÇÃO POR ENXAME DE PARTÍCULAS COM PICOS DE DIVERSIDADE


  • Data: 08/02/2022
  • Mostrar Resumo
  • PLANEJAMENTO DE TRAJETÓRIA PARA ROBÔS MÓVEIS AUTÔNOMOS APLICANDO UM ALGORITMO DE OTIMIZAÇÃO POR ENXAME DE PARTÍCULAS COM PICOS DE DIVERSIDADE

  • DENNER FELIPE SILVA FERREIRA
  • ELECTRONIC TRANSPORT IN 1D SYSTEM WITH COUPLING ATOMIC-SIZE NICKEL ELECTRODES AND CARBON WIRES

  • Data: 31/01/2022
  • Mostrar Resumo
  • The miniaturization limits foreseen for silicon-based electronic components have mobilized research for alternative materials, so carbon-based structures, due to their versatility, have gained greater prominence. Among the components, carbon-based atomic wires are seen as promising materials, due to the promise of performance and electronic, thermal and magnetic properties. In this context, this work investigated electronic transport using ab initio/Non-Equilibrium Green Function methodology through one-dimensional (1D) junctions with atomic-size diameter based on Cn carbon chains (n from 1 to 10) between semi-infinite Ni electrodes. Finding then a distinction between parity along the carbon strand, cumulene- and polyynes-type structures form in odd (C2n+1) and even (C2n) carbon chains, respectively. It was found (i) that the maximum conductance occurs at a specific voltage (0.20 V) for both parities; (ii) the conductance for polyynes chains decay (from 151 μS to 125 μS), while cumulene chains increase (from 58 μS to 68 μS); (iii) the transmittance for C2n ≈ 2 × C2n+1, causing high currents in C2n ; (iv) the conductance drop in both chains is seen in the transmittance failure (|0.25 V|); (v) the negative differential resistance (NDR) is shown for C2 (2 to 4) at |0.35 V| and for C10 at |0.40 V| due to degeneracy in LUMO's levels, while C2n+1 exhibits resonance at |0.30 V|; (vi) the structures present the behavior of RTD (Resonant Tunnel Diode) and FET (Field Effect Transistor) devices for C2n and C2n+1 , respectively.

  • FLAVIO HENRY CUNHA DA SILVA FERREIRA
  • INTELLIGENT POSITIONING OF DRONES VIA METAHEURISTIC OPTIMIZATION ALGORITHMS FOR MAXIMIZING SIGNAL COVERAGE AREA IN FORESTED ENVIRONMENTS

  • Data: 31/01/2022
  • Mostrar Resumo
  • This dissertation aims to provide a metaheuristic approach to drone array optimization applied to coverage area maximization of wireless communication systems, with unmanned aerial vehicle (UAV) base-stations. For this purpose, two types of networks utilizing UAVs have been analyzed: a standard Wi-Fi network operating at 2.4 GHz, and a low-power wireless area network (LPWAN), both considering medium to high-density forest environments.LPWAN are systems designed to work with low data rates but still keep, or even enhance, the extensive area coverage provided by high-powered networks. The type of LPWAN chosen herein is LoRa, which operates at an unlicensed spectrum of 915 MHz, and requires users to connect to gateways in order to relay information to a central server – in this case, each drone in the array has a LoRa module installed to serve as a non-fixated gateway. In order to classify and optimize the best positioning for every UAV in the array, three concomitant bioinspired optimization methods have been chosen: the cuckoo search (CS), the flower pollination algorithm (FPA) and the bat echolocation algorithm (BA). All of these methods have a search space distribution based on Lévy / Mantegna flights, and present distinct performance results for both drone array network cases. Positioning optimization results are then simulated and presented via MATLAB, first for the Wi-Fi network and later for a high-range IoT-LoRa network. An empirically adjusted propagation model with measurements carried out on the UFPA campus was developed to obtain a propagation model in forested environments. Finally, drone positioning utilizing the propagation model corrected with measurements is compared with the positioning using the classical theoretical model, showing that the corrected model is more efficient in representing the forest environment than the classical model usually used in recent publications.

  • JOAO PAULO TAVARES BORGES
  • Hybrid CAVIAR Simulations and Reinforcement Learning Applied to 5G Systems: Experiments with Scheduling and Beam Selection

  • Data: 28/01/2022
  • Mostrar Resumo
  • Reinforcement Learning (RL) is a learning paradigm suitable for problems in which an agent has to maximize a given reward, while interacting with an ever-changing environment. This class of problem appears in several points of interest in the 5th Generation (5G) and the 6th Generation (6G) of mobile networks. However, the lack of freely available data sets or environments to train and assess RL agents are a practical obstacle that delays the widespread adoption of RL in 5G and future networks. These environments must be able to close the so-called reality gap, where reinforcement learning agents, trained in virtual environments, are able to generalize their decisions when exposed to real, never before seen, situations.
    Therefore, this work describes a simulation methodology named CAVIAR, or Communication Networks, Artificial Intelligence and Computer Vision with 3D Computer-Generated Imagery, tailored for research on RL methods applied to the physical layer (PHY) of the wireless communications systems. This simulation methodology is used to generate an environment for the tasks of user scheduling and beam selection, where, at each time step, the RL agent needs to schedule a user and then choose the index of a fixed beamforming codebook to serve it. A key aspect of this proposal is that the simulation of the communication system and the artificial intelligence engine must be closely integrated, such that actions taken by the agent can reflect back on the simulation loop. This aspect makes the trade-off of processing time versus realism of the simulation, an element to be considered. This work also describes the modeling of the communication systems and RL agents used for experimentation, and presents statistics concerning the environment dynamics, such as data traffic, as well as results for baseline systems.
    Finally, it is discussed how the methods described in this work can be leveraged in the context of the development of digital twins.

  • ALEX SANCHES MACEDO
  • CHANNEL ANALYSIS FOR THE 3.5 GHz FREQUENCY AT AIRPORT

  • Data: 28/01/2022
  • Mostrar Resumo
  • To meet the steep increase in the consumption of users and equipment connected to a mobile network, several works and researches are being proposed and developed. In Brazil, the arrival of 5G technology is expected from 2022, and which will use the 3.5 GHz frequency band. Since there are few studies available in the literature, regarding the channel behavior, its characterization of the channel is of important relevance. Thus, in this dissertation, a study carried out on the channel analysis for the 3.5 GHz frequency in a large indoor environment is presented, this scenario is in a lobby of the Val de Cans International Airport, in Belém do Pará. The measurement campaign were performed for Line-Of-Sight (LOS) and by means of channel probing the small-scale channel dispersion parameters are extracted. These parameters such as mean delay, delay spread, the coherence band of the channel and the power profile and delays were also verified. The signal was also investigated through Floot-Interception, Close-In models and their variations are applied and analyzed to evaluate the path loss for co-polarization (V-V and H-H) and cross-polarization (V-H and H-V). The methodology applied on a large scale proved to be adequate with the data for other types of environments and other frequencies found in the literature.

  • RICARDO GUEDES ACCIOLY RAMOS
  • ILUMINAÇÃO PÚBLICA COM MEDIÇÃO PONTO A PONTO E GERENCIAMENTO REMOTO: UMA EVOLUÇÃO TECNOLÓGICA SMART

  • Data: 26/01/2022
  • Mostrar Resumo
  • ILUMINAÇÃO PÚBLICA COM MEDIÇÃO PONTO A PONTO E GERENCIAMENTO REMOTO: UMA EVOLUÇÃO TECNOLÓGICA SMART

  • SAULO JOEL OLIVEIRA LEITE
  • PREDIÇÃO DE SÉRIES TEMPORAIS DA COVID-19: UMA AVALIAÇÃO DOS PREDITORES MLP, LSTM E ARIMA

  • Data: 21/01/2022
  • Mostrar Resumo
  • PREDIÇÃO DE SÉRIES TEMPORAIS DA COVID-19: UMA AVALIAÇÃO DOS PREDITORES MLP, LSTM E ARIMA

  • SERGIO HENRIQUE MONTE SANTO ANDRADE
  • A SMART HOME ARCHITECTURE FOR SMART ENERGY CONSUMPTION IN A RESIDENCE WITH MULTIPLE USERS

  • Data: 21/01/2022
  • Mostrar Resumo
  • The Smart Cities Concept proposes that a city that was not endowed with (or almost nothing) technology, modernizes itself through the continuous implementation of Smart Systems in its various sectors. Areas such as Mobility, Urban Planning, Energy (Smart Grid), Health, Education and Environment, are positively impacted in this process through data analysis that comes from the technological implementation, bringing more financial and natural resource savings, comfort and well-being to its population.

    One of the implementations in the context of Smart Cities (SC), which has been gaining more space on the world stage compared to others and also more attention from Big Techs, are residences. These, in addition to the possibility of producing valuable data about their users, they can significantly contribute to energy savings for being one of the largest sources of electricity consumption in cities. These homes, implemented with IoT technologies, gets transformed into Smart Homes (SH), which is a Home concept that have, in their total or partial infrastructure, Home Automation Systems(HAS) that aim to make daily life and residential tasks easier and more comfortable for the residents.

    In this thesis by papers, developments are proposed in the context of SH in the field of Hardware, Software and Data Analysis, which aim at: (i) extracting data and properly selecting them to be used as input in HA Systems, (ii) Identification of Residents through WiFi Antenna Handover, (iii) Identification of Electronics connected to Smart Outlets (Smart Outlets) through NFC (Near Field Communication), in order to develop techniques aimed at saving energy individually for each resident within the residence, minimally impacting their comfort and personal well-being.

2021
Descrição
  • LUIZ FELIPE DE SOUSA
  •  Imputation of missing data in structural integrity monitoring

  • Data: 23/12/2021
  • Mostrar Resumo
  • A common problem in large data sets is missing information, whether due to failure of capture sensors, loss in transport, or another situation that culminates in data loss. Given this situation, the researcher often disregards the missing data, removing them from the set. However, this exclusion can generate inferences that are not valid, especially if the data that remains in the analysis are different than those excluded. To deal with this problem in Structural health monitoring (SHM) data sets, this work makes use of Recurrent Gated Units (GRU) and Long Term Memory (LSTM) neural networks to perform the imputation task. Of missing data. In a step before imputation, the artificial amputation of the data was performed, assuming the Missing Completely at Random (MCAR) missing data mechanism, in percentages of 25, 50, and 75%. The imputation techniques were evaluated using the Average Absolute Percentage Error (MAPE) metric. Subsequently, the damage detection step was applied, as imputed bases were submitted to the Mahalanobis Square Distance (MSD) and Kernel component analysis (kPCA) algorithms to obtain the detected T1 and T2 error rates. From the results obtained, it was possible to observe that the use of LSTM in data imputation achieved better results than GRU in all amputation rates.  Better  performance can also be noticed in the selection of damage detection, where the imputed bases by LSTM achieve better T1 and T2 error detection results.

  • ADRIANA MEDEIROS PINHEIRO
  • CLASSIFICAÇÃO DE RANSOMWARE UTILIZANDO ALGORITMOS DE MACHINE LEARNING

  • Data: 22/12/2021
  • Mostrar Resumo
  • CLASSIFICAÇÃO DE RENSOMWARE UTILIZANDO ALGORITMOS DE MACHINE LEARNING

  • ANDERSON JOSE COSTA SENA
  • DESCARGAS PARCIAIS RESOLVIDAS EM FREQUÊNCIA COM BASE EM CONTAGEM
    ESPECTRAL DE PULSOS

  • Data: 16/12/2021
  • Mostrar Resumo
  •  

    Uma metodologia de classificação de descargas parciais (DPs) com base em contagem espectral de pulsos é proposta e apresentada neste trabalho. Os dados de contagem espectral são processados usando uma técnica proposta (PD Spectral Pulse Counting Mapping - PD-SPCM), que leva a um mapa de descargas parciais resolvidas em frequência (Frequency-Resolved Partial Discharges - FRPD). O mapa proposto é então usado para detecção e classificação de DPs. Neste trabalho, FRPDs de corona e ranhura são apresentados em bandas de frequência de até 500 MHz, obtidos a partir de medições de laboratório realizadas usando duas barras estatóricas de hidrogeradores. Os sinais eletromagnéticos das DPs foram capturados usando uma antena patch e um analisador de espectros. As DPs corona e ranhura foram escolhidas para análise porque uma pode ser classificada equivocadamente como a outra pelo fato delas poderem apresentar mapas semelhantes de DP resolvidas em fase (PRPD) e podem ocupar as mesmas bandas espectrais. Além disso, as DPs corona e ranhura podem ocorrer simultaneamente. Os resultados obtidos mostram que as DPs corona e ranhura podem ser devidamente identificadas utilizando a metodologia desenvolvida, mesmo quando ocorrem simultaneamente e nas mesmas bandas espectrais. Isso é possível porque, como é demonstrado experimentalmente, DPs corona e ranhura têm níveis apreciáveis de contagem espectral de pulsos em bandas particulares do espectro de frequência.



  • FÁBIO VINÍCIUS VIEIRA BEZERRA
  • DETECÇÃO DA DEGRADAÇÃO DE CONTATOS ELÉTRICOS EM BAYS DE SUBESTAÇÕES DE ENERGIA ELÉTRICA VIA ANÁLISE ESPECTRAL DA CORRENTE DE CARGA

  • Data: 16/12/2021
  • Mostrar Resumo
  • This thesis proposal aims at developing a diagnostic system to detect the current stage of degradation of electrical contacts, with the main goal of implanting a predictive maintenance procedure for sectionalizing switches and circuit breakers in bays of electric transmission/ distribution substations. The main feature of the diagnostic system proposed here, is that it will produce predictive indicators of the degradation stage of electrical contacts for the system under operation, based on the spectral analysis of the load current that is flowing through the contacts, using the signal-to-noise relationship (SNR). Therefore, to implement the proposed diagnostic procedure it is not necessary new investments in measurement equipment, being enough the already existing measurement infrastructure. By implementing the diagnostic system proposed here, electrical utilities will have a modern tool for monitoring their electrical installations, supporting the implementation of new predictive maintenance functions typical of the new scenario of the current electrical smart grids. It will also be used data obtained from laboratory tests for the characterization of frequency signatures for circuit breakers and sectionalizing switches to discovery typical patterns that may indicate the degradation stage of electrical contacts of these components, separately. It will be presented preliminary results obtained by the application of the proposed  technique using real data acquired from a 230 kV substation belong to the utility ELETRONORTE, which indicate the effectiveness of the proposed diagnostic procedure.

  • LENA VEIGA E SILVA
  • STRATEGIES FOR ANALYSIS OF MORTALITY UNDERREPORTING IN EPIDEMICS OCCURRING IN DEVELOPING COUNTRIES: A Case Study of COVID-19 in Brazil

  • Data: 10/12/2021
  • Mostrar Resumo
  • The impact of epidemics throughout history has been devastating, posing a threat to public health and requiring immediate and effective action by authorities. The consequences are even greater when they are disseminated in underdeveloped or developing countries, resulting in scenarios with high rates of underreporting. Investigation, control, prevention and guidance measures are necessary in an epidemiological scenario. Investigating the behavior of past epidemics using historical time series data can help to define patterns and assist in more realistic predictions of new or known diseases. In this scenario, this thesis presents strategies for the analysis of epidemic underreporting, based on time series, applied in countries with social inequalities, with precarious conditions of health services, inadequate diagnostic network, which have flaws in the dissemination of data related to disease. The strategies are based on time series forecasting models, generated by machine learning techniques, used to predict the expected behavior of epidemic occurrences, revealing outliers, in order to create scenarios closer to reality and provide subsidies to public authorities for decision-making. As a way of showing the effectiveness of the proposal, the COVID-19 pandemic in Brazil is used as a case study.

  • JOSE WELITON DE OLIVEIRA ARAUJO
  • ISOMERIA EFFECTS FOR ELECTRONIC TRANSPORT IN NANODEVICES WITH CARBYNE ELECTRODES

  • Data: 24/11/2021
  • Mostrar Resumo
  • The field of study focused on nanoscience has developed in the last decades. Theoretical studies on electronic transport modeling in semiconductor organic materials have provided important progress in nanotechnology. Among these molecular materials we highlight a class of compounds formed by carbon atoms with conjugated pi molecules, bipyridine, characterized by two pyridine rings. In this work, we study the properties of electronic transport in molecular junctions formed by bipyridine isomers as the central region and electrodes of carbyne wires. Through calculations of first principles, based on Density Functional Theory (DFT), combined with Non-Equilibrium Green's Functions (NEGF), we obtain important properties such as electric current, differential conductance, transmission and eigenchannels. The results showed that the presence of nitrogen atoms at the molecule-electrode interface strongly affects the coupling of the junction, providing a better electronic conduction, this is corroborated by the transmission eigenchannels. The transport properties analyzed revealed that in bipyridine bridges, devices with carbyne electrodes, presented better performance, when compared to other works that used metallic electrodes (Au, Ag and Cu) or graphene electrodes. The results showed a Field Effect Transistor (FET) behavior when the devices are formed by symmetric isomers, where as for asymmetric systems we obtained characteristics of Molecular Diode (MD).

  • DANIEL LEAL SOUZA
  • Control and Adjustment of Convergence in Classical and Quantum Evolutionary Multi-Swarm Algorithms Based on Fuzzy Systems, Particle Intercommunication between Swarms and Detection of Trajectory Patterns.

  • Data: 11/11/2021
  • Mostrar Resumo
  • This work presents a set of hybrid metaheuristics, based on the use of evolutionary strategies in conjunction with the classical and quantum particle swarm optimization algorithms under a multi-swarm environment with master-slave topology. In this context, new heuristics are used to control cluster agglomeration and mutation of particle replications (Fuzzy Mamdani inference machine), as well as the use of local search methods with convergence monitoring based on the global best history. The algorithms are called Fuzzy Competitive Evolutionary Multi-Swarm Optimization with Convergence Monitoring (FCEMSO-CM) and Fuzzy Competitive Quantum-Behavior Evolutionary Multi-Swarm Optimization with Convergence Monitoring (FCQEMSO-CM). In order to validate the results, twenty non-restrictive benchmark problems and four engineering problems will be used in several scientific publications: Welded Beam Project (WBD); Minimzation of Weight Tension/Compression Spring (MWTCS); Speed Reducer Design (SRD); Design of Pressure Vessel (DPV). The algorithms are implemented in CUDA massive parallel computing architecture, providing a more adequate data distribution in relation to the organization of the swarms, as well as the significant decrease of the processing time. With the application of the evolutionary strategies in the PSO and QPSO algorithms, as well as the heuristics of agglomeration control and local search based on convergence monitoring, the solutions proposed in this document offer several advantages, such as the improvement in search capacity and control of the convergence rate.

  • SHIRLEY KAROLINA DA SILVA FERREIRA
  • Implicit motor imagery classification based on ERD/ERS of EEG signals

  • Data: 28/10/2021
  • Mostrar Resumo
  • Motor imagery is a mental task and the Electroencephalography (EEG) signals recorded during this activity can be used to implement brain-computer interfaces, as well as for motor rehabilitation protocols. The most of existing works treats an explicity estimulated motor imagery, in which the subjetcs are instructed to perform the same task in repeated trials. However, the implicity motor imagery classification, engajed from the mental rotation protocol still do not exist in the literature. Therefore, the present work propose the use of two machine learning approaches in the classification of the hand laterality based on hand mental rotation paradigm that stimulates motor imagery process. The data from a rehabilitation electronic game was used to implement the classifier algorithms and the features vectors are the values of ERD and ERS (in dB) extracted from EEG signals. The results shown good performance of the LDA classifier, as well the best setup to implement the classification problem and the influence of the visual stimuli on the classifier performance.

  • FABIO BARROS DE SOUSA
  • Performance Analysis of Communication Systems with Acoustic Optical Filter and Photonic Crystal Fiber for Signal Regeneration.

  • Data: 08/10/2021
  • Mostrar Resumo
  • Through this work, we sought to investigate the performance of optical fiber communication systems with the aid of signal regeneration techniques, such as 2R (Re-amplification and Reshaping) and 3R (Re-amplification, Re-shaping and Re-timing) based om the non-linear effects of Kerr type: self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing (FWM). For this, the commercial software OptiSystem was used to design three communication systems with Mach-Zehnder interferometer (MZI) architecture composed of an acoustic optical filter (AOF) and highly non-linear photonic crystal fiber (HNL-PCF). The objective was achieved through the interactive search for the solution of the nonlinear Schrödinger equation (NLSE) in which the split step Fourier method (SSFM) was used, where in the simulations the power of the input signal, the link length and the frequency difference between the input and the pump signal were used as figure of merit for the analysis of the performance of the systems proposed for the transmission rate of 10 Gb/s. The results were found as a function of eye diagrams, pulse shapes and optical input and output spectra of the systems, by comparing the values of the quality factor (Q-Factor), the bit error rate (BER), eye height, timing jitter and optical signal-to-noise ratio (OSNR) of the degraded and regenerated signals. Therefore, it can be said that through these projects it was possible to carry out the 2R and 3R all-optical regenerations in a satisfactory manner and with great performance values. In short, this thesis was written and organized using three of the articles published in journals, but with the necessary adaptations, with the chapters, as follows: In chapters 1 and 2, the 2R and 3R regeneration systems based on MZI with AOF and HNL-PCF were presented, respectively, and in chapter 3 the all-optical regeneration systems with hybrid modulation and with on-off keying (OOK) modulation with return to zero (RZ) and nonreturn-to-zero (NRZ) encoding. And finally, in chapter 4, the general conclusion, future works, publications and submissions in journals and conferences, as well as the appendix with prints of articles published in journals as first author and co-author. 

  • VINICIUS BORGES ANDRADE
  • Análise Técnico-Econômica da Inserção de Geração Distribuída Fotovoltaica em Redes de Distribuição: Estudo de Caso do Sistema Elétrico de uma Cidade Universitária

  • Data: 07/10/2021
  • Mostrar Resumo
  • Com o crescimento do uso de fontes alternativas de energia, há um grande interesse na integração de unidades de geração distribuída (GD), fazendo com que o Sistema Elétrico de Potência (SEP) opere não mais de forma unidirecional, mas sim com um fluxo de potência bidirecional. Por isto, a GD representa grandes benefícios para o sistema elétrico, entre eles estão o adiamento de investimentos em expansão dos sistemas de transmissão e distribuição, o baixo impacto ambiental, a redução no carregamento das redes, a minimização das perdas técnicas, melhoria no perfil de tensão e a diversificação da matriz energética. Sendo assim, devido a este crescimento em redes de distribuição, justificam-se incentivos ao desenvolvimento de ferramentas computacionais que auxiliem em estudos próximos do comportamento real. Portanto, o presente trabalho tem por objetivo analisar os principais impactos em regime permanente da geração distribuída fotovoltaica (GDF) na rede de distribuição da Universidade Federal do Pará (UFPA). Para isto, foi feita uma revisão bibliográfica dos principais estudos envolvendo estes impactos. Em seguida, para a modelagem, escolheu-se o software OpenDSS. Foram determinados os cenários de simulações de penetração de GDF. As análises foram feitas em curvas de carga para um dia útil, sábado e domingo. A aquisição das curvas de carga foi feita através do software Sistema de Gerenciamento de Energia Elétrica (SISGEE), que monitora online grandezas elétricas dos prédios da UFPA, como consumo, potência, tensão, corrente, dentre outras. Para uma análise mais real foram aquisitados dados de temperatura ambiente e irradiância da região de Belém do Pará. Além disto, foram utilizados dados comerciais de um painel fotovoltaico e um inversor. Os resultados mostraram o impacto significativo da inserção de GDF na melhora ou piora do perfil de tensão da rede, resultando em alguns casos de sobretensão, redução ou aumento das perdas técnicas verificadas nas linhas e transformadores, a depender do nível de penetração fotovoltaica e sua localização, além do benefício financeiro e ambiental.

  • WESIN RIBEIRO ALVES
  • Deep Learning Applied to Channel Estimation in MIMO Wireless System

  • Data: 06/10/2021
  • Mostrar Resumo
  • This work researches and presents the results of investigations on the channel estimation problem in millimeter-wave MIMO wireless systems considering low-resolution analogto-digital converters (ADC). Three channel estimation models based on Deep Learning (DL) are presented: the matched estimation model, the mismatched model, and the Deep Transfer Learning (DTL) based channel estimation. DL models use Convolutional Neural Networks (CNN) to extract attributes from the databases generated by Raymobtime methodology for Beijing and Rosslyn scenarios. In the experiments performed in this thesis, “pilots” signals were transmitted and used as input to the DL models, which returned the estimated channel matrix as output. In total, six different experiments were carried out. The first experiment made a comparison between the matched, mismatched and DTL models alternating the scenarios of Beijing and Rosslyn as data source. The second compared different channel generation procedures including models that performed a post-processing in the ray-tracing (RT) simulations, those that incorporated MIMO antenna arrays in the RT simulations, and those that used random parameters to generate channels. The third experiment did a detailed investigation about the channel generation procedure with random parameters. The fourth considered data augmentation technique to train channel estimation models. The fifth compared model variations considering multimodal data available in Raymobtime. The sixth and last experiment compared the model proposed in this thesis with the model based on conditional Generative Adversarial Networks (cGAN). The results of these experiments highlight that the model based on DTL has a lower computational cost compared to the one using DL. Regarding the Raymobtime methodology, incorporating MIMO antenna arrays within RT simulations produces more favorable scenarios for the channel estimation task. Considering the results obtained, as a general conclusion of the thesis, it is observed the great importance of the methodology adopted to evaluate the channel estimation techniques that are based on machine learning. For example, the way channel matrices are generated greatly influences the results of experiments, along with the definition of training and test sets.

  • PITTHER NEGRÃO DOS SANTOS
  • Optimizationof Modified Yagi-Uda Nanoantenna Arrays Using Adaptive Fuzzy GAPSO

  • Data: 01/10/2021
  • Mostrar Resumo
  • This work presents an optimization of radiation characteristics and absorption of modified Yagi-Uda (YU) nanoantennas. Four antenna geometries are considered: conventional YU powered by voltage source and transmission line, and YU with a loop element powered by voltage source and transmission line. The four proposed geometries are by inserting and combining new elements with different spacings and sizes. Initially, the mathematical modeling of these antennas was performed via linear Moment Method (MoM) to determine the directivity, gain, input impedance and radiation efficiency. Then this modeling was used simultaneously with the optimization method called Fuzzy Adaptive AGPSO, which is the result of hybridization between the genetic algorithm (AG) and particle swarm optimization (PSO), with a fuzzy system used to adapt some parameters of the latter. This hybrid method was used to find the best spacings between the elements and their lengths in such a way as to obtain better directivity, gain,  efficiency and input impedance. Optimized results show that modified YU nanoantennas have better characteristics than conventional YU antennas.

  • ISA CRISTINA CARVALHO DE ANDRADE
  • CRIAÇÃO DE UM MODELO DE CLASSIFICAÇÃO DE TWEETS EM PORTUGUÊS RELACIONADOS A CRIMES UTILIZANDO MÁQUINA DE VETORES DE SUPORTE

  • Data: 24/09/2021
  • Mostrar Resumo
  • CRIAÇÃO DE UM MODELO DE CLASSIFICAÇÃO DE TWEETS EM PORTUGUÊS RELACIONADOS A CRIMES UTILIZANDO MÁQUINA DE VETORES DE SUPORTE

  • ANDREY KAZUYA NAKAMURA
  • A New Power Allocation Method Using Zero-Forcing Precoding for Cell-Free mMIMO Networks with
    Restricted Fronthaul Capacity

  • Data: 22/09/2021
  • Mostrar Resumo
  • The fifth generation of mobile communication systems (5G) is a reality, with networks deployed worldwide and 5G-capable devices commercially available. One of its components is CF-mMIMO systems, in which a large number of APs are distributed over the network and serve all UEs simultaneously over the same time-frequency block. To attenuate the interference between the APs, linear precoding schemes are implemented on the network, of which CB and ZF are some of the most common methods, with ZF being the focus of this work. CF-mMIMO has the potential of improving capacity, reliability, and fairness among all users on the network, with the latter often achieved by maximizing the minimum capacity of the users via an optimal power allocation. However, the optimal solution for the power allocation problem is a non-deterministic polynomial (NP)-hard problem, and different strategies were developed to find a suboptimal solution. In this context, the suboptimal solution for the max-min optimization problem is often achieved using the bisection method or heuristic methods. The former has the drawback of a high computational cost, while the latter may not achieve good performances depending on the evaluated metrics. Moreover, the ZF method is a centralized method, meaning the computation of linear precoding and power allocation are done by the CPU. This approach has the drawback of constantly sending CSI data from the APs to the CPU via the fronthaul and may not be scalable when UEs increases significantly. This work proposes a new method to find a suboptimal solution for the max-min optimization problem with lower computational complexity than the bisection method, achieving better results than both the latter and heuristic methods, depending on the metrics evaluated, and also analyzes the performance impact of compressing the CSI.

  • DAVI CARVALHO MOREIRA
  • ANÁLISE DE SOBRETENSÕES TRANSITÓRIAS MUITO RÁPIDAS DURANTE FALHAS EM SUBESTAÇÕES ISOLADAS A GÁS

     

  • Data: 17/09/2021
  • Mostrar Resumo
  • Esta tese de doutorado desenvolve uma análise de sobretensões transitórias muito rápidas (VFTOs), experimentadas por subestações isoladas a gás (SIGs), que ocasionam falhas de chaves seccionadoras (CSs) e disjuntores (DJs). Um modelo de múltiplas centelhas, para equipamentos de manobras em SIG, foi desenvolvido e proposto para analisar todo o processo de geração de VFTO. As simulações foram implementadas utilizando um programa de transitórios eletromagnéticos, com modelos de circuitos equivalentes para análise de alta frequência. Os parâmetros das VFTOs obtidas nas simulações computacionais, como por exemplo, componentes oscilatórias, valor de pico, tempo de subida e número de oscilações, foram consistentes com as medições de VFTOs realizadas no ensaio em campo, validando a modelagem dos componentes implementados no estudo e permitindo assim uma avaliação consistente da falha. A severidade das VFTOs obtidas por simulação computacional e observadas no DJ, foi considerada alta devido terem apresentados parâmetros consideravelmente maiores que a referência. Os resultados das simulações computacionais, indicaram que as falhas ocorreram em uma tensão abaixo da tensão suportável de impulso atmosférico com uma quantidade elevada de centelhas. Após uma análise completa da falha, considerando os resultados das simulações computacionais, registros de oscilografias e exames visuais, foi possível concluir que o fechamento manual da CS produziu centelhas excessivas e estresses anormais no dielétrico da região do campo elétrico não homogêneo do DJ, impactando desta forma na redução da rigidez dielétrica do gás SF6 até a geração de arco elétrico de alta intensidade entre o anticorona e o invólucro.

    This thesis develops an analysis of very fast transient overvoltages (VFTOs) experienced by gas-insulated substations (GISs) that caused failures in disconnect switches (DSs) and circuit breakers (CBs). A multi-spark modelfor GIS maneuvering equipment was proposed to analyze the entire VFTO generation process. The simulations were implemented using an electromagnetic transient program, with equivalent circuit models for high frequency analysis. The VFTOs parameters obtained in the computer simulations, such as oscillatory components, peak value, rise time and number of oscillations, were consistent with the VFTOs measurements performed in the field test, validating the modeling of the components implemented in the study and thus allowing for a consistent assessment of failure. The severity of the VFTOs obtained by computer simulation and observed in the CB was considered high because they presented parameters considerably higher than the reference. The results of the computer simulations indicated that the failures occurred at a voltage below the withstand voltage of an atmospheric impulse with a high number of sparks. After a complete failure analysis, considering the results of computer simulations, oscillography records and visual examinations, it was possible to conclude that the manual closing of the DS produced excessive sparks and abnormal stresses in the dielectric in the region of the CB inhomogeneous electric field, impacting this form in the reduction of the dielectric strength of the SF6 gas to the generation of a high intensity electric arc between the anticorona and the casing.



     

    Segue o artigo publicado em periódico A1 - Qualis CAPES:

     

    Analysis of VFTO during the failure of a 550-kV gas-insulated substation (MOREIRA et al., 2020). Publicado na revista Electric Power Systems Research (ISSN: 0378-7796 / Qualis CAPES A1 (Engenharia IV): Fator de Impacto 3,211: JCR 2019);


  • ALESSANDRE SAMPAIO DA SILVA
  • ELECTRONIC TRANSPORT IN DOPED CARBON ALLOTROPES

  • Data: 14/09/2021
  • Mostrar Resumo
  • In this work is presented a theoretical investigation of the electronic transport of a series of two-terminal devices based on doped Phagraphene nanoribbon is presented. The devices were separated into two families of ribbon, whose location of the substitutional doping determines the group, and can be in a central location in the spreading region with -BN or at the zigzag edge terminations with -N. The calculations were based on the hybrid DFT-NEGF methodology implemented in the TRANSIESTA package. Our results for family 1 showed that the device with zigzag edges (PHAGBNZZ) undergoes the metal-semiconductor transition operating in two voltage windows with a signature of a Field-Effect Transistor (FET) field-effect transistor (FET). In the armchair device (PHAGBNARM) the semiconductor-metal transition occurs, operating as switching for low voltages and as a FET for voltages from 0.2 V. On the other hand, Inelastic Electronic Tunneling Spectroscopy (IETS) inelastic electronic tunneling spectroscopy (IETS) revealedthat the devices of family 1 suffer little influence of inelastic channels on transport, with tunneling being mostly elastic. For family 2, the smaller device (PHAGNZZ1) shows a metallic behavior, undergoing the metal-semiconductor transition with increased voltage, operating as a FET device. The widest device (PHAGNZZ2) presents the behavior of a topological insulator (TI), operating in two voltage windows, such as FET for low voltages, showing TI-semiconductor transition, and resonant tunnel diode (RTD) for voltages between 0.2, and 0.45 V, evidenced by the Negative Differential Resistance (NDR). Analyzing the entire voltage window, the PHAGNZZ2 device’s I-V curve shows a signature like that of a current limiting device that we call the Molecular Positive Electronic Transition (MPET).

  • ISABELA PAMPLONA TRINDADE
  • GENERATING REALISTIC MASSIVE MIMO CHANNELS USING RAY-TRACING: IMPROVEMENTS ON THE RAYMOBTIME METHODOLOGY

  • Data: 08/09/2021
  • Mostrar Resumo
  • Multiple-input and multiple-output (MIMO) techniques using millimeter wave (mmWave) prop-agation are essential to achieve the bit rates expected for 5G and 6G systems. This technology evolution relies on good knowledge about the propagation channels. Ray-tracing emerges as a good option among the deterministic channel modeling approaches, avoiding the high cost of performing measurement campaigns with channel sounding at such high frequencies. This dissertation presents improvements on the simulation methodology called Raymobtime, which combines two different software: a vehicle traffic simulation (SUMO) and a ray-tracing simu-lation (Remcom’s Wireless InSite), in order to generate realistic channels that guarantees some MIMO channel requirements as the spacial-time consistency, when there are smooth channel variations between closely separated users, or when they move. The improvements in the Ray-mobtime methodology developed in this dissertation include a channel characterization of cre-ated datasets, using parameters as angle and delay spread. Moreover, the work analyses a strategy to speed up simulations: using a generic setup with omnidirectional antennas in the simulation, with a post-processing stage applying the geometric model channel. The presented results show the impact of this approach in metrics such as channel capacity and channel estimation using deep learning.

  • PEDRO BEMERGUY
  • ANALYSIS OF FREQUENCY AND TIME SYNCHRONIZATION REQUIREMENTS FOR INTEGRATED ACCESS BACHKHAUL

  • Data: 03/09/2021
  • Mostrar Resumo
  • Backhaul networks have evolved substantially throughout telecommunications history. With the industry interest in deploying dense telecommunications infrastructures, a wireless backhaul becomes a viable solution to reduce the implementation costs. In particular, on 5G NR the IAB architecture was designed to be a key enabler to turn dense networks deployments into a cost-effective option. In those scenarios, OTA synchronization is essential to establish a shared knowledge of timing and frequency, which has not been adequately addressed to the best of our knowledge until today. This works thoroughly analyzes the challenges regarding timing and frequency synchronization in this context, with a particular focus on pilot-aided synchronization. The fundamental problem of OTA synchronization is the symbol timing recovery and the CFO estimation, which will base the FO correction. As a result, this work explores different strategies using a PI loop to improve the estimation from the timing and CFO. In the end, this dissertation analyzes the performance from this synchronization procedure with the proposed synchronization requirements by the 3GPP for MIMO, CA and TDD.

  • IGOR RAMON SINIMBU MIRANDA
  • Microstrip Antennas Design for 5G.

  • Data: 03/09/2021
  • Mostrar Resumo
  • In this work we study different microstrip antennas for the 3.5 GHz band of 5G. The first difference between the antennas is the use of silica (εr=4.4) as a substrate for antennas 1 to 3 and bismuth niobate doped with vanadium pentoxide ( εr  =47.8) for the antennas 4 to 6. The use of bismuth Niobate caused the miniaturization of antennas, as foreseen in the literature, being a desirable characteristic for 5G. In addition, periodic structures on the antenna substrate were modeled in antennas 2 and 5, using the plane wave expansion method (PWE), in order to improve their radiation characteristics. Similarly, we use Mushroom-like type periodic structures in antennas 3 and 6, in order to improve some results of the antenna parameters such as gain. All antennas were modeled in GNU Octave software and simulated in Ansys HFSS and CST Studio 2019 software. The best results for silica antennas were antenna 3 with 7.7 dB gain, 0.11 GHz bandwidth and -25 dB of reflection coefficient. Among Bismuth Niobate antennas, the one that obtained the best results for this application was antenna 6 with 3.6 dB of gain, 0.08 GHz of bandwidth and -20 dB of reflection coefficient.

  • FRANCISCO DIEGO MARTINS NOBRE
  • POWER DIVIDER FOR THREE (1X3) NON-RECIPROCAL TERAHERTZ RANGE

  • Data: 31/08/2021
  • Mostrar Resumo
  • The present work investigated two new types of non-reciprocal power dividers, based on graphene, which operate in the THz region. The developed component divides the power of the input signal between three output ports and, in addition, has an insulating property, that is, a signal source connected to the input port is protected against possible unwanted reflections from the output ports. The device consists of a disk-shaped graphene resonator and six waveguides connected to it. These elements are deposited on a silicon dioxide (SiO 2 ), silicon (Si) and polysilicon (Si-poly) dielectric substrate, the graphene resonator being subjected to an external DC magnetic field equal to B 0 = 0.29 T for both dividers. The principle of operation of the device is the dipole resonance of the magnetized resonator. The level of division of the input power between the three output ports is around -6 dB and the isolation of the source in relation to the output ports is better than -15 dB in a band with a width equal to 3.4 % for divisor (T σ1 ) and (T σ2 ) with the central operating frequency of the divisors is 7.45 THz. The COMSOL Multiphysics software was used to numerically calculate the results.

  • YURI HERNAN SANTOS BARBOSA
  • SPREADING FACTOR OPTIMIZATION STRATEGY FOR LORA TECHNOLOGY IN A MOBILITYSTATE: AN APPROACH BASED ON FUZZY SYSTEMS

  • Data: 31/08/2021
  • Mostrar Resumo
  • The technological advances introduced by drastically changing the way we interact with the “things” present in the world around us, where IoT networks comply with an important role with the revolutions. In view of communication as a central point that allows all "things" to be part of this connected world, together to form a network of "Internet of Things". Wireless communication provides the benefits of mobility, making it easy to add more devices to the network and making it easy to provide any object the ability to connect to the internet. Currently, there are several wireless communication technologies developed for different needs, ranging from short range to medium and long range, through the LoRaWAN protocol, has become the focus of several and research worldwide. The LoRa network server has the ability to manage the transmission definition of each node individually to maximize battery life and network resources, through the Adaptive Data Rate, however the system needs some favorable channel conditions and measures to execute the Data Rate configuration inherent to the methodology, carried out after the confirmation of the 20 successful uplinks, that is, this configuration cannot be used in situations, where endnodes and / or gateaways are in a mobility situation. Therefore, this work is based on field studies, at the frequency of 915MHz, and aims to implement and test a fuzzy logic control, which performs a Data Rate configuration in LoRa technology in a mobile situation, in intelligent ways through taking decision and in order to optimize several aspects such as the coverage area, power supply, channel conditions, time in the air between others.

  • GEAM WILLIAM PFEIFF
  • Fraud detection methods in smart grids using machine learning techniques

  • Data: 31/08/2021
  • Mostrar Resumo
  • Non-technical losses, in most cases caused by fraud, are the main causes of financial losses for electric energy concessionaires. These losses drastically reduce the quality of electrical networks, increasing the risk of blackout, short circuits and equipment breakdowns. Thus, the development of methods that can detect non-technical losses becomes strategic. This dissertation presents two methods developed and validated for the detection of non-technical losses in smart grids. The first method consists of an Electrical Fraud Detector Based on Machine Learning, called DFEBAM, which classifies users' samples as honest or fraudulent. DFEBAM employs different machine learning algorithms that learn patterns from the users' electrical consumption data, then the method selects the algorithm that obtained the best performance and adds new stochastic features generated from the original data. By adding new features, the final model was validated and obtained a detection rate equal to 98.02% and a false positive rate equal to 2.47%. The second method consists of a Data-oriented Ensemble Predictor based on Time Series Classiers for Fraud Detection, called DETECT. The ensemble predictor is created from five time series classifiers, which uses the user's electrical consumption data to learn patterns and later classify the new samples into honest or one of six specific fraud cases. DETECT is totally focused on handling time series data, which differentiates it from most non-technical loss detectors in the literature. In addition to using individual time series classifiers to be compared with DETECT, conventional classifiers were also used, in the end DETECT had a false positive rate equal to 1.61%, which is considered extremely low, as well as an improvement up to 24% in terms of detection rate when compared to other classifiers.

  • DALILA REIS GRIPPA
  • Graphene-based directional couplers in the terahertz frequency range

  • Data: 30/08/2021
  • Mostrar Resumo
  • Two new types of graphene-based devices operating in the Terahertz (THz) region are suggested and analyzed in this work, being two four-port directional couplers. The first coupler has graphene waveguides tilted sideways at a 60° angle. The second directional coupler already has waveguides forming an angle of 90° between them, thus being called a directional coupler with parallel-orthogonal waveguides. The cross-section of the components has a four-layer structure, composed of graphene, silica (SiO2), silicon (Si) and a thin layer of polysilicon. The operating principle of the devices consists of the propagation of surface polariton plasmon waves (SPP's) in graphene waveguides. To carry out the analysis of the scattering matrices of the devices, we used Group Theory. For the numerical calculations we used the COMSOL Multiphysics software, such that variations of physical and geometric parameters were made to analyze how they influence the device's operation. The directional coupler with 60° laterally inclined waveguides had a signal split of -3.8 dB at the center frequency of 3.75 THz with isolation and reflection better than -20 dB at a bandwidth of 14%. The directional coupler with parallel - orthogonal waveguides presented a signal division of -4 dB at the center frequency of 4.4 THz with isolation and reflection around -17 dB and -20 dB, respectively. Device frequency bands can be dynamically controlled by changing the voltage applied between the graphene layer and the polysilicon layer.

  • LELIS ARAUJO DE OLIVEIRA
  • PERFORMANCE ANALYSIS OF A FULLY OPTICAL NETWORK USING AWG AND FBG DEMULTIPLEXERS AND APPLICATIONS IN OPTICAL SENSORS.

  • Data: 27/08/2021
  • Mostrar Resumo
  • We present in this work, a study of numerical simulations of the performance of Array Wave Guide (AWG) and Fiber Bragg Grating (FBG) fiber demultiplexers in a photonic crystal fiber all-optical network ( PCF) considering dispersive and nonlinear effects, and applications in FBG sensors. The simulations use a set of differential equations that define the pulse dynamics in a wavelength division multiplexing (WDM) network configuration in PCF and in SMF optical fiber. For the simulation and analysis steps we use the commercial software OptiGrating, used to model devices that incorporate diffraction gratings in optical fibers, and the OptiSystem, to simulate the propagation of the signals in the fibers. The performance analysis of the demultiplexers was performed by comparing the data obtained in terms of bit error rate (BER), quality factor (Q factor) and gain, in a dense WDM system with 50 GHz channel spacing , and transmission rate of 12 Gbit/s. The results and characterization showed that the FBG demultiplexer in terms of BER and Q factor for the PCF fiber had better performance when compared to the SMF fiber and the AWG demultiplexer was well balanced in both fibers. For the sensor configurations in this thesis, we use FBGs and we propose two sensors, the first of deformation, which has its functionality applied to measuring the radial diameter growth of the stem of Amazonian trees, and the feasibility of using this type of configuration for the monitoring of forest areas, forestry, climate change and irrigation is very promising. The simulation results indicate that it is possible to detect minute variations in diameters with a resolution in the range of 0.5 m (0.0005 mm). And the second liquid level, applied to simultaneously measure the level and temperature of the waters of rivers in the Amazon, where this has enormous potential to be used in monitoring the water level of rivers in areas that suffer from flood risks . The results indicate an excellent sensitivity of 8.6 pm/cm and water level measurements up to the limit of 4.0 m.

  • ANA CAROLINA NEVES PARDAUIL PIRES
  • ABORDAGEM COMBINADA USANDO FLORESTA ALEATÓRIA DE CLUSTERIZAÇÃO PARA AVALIAR PADRÕES DE DESCARGA PARCIAL EM HIDROGERADORES

  • Data: 26/08/2021
  • Mostrar Resumo
  • ABORDAGEM COMBINADA USANDO FLORESTA ALEATÓRIA DE CLUSTERIZAÇÃO PARA AVALIAR PADRÕES DE DESCARGA PARCIAL EM HIDROGERADORES

  • THALITA AYASS DE SOUZA
  • FUZZY SYSTEM FOR HANDOVER DECISION MAKING IN FLYING AD HOC NETWORKS.

  • Data: 13/08/2021
  • Mostrar Resumo
  • Within the scope of new technologies for wireless communications, FANETs (Flying Ad Hoc Networks) have emerged as an alternative to provide and/or expand network coverage in the most diverse types of applications due its relative ease of implementation, high mobility and low maintenance cost. However, this type of network has particularities in its components that need to be considered in order to guarantee the Quality of Service (QoS) and provide continuous access to the user even in circumstances of great mobility. In this context, this work proposes a Fuzzy system for making a handover decision that uses three parameters as input: 1) user speed; 2) signal strength; 3) battery level. Based on the output indicated by the Fuzzy system, a performance evaluation between the traditional handover and the one proposed in this work is carried out for a video transmission scenario between the air stations and the mobile user and through the QoS and Quality of Experience metrics (QoE) established, analyzed the quality of communication. The results obtained showed that the decision-making factors of the proposed model met the good maintenance of service continuity without compromising the quality of the application, as opposed to the traditional model that caused severe degradations in the received media.

     

  • CARLOS EDUARDO DURANS NOGUEIRA
  • STOCHASTIC AUGMENTATION OF BIOINSPIRED CONTROLLERS APLLIED TO QUADCOPTERS UAVS

  • Data: 13/08/2021
  • Mostrar Resumo
  • This work describes a sequence of procedures for the implementation of digital controllers applied to the Parrot® AR Drone 2.0 in order to obtain two controllers that will be evaluated: a Bioinspired Controller and a controller designed through Stochastic Augmentation by Generalized Minimum Variance Control (SAGMVC). The Bioinspired Controller is acquired by means of identification via Artificial Neural Networks (ANNs) of the human control profile, which is performed by manual commands via joystick. In turn, the SAGMVC controller is designed using the synaptic weights obtained by ANNs of a bioinspired controller, which can be compared to the polynomial parameters of an RST controller. Thus, it is intended to observe the performance of controllers based on the human capacity to control systems, analyzing, at the same time, how much such systems can be improved. The main objectives pursued by the study are: the consolidation of the Stochastic Augmentation procedure as a method for improving linear controllers; in the improvement of controllers via Artificial Neural Networks; in the dissemination of optimal controllers, focusing on robustness and minimizing the energy that will be wasted; and in the design of controllers for Unmanned Aerial Vehicles. To assess the fulfillment of these objectives, the response of the controlled system, the control signal, the performance indices (ISE, ISU, TVC, IAE) and the gain and phase margins, using simulated and experimental indoor tests, were generated. From the results obtained — dividing the drone control into four dynamics: pitch, yaw, roll and altitude — it is evident that the main objectives were fulfilled, that is, the projected controllers showed improvements in performance indices, in the transient response profile and in the energy expenditure of the system. Furthermore, it was validated the hypothesis that it is possible to design an ANN Bioinspired controller whose synaptic weights are similar to parameters of RST controllers, and it was also inferred that SAGMVC showed significant improvements in system performance, compared to both simple manual control via joystick and Bioinspired control.

  • JONAS MARINHO DUARTE
  • ELETRONIC TRANSPORT IN THE PRESENCE OF MAJORANA FERMIONS IN A ZIGZAG CHAIN OF ATOMS OVER A TOPOLOGICAL SUPERCONDUCTOR

  • Data: 12/08/2021
  • Mostrar Resumo
  • Research in solid state physics with experimental nanodevices with hybrid semiconductor and superconductor structure has highlighted the realization of topological superconductor for detection of Majorana Fermions (MF). In this work, we will calculate transport properties such as electric current and differential conductance, where we look for Majorana zero-mode signatures. We can characterize such a signature by a conduction resonance, that is, a conductance peak in a region of zero polarization. We studied the electronic transport in a nanodevice composed of a quantum dot (QD), with only one energy level, coupled to two electrodes (Leads). The electrodes are connected to the quantum dot through ΓR and ΓL couplings. We couple to the quantum dot a zigzag chain of atoms containing 8 sites. The chain in question is on a topological superconducting substrate with p-wave pairing. C2i-1 and C2i are Majorana operators on each site. CA,1 and CB,1 are Majorana modes at the ends of the zigzag chain. For the internal couplings of the zigzag chain, we have the parameters h α and Δα, called hopping and Cooper parameter, respectively. We use the non-equilibrium Green functions, that is, the Keldysh formalism. Through these formalisms we deduce the Meir-Wingreen electric current formula and finally the electric current formula similar to the Landauer-Büttiker formula for the studied system, in equilibrium situations. Through these results, we used a matrix formalism for computational calculation, where we obtained the electric current and differential conductance graphs to characterize the design of the nanodevice. The I-V characteristic curves of the system show Majorana modes and the study of resonance in conductance has a behavior analogous to electric current in a field effect transistor.

  • JORGE AMARO DE SARGES CARDOSO
  • HETEROGENEOUS WIRELESS NETWORKS WITH MOBILE DEVICES OF MULTIPLE INTERFACES FOR SIMULTANEOUS CONNECTIONS USING FUZZY SYSTEM

  • Data: 12/08/2021
  • Mostrar Resumo
  • With the exponential increase in heterogeneous wireless networks today, there has been a growing interest from the academic community for issues related to handover problems. The main objective of this paper is to evaluate the quality of service and performance of a device with a dual interface that connects simultaneously to two heterogeneous networks with no competition in the exchange of packets between them. It is a proposal to solve the mitigation of handover impacts. The tool used for evaluation was the Network Simulator 2. The results showed a better use of the band in comparison to the scenario using a traditional mobile device.

  • ANDREIA VANESSA RODRIGUES LOPES
  • ANÁLISE ESTATÍSTICA E MODELAGEM EMPÍRICA PARA CAMPUS DENSAMENTE ARBORIZADO UTILIZANDO A TECNOLOGIA LORA EM 915 MHZ

  • Data: 23/07/2021
  • Mostrar Resumo
  • ANÁLISE ESTATÍSTICA E MODELAGEM EMPÍRICA PARA CAMPUS DENSAMENTE ARBORIZADO UTILIZANDO A TECNOLOGIA LORA EM 915 MHZ

  • RAPHAEL PABLO DE SOUZA BARRADAS
  • METODOLOGIA PARA ANÁLISE DE CRITICIDADE DE REDES DE DISTRIBUIÇÃO SUBMETIDAS A DESCARGAS ATMOSFÉRICAS DIRETAS

  • Data: 14/07/2021
  • Mostrar Resumo
  • Descargas atmosféricas diretas em redes aéreas de distribuição causam, inevitavelmente, sérios danos ao isolamento, levando frequentemente ao desligamento parcial ou total do sistema elétrico. A instalação de para-raios pode ser muito eficaz e é comumente usada para minimizar esse problema; no entanto, considerando que as redes de distribuição de energia geralmente apresentam um número muito grande de nós elétricos, o uso maciço de para-raios pode não ser economicamente viável. Dessa maneira, esta tese propõe uma metodologia para alocar pára-raios que podem reduzir significativamente o número de pára-raios a serem instalados, mas ao mesmo tempo mantendo um nível de proteção adequado para a rede de distribuição. A metodologia proposta, denominada Cruzamento de Descargas Diretas (CDD), analisa a criticidade da rede com base em dois fatores principais, que são as magnitudes das sobretensões e o número de flashovers provocados por descargas atmosféricas, e define uma função de desempenho usada para indicar o local recomendado para a instalação dos para-raios. Os estudos de simulação foram realizados usando duas redes de distribuição teste e o software ATP para demonstrar a eficácia da solução proposta, o que é confirmado pelos resultados apresentados.

  • IAGO RANIERI MIRANDA RODRIGUES MORAIS
  • AVALIAÇÃO DO IMPACTO DAS TENSÕES HARMÔNICAS NA TEMPERATURA DA CARCAÇA DE MOTORES ELÉTRICOS LIGADOS EM ESTRELA ATERRADA POR MEIO DE ANÁLISE DE REGRESSÃO E TERMOGRAFIA

  • Data: 13/07/2021
  • Mostrar Resumo
  • Os motores elétricos são equipamentos elétricos largamente utilizados em diversos processos industriais, sendo responsáveis por uma parcela significativa do consumo de energia dessas indústrias. Ao longo dos últimos anos, os motores elétricos têm sofrido diversas melhorias em suas estruturas devido a sua grande importância em diversos setores da sociedade aliada com as pressões por ações mais sustentáveis e eficientes, o que os levou a atingir rendimentos em torno de 96%. No entanto, a presença de certos distúrbios que degradam a qualidade da energia elétrica pode afetar nocivamente o funcionamento desse tipo de máquina, e , consequentemente, a sua eficiência. Com base nesse contexto, esse trabalho buscou avaliar como as tensões harmônicas de baixa frequência (especificamente 2º, 3º e 5º harmônicos de tensão) impactam no aumento de temperatura da carcaça de motores elétricos classe IE2, IE3 e IE4 quando ligado em estrela aterrado utilizando termografia. Esse trabalho mostrou que as tensões harmônicas podem provocar um aumento significativo da temperatura da carcaça dos motores, onde destaca-se o 2º harmônico.
  • SIDNIR CARLOS BAIA FERREIRA
  • LORA GATEWAY OPTIMAL PLACEMENT METHODOLOGY IN A SMART CAMPUS
    SCENARIO USING EPSO METAHEURISTIC

  • Data: 06/07/2021
  • Mostrar Resumo
  • The Internet of Things (IoT) paradigm connect objects by software, sensors, and several other applications to exchange information with other devices, people, and wireless systems. A Smart Campus scenario uses IoT to enable technologies that improve service performance and well-being for university campus users. A wireless communication network capable of connecting and transmitting information from devices and sensors with IoT application servers is necessary to make this scenario feasible. Low Power Wide Area Networks (LPWAN) have proven to be efficient for connecting intelligent devices. LoRa (Long Range) technology is a type of LPWAN operating in the unlicensed frequency range of 915 MHz, whose communication occurs through gateways that act as exchange points between the sensors and the central server. Optimizing the placement of these gateways and the quantity needed is essential for planning IoT networks and ensuring the quality of coverage. We propose a methodology that uses the Evolutionary Particle Swarm Optimization (EPSO), a meta-heuristic based on evolutionary and swarm intelligence, to determine the LoRa optimal gateway placement for Federal University of Pará – Campus Guamá (UFPA) Smart Campus. The UFPA propagation model, adjusted for the scenario, predicts the received signal strength and is used as an input parameter by EPSO. Four thresholds of signal reception sensitivity generated the optimal placement solutions, and we performed the solutions evaluations through the Pareto front. The stability of the meta-heuristic in finding solutions was confirmed using the Monte Carlo method. The results showed threshold sensitivity strong influence in gateways quantity and coverage area, resulting in a relevant parameter for the planning IoT-LoRa networks, which also implies in a propagation model consistent choice for the deployment scenario. The threshold sensitivity -104 dBm was more suitable for UFPA Smart Campus because forests separate the campuses, and EPSO selected centralized points with sufficient coverage radius for each campus. Based on these results, the optimal placement methodology can assist in the planning and implementation IoT-LoRa networks, reducing possible errors and, consequently, costs in a Smart Campus network design.

  • ELAINE CRISTINA SANTOS DA SILVA
  • NOVO MÉTODO ADAPTATIVO DE PROJEÇÃO DE ENERGIA INJETADA NO SISTEMA ELÉTRICO DE DISTRIBUIÇÃO, EM PERÍODO DE PANDEMIA DO COVID-19, UTILIZANDO REDES NEURAIS ARTIFICIAIS

  • Data: 05/07/2021
  • Mostrar Resumo
  • Este trabalho tem por objetivo apresentar os resultados projetados de energia injetada no sistema de distribuição da concessionária Equatorial Pará e Maranhão, utilizando uma nova metodologia e com apoio das redes neurais artificiais para fazer predição de Energia Injetada em tempos de pandemia, que impactou diretamente os perfis de consumo. O principal desafio é tornar as previsões de energia mais aderentes a realidade, e com menores taxas de erro para tornar os resultados mais confiáveis na utilização do planejamento da empresa, pois o modelo proposto irá respaldar à área estratégica com uma opção viável de metodologia a ser utilizada, para direcionar as tomadas de decisões.

  • FLAVIANE LOUZEIRO DA SILVA
  • Methodology for obtaining the Break Points of the Large Scale Multi-Slope Model Using Genetic Algorithm.
  • Data: 02/07/2021
  • Mostrar Resumo
  • The research and development of wireless communication systems are accompanied by the characterization of the channel on which the signal will be transmitted. In outdoor environments there are several factors that influence the propagation of the signal, such as large buildings, the characteristics of the environment: relief, topography and vegetation, among others, causing losses due to diffraction, reflection and scattering. In the design of wireless communication systems, knowledge of the characteristics of radio propagation in the propagation environment is essential. Thus, in the literature there are several works aimed at the analysis and construction of propagation models. These models assist in the design of wireless network coverage, making it a useful tool in the design of link systems. Numerous propagation prediction methods are available, among them there is the double slope model, known in the literature as Dual Slope and the model with multiple slopes, known in the literature as Multi-Slope. One of the challenges of these models is to obtain the segmentation distance of the route, in addition to the number of segmentation points for the model with multiple segments. Several methodologies have been proposed to solve these challenges and, in this work, a methodology will be presented to optimize this search with the aid of a genetic algorithm. The genetic algorithm is one of the main research topics in Evolutionary Computing, which in turn is a branch of Computational Intelligence research, proposing a new approach to solving problems inspired by natural selection. These algorithms simulate natural population survival and reproduction processes, comprised of a set of search and optimization techniques inspired by the natural evolution of the species. In this algorithm, the favorable characteristics configure patterns that are strengthened in the successors. In turn, unsuitable traits are rarely passed on to descendants so that they can disappear from the population. The objective function of the genetic algorithm assesses how efficient the segmentation distance proposed by the individual in the population is. In view of the results obtained, it is possible to conclude that the individual who has the best accuracy allows the decay coefficients most adjusted to the segments to be obtained. Thus, the methodology proved to be efficient for obtaining the reference distance in noisy channel modeling.

  • PEDRO BARBOSA DE SOUSA FILHO
  • DETECTION OF POTENTIAL FOCUSES OF REPRODUCTION OF MOSQUITOES OF THE GENDER AEDES: CASE STUDY IN THE CITY OF CANAÃ DOS CARAJAS - PA.

  • Data: 30/06/2021
  • Mostrar Resumo
  • This work is the problem of detecting potential breeding spots for Aedes mosquitoes in urban areas, using computer vision and machine learning techniques, in a case study of the city of Canaã dos Carajás, in the state of Pará. In this context, it is proposed to use a set of aerial images, acquired by drone, which have different objects in various scenarios: different, altitudes and dispositions of the labeled objects. The images were manually annotated, and the objects separated into two major classes, Water, and garbage, to compose the training data set for the development of an automatic object detector based on the Yolov4 architecture. The results obtained in tests performed with images of urban areas in the city of Canaã dos Carajás, are possible satisfactory and indicators that the model presented works as an efficient solution to assist in the identification and detection of potential breeding grounds for mosquitoes in aerial images.

  • MARCELA ALVES DE SOUZA
  • UM FRAMEWORK PARA PLANEJAMENTO DE REDES EM ÁREAS RURAIS E REMOTAS CONSIDERANDO FATORES TÉCNICOS, ECONÔMICOS E SOCIAIS

  • Data: 30/06/2021
  • Mostrar Resumo
  • A expansão dos serviços de banda larga e das aplicações de TIC representa um desafio significativo para as operadoras de banda larga, especialmente quando se considera os requisitos relacionados ao custo total de propriedade dessas tecnologias. Nos últimos anos, o processo de expansão avançou significativamente nos últimos anos, mas ainda representa um desafio a ser superado, dada a necessidade de prestar serviços de baixo custo às populações de áreas rurais e remotas. Questões relacionadas à geografia do local, baixa renda dos residentes e falta de infraestrutura pública levam a uma relação desvantajosa entre as receitas potenciais para as operadoras e os custos mais altos de implantação da infraestrutura de rede. Embora a literatura relacionada indique diversos esforços de pesquisa direcionados ao fornecimento de conectividade, faltam abordagens que considerem características específicas de tais regiões ou tenham serviços e aplicativos de rede adaptados às necessidades dessas comunidades. Assim, este trabalho propõe um framework técnico e econômico para a implantação de redes banda larga em áreas rurais e remotas, realizando o dimensionamento do custo total de propriedade da rede, considerando despesas de capital e operacionais da rede. O escopo da proposta também contempla a aplicação de técnicas de análise de viabilidade econômica para auxiliar a tomada de decisão por meio da compreensão do impacto dos investimentos financeiros realizados e dos lucros esperados pelas operadoras de banda larga. Além disso, propomos a utilização de indicadores socioeconômicos para projetar o potencial impacto social no desenvolvimento dessas regiões. Elaboramos um estudo de caso para demonstrar o funcionamento do framework proposto e seus principais componentes. Considerando dados reais de um município amazônico, mostramos, ao reduzir os custos de implantação, que é possível reduzir o custo de assinatura de serviços de banda larga para usuários finais, contribuindo assim para o processo de democratização do acesso aos serviços digitais.

  • DANIEL DA CONCEICAO PINHEIRO
  • INIBIDOR ROBUSTO DE EVENTOS DE RUNAWAY NO COMUTADOR DE TAPE DE REGULADORES DE TENSÃO SOB CENÁRIOS DE FLUXO INVERSO EM REDES DE DISTRIBUIÇÃO ATIVAS E RECONFIGURÁVEIS

  • Data: 02/06/2021
  • Mostrar Resumo
  • INIBIDOR ROBUSTO DE EVENTOS DE RUNAWAY NO COMUTADOR DE TAPE DE REGULADORES DE TENSÃO SOB CENÁRIOS DE FLUXO INVERSO EM REDES DE DISTRIBUIÇÃO ATIVAS E RECONFIGURÁVEIS

  • JOÃO RODRIGO DA SILVA MUNIZ
  • “Desenvolvimento de Software para Automação da Modelagem de Redes Elétricas de Grande Porte no Alternative
    Transient Program”.

  • Data: 28/05/2021
  • Mostrar Resumo
  • “Desenvolvimento de Software para Automação da Modelagem de Redes Elétricas de Grande Porte no Alternative
    Transient Program”.

  • ANDRÉ AUGUSTO PACHECO DE CARVALHO
  •  

     

  • Data: 21/05/2021
  • Mostrar Resumo
  • Atualmente, o 4G/LTE já é utilizado em 205 países por 661 diferentes operadoras, cobrindo 78% da população de acordo com a GSMA, assim pesquisas e estudos acerca da caracterização de canal para esta tecnologia são de extrema importância. Afim de explorar ambientes com características amazônicas, uma vez que modelos clássicos não contemplam valores que melhor caracterizem esse ambiente, foram realizadas campanhas de medições na cidade de Belém no Pará para modelagem de canal em larga escala em 1.8 e 2.6 GHz. E este trabalho, apresenta um novo método para encontrar parâmetros ótimos para os modelos SUI, ECC-33,UFPA e FI, por meio dos algoritmos de otimização meta-heurísticas: Algoritmo Genético (GA), Algoritmo do Morcego (BAT), Algoritmo de Polinização por Flores (FPA) e Cuckoo Search (CS) para uma modelagem robusta e mais precisa. Os modelos ajustados com os valores otimizados apresentaram melhores resultados quando comparados a modelagem sem otimização, validados pelas métricas de desempenho RMSE e Desvio padrão diminuindo em até 93%. Para a métrica de GRG-MAPE demonstrando uma acurácia nos resultados dos modelos otimizados. Mostrando que o uso de Algoritmos Meta-heurísticos Bioinspirados é uma boa opção para a modelagem de canal.

  • CAMILA SOUZA ALVES
  • ANÁLISE DE DESEMPENHO DE ESTRATÉGIAS CONVENCIONAIS E EMERGENTES PARA CONTROLE DE TENSÃO EM REDES DE DISTRIBUIÇÃO DE BAIXA TENSÃO COM PRESENÇA DE MICROGERAÇÃO FOTOVOLTAICA

  • Data: 18/05/2021
  • Mostrar Resumo
  • ANÁLISE DE DESEMPENHO DE ESTRATÉGIAS CONVENCIONAIS E EMERGENTES PARA CONTROLE DE TENSÃO EM REDES DE DISTRIBUIÇÃO DE BAIXA TENSÃO COM PRESENÇA DE MICROGERAÇÃO FOTOVOLTAICA

  • CARLOS EDUARDO MOREIRA RODRIGUES
  • PROPOSTA DE METODOLOGIA DE CÁLCULO DE PERDAS TÉCNICAS EM REDES DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA VIA REDES EQUIVALENTES DE ORDEM MINIMA

  • Data: 14/05/2021
  • Mostrar Resumo
  •    As perdas de energia elétrica se constituem em uma questão fundamental no setor de distribuição, sendo uma consequência inevitável do transporte de energia dos pontos de suprimento até às unidades consumidoras e constituindo-se um dos fatores a serem considerados nas etapas de planejamento e operação da rede. Elas devem ser continuamente monitoradas para que sejam mantidas dentro de níveis aceitáveis a fim de assegurar a rentabilidade das concessionárias e a modicidade tarifária. Dada a importância da estimativa das perdas técnicas e não técnicas no sistema, ao longo dos anos diversas metodologias foram propostas para a aferição precisa dessas parcelas. Nesse contexto, no ano de 2018, foi apresentada uma nova proposta para o cálculo de perdas técnicas e não técnicas em redes de distribuição, a Impedância Equivalente Operacional (IEO), possibilitando a obtenção das parcelas de perdas com boa precisão e baixo custo computacional, sob diferentes condições operativas da rede. Tomando como base a proposta da Impedância Equivalente Operacional para o cálculo de perdas nos sistemas de distribuição, este trabalho apresenta uma metodologia de aplicação da mesma para um alimentador real de distribuição, tomando como ponto de partida a modelagem da rede no Open Distribution System Simulator (OpenDSS), considerando dados de medição de faturamento das unidades consumidoras, energia injetada nos alimentadores e na subestação, fator de potência medido nos alimentadores, campanhas de medição para caracterização do consumo das cargas para dias úteis, sábados e domingos e perdas dos medidores de energia conectados às unidades consumidoras. De posse de todos esses dados, é possível o cálculo das perdas técnicas devido ao atendimento às cargas regulares, das perdas não técnicas e das perdas técnicas devido ao atendimento às perdas não técnicas para os dias úteis, sábados e domingos e a posterior integralização dos dados para a obtenção dos resultados de perdas mensais em termos de energia.

  • HUGO PEREIRA KURIBAYASHI
  • FRAMEWORK PARA ORQUESTRAÇÃO CONJUNTA DE MECANISMOS DE ASSOCIAÇÃO DE USUÁRIOS E ALOCAÇÃO DE RECURSOS EM REDES MÓVEIS DE PRÓXIMA GERAÇÃO

  • Data: 14/05/2021
  • Mostrar Resumo
  • A demanda de tráfego em sistemas de comunicação sem fio tem se tornado uma questão importante nas últimas décadas. Projeta-se uma tendência cada vez maior para os próximos anos, com a expectativa de que o tráfego de dados explosivo se materialize e os usuários móveis imponham novos requisitos de qualidade de serviço. Essa crescente demanda de tráfego, combinada com cenários de rede heterogênea cada vez mais complexos e densos (HetNet), apresenta cada vez mais desafios para as operadoras de rede móvel em termos de serviço, cobertura, balanceamento de carga e qualidade de serviço. Considerando o mecanismo de associação tradicional com base na potência máxima recebida, as HetNets tendem a permanecer desequilibradas, tornando um desafio atender aos requisitos de tráfego dos usuários móveis. Além disso, esta proposta de tese propõe uma abordagem baseada em aprendizado de máquina para orquestrar conjuntamente a associação de usuários e mecanismos de balanceamento de carga em HetNets. A abordagem proposta consiste em um otimizador de duas fases, onde ao invés de tentar maximizar a taxa de downlink alcançável por usuário, indicadores chave de desempenho como a satisfação da UE e perfis de QoS prioritários são considerados. A primeira fase acopla algoritmos de inteligência de enxame com métodos de agrupamento dinâmico para detectar e agrupar usuários com condições de canal ruins. Além disso, a segunda fase explora a adoção de técnicas de aprendizagem por reforço profundo para ajustar o processo de associação de usuários, para fornecer melhores condições de tráfego aos UEs. Esta fase considera as cargas das estações base e a relação sinal-interferência-mais-ruído (SINR) do equipamento do usuário, para influenciar de forma distribuída o comportamento da rede e otimizar o equilíbrio da rede. Ao considerar o uso de ferramentas de simulação, essa abordagem orientada a objetivos pode representar uma solução promissora para fornecer melhores níveis de satisfação do usuário a longo prazo.

  • RENATO LUZ CAVALCANTE
  • IMPACTO DA INSERÇÃO DE GERAÇÃO FOTOVOLTAICA EM SISTEMAS ISOLADOS ATENDIDOS POR TERMOELÉTRICAS A DIESEL

  • Data: 12/05/2021
  • Mostrar Resumo
  • IMPACTO DA INSERÇÃO DE GERAÇÃO FOTOVOLTAICA EM SISTEMAS ISOLADOS ATENDIDOS POR TERMOELÉTRICAS A DIESEL

  • JOSÉ DE ARIMATÉIA ALVES VIEIRA FILHO
  • DESENVOLVIMENTO DE UMA BATEDEIRA DE AÇAÍ EM CORRENTE CONTÍNUA E MONITORAMENTO DE SUA APLICAÇÃO EM UMA EDIFICAÇÃO RIBEIRINHA NA AMAZÔNIA SUPRIDA POR SISTEMA FOTOVOLTAICO ISOLADO

  • Data: 28/04/2021
  • Mostrar Resumo
  • DESENVOLVIMENTO DE UMA BATEDEIRA DE AÇAÍ EM CORRENTE CONTÍNUA E MONITORAMENTO DE SUA APLICAÇÃO EM UMA EDIFICAÇÃO RIBEIRINHA NA AMAZÔNIA SUPRIDA POR SISTEMA FOTOVOLTAICO ISOLADO

  • SERGIO AUGUSTO LOBO GLUCK PAUL
  • Automatic Detection of Azimuth Change in Antennas for 5G-IoT Networks Using Deep Learning

  • Data: 23/04/2021
  • Mostrar Resumo
  • This work is about applied artificial intelligence techniques solving a telecommunications problem. 5G-IoT antennas will operate at high frequencies. Therefore, they individual coverage area will be smaller. Targeting the antenna correctly ensures adequate network coverage, but the antennas azimuths undergo many involuntary changes. The only way to audit azimuths on a mobile network is through manual measurements on each antenna, a time-consuming and unreliable task. The objective of this research is to present a digital solution for automatic measurement and detection of azimuth change in 5GIoT antennas. Using techniques of Deep Learning and Internet of Things, the proposed work inserts computer vision in the smart antennas concept. Satisfactory results in simulated tests are presented and prove that the model presented works as an efficient solution for azimuth auditing, collaborating with mobile networks coverage quality.

  • EDNEY ALMEIDA DO NASCIMENTO
  • ANALYSIS OF THE TIDAL EFFECT ON THE PROVISION OF RESOURCES IN HETEROGENEOUS RADIO ACCESS NETWORKS

  • Data: 12/04/2021
  • Mostrar Resumo
  • The planning and analysis of the fifth-generation mobile networks (5G) considering phenomena such as the tidal effect, is extremely important for the efficiency and quality of services provided to users. The tidal effect can be characterized as the space-time fluctuation of data traffic, inevitable in different types of networks, generating areas of intense resource overload in places/periods of constant migration of people and use of mobile equipment. To study the impacts of this phenomenon in the face of the high demand for data from 5G networks, this work presents an analysis in the Manhattan (New York) scenario through real data from mobile subscribers collected from social networks based on geolocation LBSN (Location-Based Social Network). Factors for access availability, resource allocation and load provisioning in the network were considered, aggregating the main components of the C-RAN (Centralized Radio Access Network) and D-RAN (Distributed Radio Access Network) in the proposed model. Considering the impact of the problems caused by the tidal effect, as well as the high traffic demand expected by the 5G, it was evident in the studied scenario the importance of improvements in planning, in the choice of network access architectures used, in the models for scaling/provisioning network, as well as dynamic resource allocation schemes at times of varying traffic density. The results showed that the scaling and provisioning of Small Cells (SCs) can be performed to meet the changing demands of the network, applying dynamic resource allocation schemes in times of low and high traffic density, enabling a reduction of up to 10% in quantitative number of SCs, increasing the throughput of the data flow by 3.3%, reducing the probability of blocking by 3.6%. The results also demonstrated that the analysis of the tidal effect was able to determine the hotspots in the scenario where the demands demanded greater coverage resources, connections in the SCs and/or Macro Cells (BS), as well as the areas with the highest rates of disconnected users.

  • CARLOS ANDRE DE MATTOS TEIXEIRA
  • MORTALITY UNDERREPORTING: AN ANALYSIS OF EXCESSIVE DEATHS DUE TO SEVERE ACUTE RESPIRATORY SYNDROME DURING THE SARS-COV-2 PANDEMIC IN BRAZIL

  • Data: 26/03/2021
  • Mostrar Resumo
  • MHuman history has been marked by devastating outbreaks of infectious diseases, many of which have occurred over periods of political, economic and social change in society. At the end of 2019, cases of one of a new variant of the coronavirus, the SARS-CoV-2, were reported by the World Health Organization (WHO) in the Hubei province, China. In January 2021, the COVID-19 pandemic exceeded 9.2 million confirmed cases and 220,000 deaths reported in Brazil. During the initial period of the pandemic, sudden increases in the number of cases of other respiratory system diseases were also identified. Severe Acute Respiratory Syndrome (SARS), caused by the SARS-CoV, peaked at 557 reported deaths in the city of Manaus between March and May 2020, contrasting with only 8 deaths from the previous year. In this scenario, it is reasonable to state that there was a high underreporting of mortality during the COVID-19 pandemic in the country. This work aims to analyze and measure the excess deaths due to SARS that occurred during the SARS-CoV-2 pandemic in Brazil, in order to estimate the mortality underreporting occurred during the COVID-19 pandemic. Data from official Brazilian government sources were obtained to compose the time series of deaths by SRAG for the 27 capitals of Brazil. Time Series Prediction Models were used to predict the expected deaths for the year 2020. The predictions are then used to identify the anomalies that occurred during the pandemic period. Anomalies caused by excess mortality from SARS were detected starting in March 2020 for all the capitals of the country. The analyzes conducted in this work seek to contribute to the estimation of the real COVID-19 mortality scenario in Brazil, assisting government entities decision-making based on the correction of official data.

  • GABRIEL VIANNA SOARES ROCHA
  • ALOCAÇÃO ÓTIMA DE PARA-RAIOS EM REDES DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA USANDO ALGORITMOS GENÉTICOS E SIMULAÇÃO ATP

  • Data: 22/03/2021
  • Mostrar Resumo
  • The efficient protection of electric power distribution networks against lightning discharges is a crucial problem for distribution electric utilities. To solve this problem, the great challenge is to find a solution for the installation of surge arresters at specific points in the electrical grid and in a sufficient quantity that can ensure an adequate level of equipment protection and be within the utility´s budget. As a solution to this problem using ATP (Alternative Transient Program), this paper presents a methodology for optimized surge arrester allocation based on genetic algorithm (GA), with a fitness function that maximizes the number of protected equipment according to the financial availability for investment in surge arresters. As ATP may demand too much processing time when running large distribution grids, an innovative procedure is implemented to obtain an overvoltage severity description of the grid and select only the most critical electric nodes for the incidence of lightning discharges, in the GA allocation procedure. Results obtained for the IEEE-123 bus electric feeder indicated a great reduction of flashover occurrence, thus increasing the equipment protection level.

  • EVELIN HELENA SILVA CARDOSO
  • NOVEL MULTILAYERED CELLULAR AUTOMATA FOR FLYING CELLS POSITIONING ON 5G CELLULAR SELF-ORGANISING NETWORKS

  • Data: 12/03/2021
  • Mostrar Resumo
  • The fifth generation of cellular mobile networks (5G) will have a profound impact on the development of smart cities. Issues such as "How telecommunications operators will efficiently provide network infrastructure", "When and where service quality parameters are degraded or below expectations" should be considered. In this context, the use of base stations carried by Unmanned Aerial Vehicles (UAV) acting as flying cells to compensate the service of mobile networks in areas where telecommunications systems are challenged by abnormal conditions during their operation has attracted attention. This thesis presents an intelligent solution based on a Novel Multilayered Cellular Automata for the positioning of flying cells and the consequent improvement of the capacity of the network in temporary situations of heavy traffic, such as in congested avenues during some hours of the day, overcrowded events, disaster situations or hotspot traffic. In this new distributed approach, all base stations carried by UAVs operate in parallel. Self-organization arises from an emerging pattern based on the application of simple rules in a defined neighborhood. The proposed scheme considers backhaul and radio access network restrictions and users' requirements in terms of throughput in the downlink. From discrete simulation using MATLAB software, the results show that the proposed algorithm has a favorable performance compared to other schemes in terms of all the metrics considered. Thus, the simulated experiments show the benefits of the proposed solution for the fast and efficient positioning of several flying base stations to respond in real time to urgent changes in the network.

  • FITERLINGE MARTINS DE SOUSA
  • GRAPHENE NANORIBBONS WITH ARMICHAIR AND ZIGZAG EDGES APPLIED TO ANTENNAS WITH PBG SUBSTRATE IN THZ BAND

  • Data: 26/02/2021
  • Mostrar Resumo
  • In this work, graphene nanowires are applied to patch antennas (the antenna patch is composed of graphene material). The radiation characteristics of these antennas are analyzed in the terahertz band. Antenna variations were designed to observe the influence of certain components in relation to the performance of the proposed antenna, such as pbg substrate, nanowire edges with armchair structure, nanowire edges with zigzag structure, pbg graphene and dielectric substrate. The first variation is the addition of graphene nanoribbons (armchair and zigzag) on the left and right edges of the graphene patch, in order to evaluate the influence of these structures on a patch antenna. Subsequently, air holes are inserted in the silica substrate in order to reduce the effect of surface waves and to increase bandwidth, the insertion of a graphene PBG substrate with dielectric material is also analyzed. Octave and HFSS software were used for the modeling and simulation of the antenna and its variations. The results obtained (loss of return, impedance, radiation diagram, gain and current density) were good when the structure was modeled only with silica substrate and the best nanoribbon contributed to the performance of the graphene patch antenna was that of the structure in zigzag. However, when the periodic substrate was added the antenna radiation characteristics improved considerably compared to antennas without the substrate with air holes.

  • DIÓGENES ERMESON DA SILVA PIRES
  • GELOTOPHOBIA AND SOCIAL COGNITION IN ACADEMICS AT UFPA

  • Data: 25/02/2021
  • Mostrar Resumo
  • “Laughter is the best medicine”, this phrase, commonly used, supports the role of laughter in health and well-being. However, for some individuals with significant traces of gelotophobia, laughter is an emotional expression that harms life, causes shame and must be avoided at all costs. Consistent with this perspective, gelotophobia is characterized as a disorder where subjects with high scores are described as neurotic and introverted, presenting a paranoid tendency to anticipate mockery. Although research on the topic has progressed in the past two decades, the scientific community is investigating the potential achievements of gelotophobia in reaction to eye contact. Previous studies have pointed to difficulties in discriminating the direction of the gaze as the basis for possible misinterpretations of the intentions or mental states of others. The present work examines whether the predisposition to gelotophobia influences the difficulty in discriminating other people's mental states through the interpretation of the gaze. A collection was carried out with the application of two psychometric instruments. The first, the GELOPH <15> self-report questionnaire to analyze traces of gelotophobia and the second, a Revised Mind Reading in the Eyes (RMET) test, a 36-item assessment to analyze the ability to interpret mental states from of facial expressions. Sixty students from UFPA participated in the study, recruited through calls directed to students who identified themselves with anxiety symptoms affecting their academic performance. The results of the study indicated that gelotophobes made more mistakes than non-gelotophobes in the task of gaze discrimination. As expected, the sample scores for gelotophobia exceeded the average when compared to other studies involving samples of healthy individuals with high reliability (α = 0.90). Just as the RMET score was compatible with the literature on reliability (α = 0.66). In addition to the main hypothesis, it was found in the second test that gelotophobes were more likely to have difficulties in the task of social cognition when separating certain stimuli by blocks of emotional valence. Therefore, statistically, the two proposed tests were relevant in the task of understanding eye contact and the influence of fear of being ridiculed in a task of discriminating the gaze.

  • YAGO GOMES DA CONCEICAO
  • NUMERICAL ANALYSIS OF SPR SENSOR IN SPCE CONFIGURATION BASED ON TWO LAYER GRAPHENE BY FINITE ELEMENT METHOD

  • Data: 25/02/2021
  • Mostrar Resumo
  • In this dissertation, we present a proposal for a surface plasma resonance sensor (SPRsensor) in the surface plasma coupled emission configuration (SPCE) based on two layers ofgraphene. The numerical analysis of the sensor is performed by the Finite Element Method,where the near and far fields in the sensor structure are calculated. The model consists of amultilayer structure: Air/ Graphene/ SiO2/ Graphene/ Prism BK7, with an infinitesimalhertzian dipole operating in the Terahertz range with λ ≈ 250μmsimulating the analytes (which behave like re-irradiating particles) to be detected in the sensor’s output response.Graphene layers are modeled as current surface densities Js0 with conductivity described bythe Kubo Formula. At first, a comparative approach is made between the model proposedin the THz range and a reference model in the optical range. Then, two parametricanalysis of the near and far field are performed: one as a function of the chemical potential (μc = 0 eV, 0.3 eV, 0.4 eV, 0.5 eV e 0.6 eV) applied to the graphene layers. In the secondanalysis, the dipole’s orientation is set at θ = 0°, 45° e 90° while the dipole’s heightregarding to the sensor’s surface is changed by h ≈ 8 μm, 40 μm and 80 μm for each ofthe orientations, where we verify the coupling of TM waves in the prism region and itsimprovement in the sensor’s directivity and sensitivity, implying that graphene improvessensors in the SPCE configuration.

  • PAULO RODRIGUES AMARAL
  • NUMERICAL ANALYSIS OF NANOANTENNA ARRAYS APPLIED TO EFFICIENT WIRELESS NANOLINKS

  • Data: 24/02/2021
  • Mostrar Resumo
  • In the present work, is analyzed theoretically, an arrangement of plasmonic optical nanoantenna applied to wireless optical nanolink. The antenna is composed of a dipole, three directors and a reflector forming a nanoantena Yagi-Uda. The modeling of the antenna and its application was made using the software COMSOL Multiphysics. For the nanoantenna, the input impedance, directivity, gain, radiation efficiency, reflection coefficient, radiation diagram, and the effect of a silicon dioxide (SiO2) truncated substrate on the resonant properties of the antenna are investigated. For the nanolink, a comparative analysis is made of links formed by Yagi-Uda and dipole antennas in three situations, the first with nanoantennas positioned in free space, a second with as nanoantennas on top of the semi-infinite substrate of SiO2, and a third with nanoantennas on top of a semi-infinite truncated substrate of SiO2. Where we investigated the effect of the truncated substrate on the transmission power and on the near electric field for the Yagi-Uda/dipole, Yagi-Uda/Yagi-Uda and dipole/dipole nanolinks. The results showed that for the three links, the situation in which the antennas are positioned on top of the semi-infinite substrate of SiO2 presented the best power transmission performance. In addition, the three links in the three situations can operate with good power transmission around 170 THz, which is of great importance for future applications in nanoscale wireless communication.

  • SAMILLE CRISTINA PIEDADE COSTA
  • CÁLCULO DE PERDAS TÉCNICAS E NÃO TÉCNICAS EM REDES DE DISTRIBUIÇÃO: UMA ANÁLISE COMPARATIVA ENTRE AS METODOLOGIAS DA ANEEL E DA IMPEDÂNCIA EQUIVALENTE OPERACIONAL

  • Data: 23/02/2021
  • Mostrar Resumo
  • Agência Nacional de Energia Elétrica (ANEEL) vem desenvolvendo ao longo dos anos uma metodologia única e original para o tratamento regulatório das perdas de energia no Brasil, tratando em regulações distintas as perdas técnicas e as perdas não técnicas. As perdas técnicas são calculadas de acordo com os procedimentos definidos no Módulo 7 dos Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional (PRODIST), cuja metodologia consiste basicamente no cálculo do fluxo de carga utilizando informações extraídas do banco de dados da distribuidora, considerando modelos específicos para elementos do sistema como medidores e ramais de ligação. Já as perdas não técnicas, são calculadas de acordo com as regras descritas no Submódulo 2.6 dos Procedimentos de Regulação Tarifária (PRORET). Diversas metodologias foram objeto de estudo no setor elétrico com objetivo de realizar o cálculo das perdas técnicas e não técnicas, soluções que envolvem desde fluxo de carga até o uso de ferramentas de inteligência computacional. Neste sentido, esta dissertação tem como objetivo fazer uma análise comparativa entre a metodologia de calculo de perdas desenvolvida pela ANEEL e a Metodologia da Impedância Equivalente Operacional (IEO), método que possibilita calcular com boa precisão e baixo custo computacional as perdas técnicas e não técnicas em redes de distribuição sob diferentes condições operativas. Os algoritmos de cálculo foram implementados no software Open Distribution System Simulator (OpenDSS) e foram realizadas simulações em um alimentador real pertencente à área de concessão da distribuidora de energia do Estado do Pará, para a verificação do cálculo de perdas técnicas e não técnicas.

  • DANIEL VICTOR TEIXEIRA LIMA
  • A HEURISTIC FOR OPTIMIZING DATA COMMUNICATION NETWORKS TO SUPPORT THE IMPLEMENTATION OF SMART GRIDS

  • Data: 19/02/2021
  • Mostrar Resumo
  • The resource allocation optimization problem is described as the distribution of resources obeying a set of restrictions imposed by the applications to be implemented in each scenario. From there, the construction of analytical and heuristic models combined with computer simulations is necessary to assess the operational viability of scenarios that have critical requirements for their applications. In this context, a graph model was used to formalize the network optimal resource location problem presented, which in turn was solved through a genetic algorithm that takes into account the expected QoS for Smart Grid applications. The proposal is efficient as it finds an economically viable topology that meets the technical requirements.

  • ANDRÉ PINTO LEÃO
  • LEVANTAMENTO EXPERIMENTAL DE CURVAS CARACTERÍSTICAS DE FALTAS DE ALTA IMPEDÂNCIA NAS SUPERFÍCIES DE MAIOR OCORRÊNCIA PARA REDES AÉREAS DE DISTRIBUIÇÃO

  • Data: 10/02/2021
  • Mostrar Resumo
  • O presente trabalho apresenta o levantamento experimental de diversas curvas características de faltas de alta impedância (FAI), em redes aéreas de distribuição, nas superfícies onde sua ocorrência é mais frequente, sendo estas informações essenciais para um dos métodos mais proeminentes atualmente utilizados para modelagem deste tipo de falta. Nele são apresentados testes experimentais ocorridos em uma Fonte Ressonante, os resultados iniciais obtidos e a avaliação complementar do uso deste equipamento para o objetivo proposto. Registra o projeto e a montagem de um laboratório para testes experimentais de faltas de alta impedância (FAI) em redes aéreas de distribuição, o único trifásico localizado em toda a bibliografia verificada, onde as principais características de FAI foram confirmadas em diferentes superfícies. Detalha testes inéditos realizados em quatro diferentes tipos de galhos de árvores, onde foram obtidos registros de muitas características conhecidas da FAI. Confirma as condições de ocorrência da FAI e a presença de suas características em superfícies classicamente testadas como a terra, a areia, o seixo, entre outras, possibilitando a obtenção das curvas características da maioria delas. Por fim, o trabalho apresenta às comunidades acadêmica e científica resultados inéditos aos estudos da FAI, uma estrutura única e versátil chamada LABFAI, a qual pode se utilizada para ampliar o conhecimento deste tipo de falta, já que possibilita a realização de experimentos em diversas condições reais de ocorrência, mas que por questão de estrutura e ou conveniência ainda não foram testadas.

  • MAICKSON PATRICK VIANA LEAO
  • ESTRATÉGIAS DE CONTROLE DIGITAL DOS TIPOS POSICIONAMENTO DE PÓLOS E IMC APLICADAS AO PROBLEMA DE REGULAÇÃO DE TENSÃO EM CONVERSOR BUCK DE 5KVW

  • Data: 03/02/2021
  • Mostrar Resumo
  •  Os conversores de potência CC-CC possuem um amplo leque de  aplicações nas áreas industriais, de energia, e veicular. Possuem características não lineares devido a variação paramétrica de seus componentes e do ponto de operação. Além disso, o acoplamento com outros subsistemas de conversão resulta em consequências diversas, entre elas, o aparecimento de cargas de potência constante. O que abre precedentes para pesquisas relevantes nesta área. Nste trabalho, implementa-se um sistema conversor CC-CC abaixador na topologia Buck para regular um Elo CC que, por sua vez está acoplado a outros dois conversores. Este elo é controlado por modulação de largura de pulso (PWM), a fim de atenuar os problemas já mencionados e somar na construção de uma base documental para pesquisas futuras. Desta forma, considerando-se como uma boa prática de projeto, realizou-se primeiramente a construção de um ambiente de simulação não linear que permita a identificação e modelagem da dinâmica de um sistema conversor do tipo Buck. E assim, encontrar um modelo prático que possibilite o projeto e implementação de controladores digitais testados ainda em ambiente de simulação como requisito obrigatório para posterior implementação em ambiente experimental. As técnicas de controle digital, embarcadas através de equações de diferenças no microcontrolador, são do tipo PID e projetadas através de dois métodos diferentes. O primeiro método é técnica de posicionamento de pólos, implementada a uma estrutura canônica RST no domínio de tempo discreto. A segunda consiste em uma técnica de Controle de Modelo Interno (IMC), de ordem aumentada pela sintonia de um filtro derivativo. Ambas são projetadas a fim de obterem-se boas condições de desempenho e robustez diante das não linearidades da planta e diferenças entre modelo e processo. Utiliza-se de índices integrais, ISE e ISCS, para a análise quantitativa e comparação de desempenho entre os controladores. Assim como de análises gráficas para comparação das curvas de resposta inerentes a cada ação de controle.


     

  • CLEVERSON VELOSO NAHUM
  • THE CONNECTED ARTIFICIAL INTELLIGENCE (CAI) TESTBED FOR EXPERIMENT WITH 5G VIRTUALIZED NETWORKS

  • Data: 29/01/2021
  • Mostrar Resumo
  • The fifth-generation (5G) cellular networks incorporate a large variety of technologies in order to address very distinct use cases. Assessing these technologies and investigating future alternatives are complicated when one relies only on simulators. 5G testbeds are an important alternative to simulators and many have been recently described, emphasizing aspects such as cloud functionalities, management and orchestration. This dissertation presents a 5G mobile network testbed with a virtualized and orchestrated structure using containers, which focuses on integration to artificial intelligence (AI) applications. The presented testbed uses open-source technologies to deploy and orchestrate the virtual network functions (VNFs) to flexibly create various mobile network scenarios, with distinct fronthaul and backhaul topologies. Distinctive features of the testbed are its relatively low cost and the support to using AI for optimizing the network performance. The dissertation explains how to deploy the testbed structure and reproduce the presented results with the provided code. AI-based radio access network~(RAN) slicing and VNF placement are used as examples of the testbed capabilities.

  • LAURO BRITO DE CASTRO
  • ACCESS NETWORKS BASED ON OPEN SOFTWARE AND HARDWARE TECHNOLOGIES. CASE STUDY IN 2G, 4G AND 5G CELLULAR NETWORK IMPLEMENTATIONS

  • Data: 29/01/2021
  • Mostrar Resumo
  • The success of mobile networks has driven the commercialization of a new generation standardized by 3GPP approximately every ten years. However, the scope of applications and the requirements for the fifth generation (5G) network stand out when compared to those of predecessors. While the first two generations focused mainly on voice transmission, the others started to include data services and boost markets such as vehicular networks, UAV, IoT (Internet of things) and Industry 4.0. This paper presents the implementation of access networks, based on second generation (2G) features through the CELCOM Project and fourth and fifth generation (4G and 5G) through the PA5Ge network, on the campus of the Federal University of Pará (UFPa). The networks meet the 3GPP standards using open source software projects, Software Defined Radio (SDR) equipment and licensing for operation for scientific and experimental purposes in the 900 MHz and 700 MHz band, respectively. Preliminary assessments demonstrate the operation of the CELCOM network in the target locations through calls, message exchange services and signal level tests. In Pa5Ge, which has modern features such as the virtualization of network functions (VNFs) and centralized radio-access architecture (C-RAN), the traffic generated by emulated users connected to the cellular network is demonstrated, the operation information of the network, eNB configuration, container management tests and traffic analysis. In this context, the main contribution of this work is to describe the projects and stages for the implantation of the networks and their operation, from licensing aspects to technicians, in order to promote similar initiatives to establish platforms for experimental research and also in the scope of humanitarian engineering through telecommunications.

  • JONATA PAULINO DA COSTA
  • RECURRENT NEURAL NETWORK LSTM FOR CLASSIFICATION OF CRIME INDICATOR TWITTERS IN THE CITY OF BELÉM DO PARÁ

  • Data: 29/01/2021
  • Mostrar Resumo
  • Twitter has become a great source of research data for knowledge discovery, being a social network that disseminates, in addition to personal information, it is possible to share opinions and information about events in general. Considering this, the present study aims to develop a classifier in order to analyze and identify criminal and non-criminal tweets. The Recurrent Neural Network Long Short-Term Memory (RNN – LSTM) was tested for this classification process. For the execution of the algorithm, it was necessary to create a database, since there are no studies or databases available related to the classification of news tweets in crime or not, they were collected from newspaper accounts in the city of Belém and classified manually , containing 6000 records. The results obtained with the use of RNN - LSTM proved to be quite satisfactory for the chosen domain. Based on the results of this research, we observed the effectiveness of the RNN classifier (LSTM) reached the F1 score value of 98%, accuracy of 81% and coverage of 83%. With the results obtained, it can be analyzed that the Recurrent Neural Network (LSTM) is the efficient and satisfactory classifier model for the classification process of tweets related to crimes.

2020
Descrição
  • NAJMAT CELENE NASSER MEDEIROS BRANCO
  • ANÁLISE PROBABILÍSTICA DA CONEXÃO DE SISTEMA DE GERAÇÃO FOTOVOLTAICA EM ESTAÇÕES DE RECARGA DE VEÍCULOS ELÉTRICOS CONSIDERANDO ASPECTOS TÉCNICOS, ECONÔMICOS E AMBIENTAIS

  • Data: 22/12/2020
  • Mostrar Resumo
  • ANÁLISE PROBABILÍSTICA DA CONEXÃO DE SISTEMA DE GERAÇÃO FOTOVOLTAICA EM ESTAÇÕES DE RECARGA DE VEÍCULOS ELÉTRICOS CONSIDERANDO ASPECTOS TÉCNICOS, ECONÔMICOS E AMBIENTAIS

  • SUELENE DE JESUS DO CARMO CORREA
  • NON-INTRUSIVE LOAD MONITORING SYSTEM USING STACKED NEURAL NETWORKS AND NUMERICAL INTEGRATION

  • Data: 22/12/2020
  • Mostrar Resumo
  • Population growth and new consumer needs, among other factors, have lead to growing energy demand, without a concomitant increase in energy generation. This way, reduction and rationalization of energy consumption, especially by residential users, have become a global concern generating a need for developing techniques for efficient management and distribution of the available energy. Non-Intrusive Load Monitoring (NILM) techniques have provided valuable information about energy consumption for power generation companies as well as consumers. Such information is important  for making decisions related to sustainable use of energy resources. This study proposes an automated system based on Artificial Neural Network for performing some of the NILM tasks. A stacked neural network was developed to extract features of power signals of appliances to identify those in operation during a given period. This information is then used to disaggregate individual appliance loads through the total aggregate signal, and consumption is calculated through numerical integration. The system was tested using real data from two databases about appliances with On/Off, multi-level, and variable consumption patterns collected in low frequency. The performance metrics, resulting from identification and disaggregation tasks, demonstrate the efficiency of the proposed system.

  • ANDREY RAMOS VIEIRA
  • INCORPORAÇÃO DE RESTRIÇÕES DE PROTEÇÃO AO PROBLEMA DA RESTAURAÇÃO DE SERVIÇO EM REDES DE DISTRIBUIÇÃO RADIAIS

  • Data: 18/12/2020
  • Mostrar Resumo
  • INCORPORAÇÃO DE RESTRIÇÕES DE PROTEÇÃO AO PROBLEMA DA RESTAURAÇÃO DE SERVIÇO EM REDES DE DISTRIBUIÇÃO RADIAIS

  • IGOR ANTONIO AUAD FREIRE
  • 5G FRONTHAUL SYNCHRONIZATION VIA IEEE 1588 PRECISION TIME PROTOCOL: ALGORITHMS AND USE CASES

  • Data: 17/12/2020
  • Mostrar Resumo
  • Fronthaul networks have evolved substantially to meet the demands of fifth-generation (5G) cloud radio access networks. In particular, the industry has converged to Ethernet as the main transport technology, with fronthaul-specific encapsulation protocols running on top of it. Since traditional Ethernet is asynchronous and does not support timing distribution, clock synchronization protocols such as the IEEE 1588 precision time protocol (PTP) have gained a fundamental role in the operation of the 5G fronthaul. This work thoroughly analyzes the challenges for PTP-based synchronization in this context, with particular focus on the so-called partial timing support (PTS) scenario, where some network elements do not actively contribute to PTP’s operation. The fundamental problem of PTS is that the network imposes a harsh environment for accurate clock distribution, primarily due to the packet delay variation. As a result, non-conventional strategies have to be exploited to process PTP timing signals. This work explores various estimation strategies for this scenario. Furthermore, it describes an experimental Ethernet fronthaul setup based on field-programmable gate arrays (FPGAs), which was developed to evaluate the synchronization algorithms. In the end, it also investigates practical 5G use cases for synchronized timing signals that were implemented in the testbed.

  • ALEX DE SOUZA VIEIRA
  • PRODUCTION AND EVALUATION OF AN EDUCATIONAL PROCESS FOR HUMAN–COMPUTER INTERACTION (HCI) COURSES

  • Data: 27/11/2020
  • Mostrar Resumo
  • This work presents a teaching and learning process for Human–Computer Interaction(HCI) courses, combining traditional lecture-based classroom, active learning and Project Based Learning elements, such that students can increase their understanding over HCI. In undergraduate science computing, the academic curriculum is composed of theoretical and practical courses. The theoretical courses address more abstract content. This process intends to increase the envolving of students over the theoretical discipline of HCI. This work shows a different approach to improve student retention for a better understanding of the theoretical aspects over HCI. This proposed process has three mainstages and, as newness, uses the t-learning concept to simulate interactive educational videos. In the first stage, the teacher presents concepts of HCI using traditional lecture-based classroom. The second stage is active learning, where students make oral presentations or make of learning objects based on interactive videos to reinforce their self-comprehension over theoretical content. The third stage is the PBL activity of the production of new learning objects based on interactive videos. The results show higher statistical scores using the proposed method in comparision with the traditional lecture-based classroom used in HCI course. A total of 131 students concepts were compared in this work, that uses traditional lecture-based classroom, with 113 students concepts that use the proposed method. The results indicate that there are advantages in proposed method, because it helps reduce the number of reproved students and increases the average students grade.

  • HOSAIAS ALVES DOS PRAZERES SILVA
  • CONTRIBUIÇÃO DA GERAÇÃO SOLAR FOTOVOLTAICA NA CERTIFICAÇÃO DE EDIFICAÇÕES PÚBLICAS PELO RTQ-C E EM EDIFÍCIOS DE ENERGIA ZERO: LABORATÓRIO DE ENSINO DA UNIVERSIDADE FEDERAL DO PARÁ

  • Data: 30/10/2020
  • Mostrar Resumo
  • Esse trabalho apresenta a contribuição da geração solar fotovoltaica como fonte renovável na metodologia para obtenção de Etiqueta Nível A em certificação de Eficiência Energética e para a transformação em Edifício de Energia Zero, sendo aplicável a edificações e laboratórios de ensino públicos. O passo-a-passo da metodologia consiste essencialmente em duas etapas: a primeira, através de um diagnóstico energético da edificação analisada seguindo as diretrizes estabelecidas no Regulamento Técnico da Qualidade em Edifícios Comerciais, de Serviços e Públicos – RTQ-C, resultando numa proposta de melhoria energética, financeira e ambiental processada com o auxílio do software RETScreen®; e a segunda, dimensionando um sistema de geração solar fotovoltaica, a partir de dados de medição local e do software Meteonorm®, como bonificação para obtenção da Etiqueta Nível A dos níveis do RTQ-C e com capacidade de produção de energia que torne o balanço energético da edificação positivo, tornando-a um Edifício de Energia Zero. A fim de contextualizar a relevância do trabalho e atualizar o leitor no estado da arte aplicável à metodologia, é apresentada uma revisão bibliográfica direcionada aos benefícios da Eficiência Energética nas edificações públicas e ao RTQ-C; ao cenário atual, aplicação e contribuição da Energia Solar Fotovoltaica no desenvolvimento sustentável, na obtenção de classificações reconhecidas nacional e internacionalmente para edifícios públicos; e aos conceitos atualmente utilizados pela comunidade acadêmica para caracterização de Edifícios de Energia Zero. A revisão bibliográfica e a metodologia foram aplicadas em estudo de caso do Laboratório de Engenharia Elétrica e Computação – LEEC, situado no Campus Guamá da Universidade Federal do Pará, com apresentação dos resultados energético, financeiro e ambiental, mostrando ser uma inovação a ser aplicada em instituições e edificações públicas que possuam espaço disponível e infraestrutura semelhante à do LEEC.      

  • CLEONOR CRESCENCIO DAS NEVES
  • INVESTIGAÇÃO EXPERIMENTAL DE UM ESTRATÉGIA DE CONTROLE ROBUSTO PARAMÉTRICA APLICADA A UMA MICROREDE CC ALIMENTADA POR GERADORES FOTOVOLTAICOS

  • Data: 30/09/2020
  • Mostrar Resumo
  • Esta tese apresenta uma proposta da forma direta do controlador digital robusto usando a estrutura do polinômio RST baseado sobre a otimização convexa da esfera de Chebyshev. Para verificar a estabilidade robusta e o desempenho robusto é utilizado uma fonte Fotovoltaica formando uma microrede. Para esta abordagem foi utilizado um conversor buck DC-DC.  E também é apresentada a modelagem matemática da planta fotovoltaica e simulação no ambiente do MATLAB para uma análise de seu desempenho na geração de energia elétrica em malha aberta fechada. Esta metodologia levou em consideração os parâmetros de incertezas e a restrição da esfera de Chebyshev que garante o desempenho robusto e a estabilidade robusta do sistema no domínio discreto. Para este fim, um modelo matemático para o conversor Buck DC DC foi considerando com as incertezas das variáveis elétricas, tal como cargas resistivas, indutância, capacitância e variação da fonte de tensão, e para obter o modelo discreto o modelo discreto do sistema foi usado a transformação bilinear. A metodologia proposta é comparada com duas outras projetadas no domínio discreto: Alocação clássica de polos e a metodologia robusta baseada no teorema de Kharitonov. Foram realizadas várias etapas de experimentação para avaliar o comportamento da metodologia de controle quando o sistema foi submetido a variação paramétrica da carga resistiva e variação do set point de tensão. E por fim, o resultado mostra que a metodologia proposta superou as outras abordagem em 90% dos testes e garante a estabilidade robusta e o desempenho robusto quando o sistema é submetido a uma família de incertezas paramétricas.

  • MOISES FELIPE MELLO DA SILVA
  • MACHINE LEARNING AND COMPUTER VISION TECHNIQUES FOR DAMAGE DETECTION AND MODAL ANALYSIS

  • Data: 28/09/2020
  • Mostrar Resumo
  • As the structural health monitoring (SHM) process evolves from research to practice new challenges arise from their practical implementations. Normal variations in the structure's dynamics caused by operational and environmental conditions are still one of the biggest challenges for real applications of automated monitoring systems. In those cases, the normal variability can mask the existence of damage or blur the severity of damage occurrence. In the context of SHM applications, data normalization is referred to as the process of filtering these normal effects to provide a proper evaluation of the structural health condition and, although the number of approaches for normalization is growing fast, most of them still imposing serious limitations for deployment in real-world monitoring campaigns, mainly related to constraints regarding the data distribution and model parameters, which in many cases still not producing an adequate damage detection performance. On the other hand, a growing number of applications require autonomous non-contact approaches for vibration-based monitoring, pushing efforts into the development of vision-based techniques for modal analysis and modal identification, which can be coupled with machine learning algorithms for real-time dynamics monitoring. Despite some recent and impressive applications of computer vision techniques for SHM, the majority of works still relying on the positioning of speckle or high-contrast markers over the surface of the structure, which can greatly reduce their range of applicability. Therefore, as major contributions, the present thesis addresses the development and proposes novel output-only approaches for data acquisition, modal analysis and damage detection based on computer vision and machine learning techniques, capable of blindly identify high-resolution full-field vibration modes from video measurements only, detect and potentially quantify the damage level in structures of arbitrary complexity. First, machine learning algorithms are proposed for intelligent vibration-based damage detection on accelerometer data. A deep autoencoder is designed to autonomously learn the normal vibration condition of a monitored structure and then identifies damaged conditions from changes in the modal (natural) frequencies. Additionally, a cluster-based technique is introduced to classify different undamaged and damaged conditions of a structure, providing useful insights on the structural behavior. This straightforward clustering procedure automatically discovers the optimal number of clusters representing the main state conditions of the structural system without requiring any manual parameter setting. Second, techniques for blindly identify full-field high-resolution mode shapes and other modal parameters from video measurements only are introduced to performing 2D modal analysis using commercial cameras, with application on bench-scale laboratory structures and for other problems involving 2D wave decomposition. Additionally, it is introduced the first approach to date for efficient and extremely high-resolution 3D structural dynamic modal analysis from dynamic point cloud data acquired using a commercial, low-cost, time-of-flight imager. Solutions to the blind source separation problem are employed to estimate high-resolution 3D mode shapes, modal coordinates, and resonant frequencies using a modified version of the technique employed for the 2D case. It is demonstrated that the proposed approaches have the potential of being general-purpose ones, capable of performing modal analysis and monitoring of amorphous structures. All proposed techniques are validated on laboratory experiments and real-world vibration monitoring datasets to demonstrate their ability to perform the monitoring of varied forms of structures under different conditions and scenarios. Keywords: Video-based dynamics monitoring, Non-contact measurements, Damage-sensitive feature extraction, Stacked autoencoders, Blind source separation, Output-only modal analysis, Damage identification

  • RODRIGO LISBÔA PEREIRA
  • TEORIA DOS JOGOS E INTERAÇÃO SOCIAL AUTO ADAPTATIVA PARA CONTROLE DE PRESSÃO SELETIVA E RECOMBINAÇÃO EM ALGORITMOS GENÉTICOS PARALELOS

  • Data: 09/09/2020
  • Mostrar Resumo
  • TEORIA DOS JOGOS E INTERAÇÃO SOCIAL AUTO ADAPTATIVA PARA CONTROLE DE PRESSÃO SELETIVA E RECOMBINAÇÃO EM ALGORITMOS GENÉTICOS PARALELOS

  • ALLAN DOS SANTOS BRAGA
  • MODELOS DE RÁDIO PROPAGAÇÃO BASEADOS EM MACHINE LEARNING USANDO PARÂMETROS GEOMÉTRICOS PARA PERCURSO MISTO CIDADE-RIO

  • Data: 04/09/2020
  • Mostrar Resumo
  • MODELOS DE RÁDIO PROPAGAÇÃO BASEADOS EM MACHINE LEARNING USANDO PARÂMETROS GEOMÉTRICOS PARA PERCURSO MISTO CIDADE-RIO

  • HAROLDO GOMES BARROSO FILHO
  • METODOLOGIA TRADE OFF EM ALGORITMOS DE RASTREAMENTO PARA EXTRAÇÃO DE PADRÕES EM DISTÚRBIOS DA FALA

  • Data: 03/09/2020
  • Mostrar Resumo
  • METODOLOGIA TRADE OFF EM ALGORITMOS DE RASTREAMENTO PARA EXTRAÇÃO DE PADRÕES EM DISTÚRBIOS DA FALA

  • HELIO RENATO OEIRAS FERREIRA
  • ULTRA BROADBAND FSS DESIGN AND SYNTHESIS FOR SATELLITE COMMUNICATION SYSTEM APPLICATIONS USING MULTIOBJECTIVE NATURAL OPTIMIZATION

  • Data: 24/08/2020
  • Mostrar Resumo
  • A evolução da computação tem possibilitado avanços substanciais em pesquisas relacionadas à engenharia e em projetos industriais. Nestas áreas, o emprego de ferramentas computacionais tem se intensificado para simulação e obtenção de determinados parâmetros do projeto. No entanto, a crescente demanda por precisão e o aumento gradativo da complexidade das estruturas e sistemas, resulta num processo de simulação cada vez mais demorado, pois a avaliação de um único critério pode consumir várias horas, bem como vários dias ou até mesmo semanas. Logo, um método que minimize o tempo de simulação e otimização, pode, assim, economizar tempo e dinheiro. Nesse contexto, a computação bioinspirada (bioinspired computing - BIC), se apresenta precisa e eficiente, onde muitos métodos computacionais tradicionais falham e, consiste em novo mecanismo para suprir tais dificuldades. Assim, neste trabalho, é realizado um estudo acerca de alguns dos algoritmos BIC mais utilizados na atualidade para projeto e otimização de problemas gerais na engenharia e na indústria. Doravante, se vislumbra desenvolver um código de otimização meta-heurístico multiobjetivo que apresente menor custo computacional e, consequentemente, menor tempo para processamento dos dados. Inicialmente, é realizada uma investigação eletromagnética da superfície seletiva de frequência do tipo losango planar estudada, através de simulações computacionais. A análise numérica é feita usando os métodos FEM com o auxílio de software comercial. O processo de síntese consiste em sintonizar a frequência de ressonância da estrutura e a largura de banda para operação em sistemas de comunicação via satélite, mais precisamente na Banda-X, e Ku. A modelagem das estruturas é realizada por uma rede neural artificial e o processo de otimização é realizado por algoritmos meta-heurísticos. Os resultados obtidos por esses códigos são comparados aos simulados pelo software comercial e aos medidos. Observou-se boa concordância entre os resultados simulados e medidos, bem como uma substancial redução no tempo de processamento da estrutura otimizada.

  • BRUNO NICOLAU MAGALHAES DE SOUZA CONTE
  • CLUSTERIZAÇÃO, CLASSIFICAÇÃO E PREDIÇÃO DE “PRÉ-EFEITO ANÓDICO” DE CUBA ELETROLÍTICA DE ALUMÍNIO PRIMÁRIO

  • Data: 21/08/2020
  • Mostrar Resumo
  • CLUSTERIZAÇÃO, CLASSIFICAÇÃO E PREDIÇÃO DE “PRÉ-EFEITO ANÓDICO” DE CUBA ELETROLÍTICA DE ALUMÍNIO PRIMÁRIO

  • GLEISON DE OLIVEIRA MEDEIROS
  • UM FRAMEWORK INTELIGENTE BASEADO EM PREVISÕES DE QOE PARA O BALANCEAMENTO DE CARGA EM REDES 5G

  • Data: 20/08/2020
  • Mostrar Resumo
  • UM FRAMEWORK INTELIGENTE BASEADO EM PREVISÕES DE QOE PARA O BALANCEAMENTO DE CARGA EM REDES 5G

  • DANIELLE LIMA GUEDES
  • COMPARAÇÃO DE METODOLOGIAS DE AVALIAÇÃO DE EFICIÊNCIA ENERGÉTICA DE EDIFICAÇÕES COM APLICAÇÃO VISANDO O CONSUMO DE ENERGIA QUASE ZERO

  • Data: 14/08/2020
  • Mostrar Resumo
  • The energy efficiency of buildings is a concept directly related to the efficient use of
    resources, such as energy, water and materials, both in the project phase as in the operation and
    maintenance phase for edifications. Besides providing a possible reduction on operation cost,
    the efficient practices for buildings promote economic, environmental (pollution reduction) and
    human health related benefits. In this context, methodologies able to evaluate and classify the
    energy efficiency of buildings have arised, suggesting the best practices and equipment. In
    Brazil, PROCEL Edifica is responsible for evaluating buildings and emitting a conformity label
    that defines the energy efficiency level achieved by them. In the last two years, the application
    methodology for building evaluation was reformulated and entered in public consultation to
    validate the suggested text changes. Although the text, until present moment, has not been
    validated yet by the appropriate agencies, the new application methodology, named as Instrução
    Normativa INMETRO para a classe de eficiência energética de Edificações Comerciais, de
    Serviços e Públicas (INI-C), has already been used as evaluative method for internal processes
    in the country. The present work has as its purpose applying the INI-C and determining the
    partial energy efficiency level of the air conditioning and lighting systems for a commercial
    building and, then, comparing the results to the energy efficiency level achieved by the previous
    methodology (RTQ-C) for the same building. The distinct results indicate the main
    reformulations in the new methodology of obtaining PBE Edifica label and discuss its
    approximation with other environmental certifications also based on energy consumption for
    classification as, for example, the LEED certification. In order to make the building even more
    efficient, a local electricity generation is proposed in this work, through the insertion of an ongrid photovoltaic system. The local electricity generation is projected to supply 92% of the
    building average consumption, which opens the discussion for the concept of Near Zero Energy
    Building, edifications with high energy efficiency, and the national situation of this topic

  • WELTON VASCONCELOS ARAUJO
  • PLANNING OF NEW MOBILE NETWORKS DEPLOYMENT CONSIDERING RADIO AND TRANSPORT ASPECTS
  • Data: 07/08/2020
  • Mostrar Resumo
  • PLANEJAMENTO DE IMPLANTAÇÃO DE REDES MÓVEIS DE NOVA GERAÇÃO CONSIDERANDO ASPECTOS DE RÁDIO E TRANSPORTE

  • SUZANE CRUZ DE AQUINO MONTEIRO
  • Multiobjective Optimization Algorithm aiming at Energy Efficiency, with Incremental Cost Reduction, Energy Consumption, Time of Return of Investment and GEE Emissions in a Building

  • Data: 29/07/2020
  • Mostrar Resumo
  • There are sectors whose electric energy consumption is used mainly in the buildings thermal and luminous comfort maintenance such the residential, public and commercial sector. Its largest loads are air conditioning, lighting and heating systems. In Brazil, the buildings consume up to 51.1% of the electricity annually, according to the BEN 2017 (National Energy Balance - Base Year 2016). Thus, there is a growing interest in studies on buildings energy efficiency including the development of optimization algorithms, especially in the early stages of project design. This article aims to contribute the study of energy efficiency in buildings through a multi-objective optimization software of air conditioning and lighting systems based on genetic algorithms and SPEA II. From the building set by the user, the proposal is to identify an optimum arrangement of lamps and air conditioning units registered in a .csv file for each artificially illuminated and cooled environment in order to reduce the incremental costs of these equipment, its energy consumption in 10 years and the greenhouse gases associated to them, also increasing the energy efficiency level of these systems.

  • ANDERSON SILVA DE OLIVEIRA GÓES
  • PROPOSTA DE PROCESSO PARA AVALIAÇÃO DE DESEMPENHO DE RECURSOS HUMANOS UTILIZANDO TÉCNICAS DE INTELIGÊNCIA COMPUTACIONAL: UMA ABORDAGEM UTILIZANDO CLASSIFICADORES BASEADOS EM REGRAS E ALGORITMOS DE APRENDIZADO SUPERVISIONADO

  • Data: 28/07/2020
  • Mostrar Resumo
  • PROPOSTA DE PROCESSO PARA AVALIAÇÃO DE DESEMPENHO DE RECURSOS HUMANOS UTILIZANDO TÉCNICAS DE INTELIGÊNCIA COMPUTACIONAL: UMA ABORDAGEM UTILIZANDO CLASSIFICADORES BASEADOS EM REGRAS E ALGORITMOS DE APRENDIZADO SUPERVISIONADO

  • GERALDO SOUZA DE MELO
  • PLASMONIC SWITCHES AND MULTIFUNCTIONAL DEVICES BASED ON GRAPHENE IN THE THZ AND INFRARED RANGES

  • Data: 24/07/2020
  • Mostrar Resumo
  • New controllable plasmonic devices based on graphene for the terahertz and infrared regions are analyzed in this work. The devices work by propagating plasmonic waves on the graphene surface, and can excite resonances in the structures of the devices. The structures of the filters and plasmonic keys consist of a graphene disk coupled to two waveguides also of graphene, which are perpendicular to each other, whereas the multifunctional devices have a T shape, one with a circular resonator and the other without a resonator, all devices are deposited on silica and silicon. The results for the plasmonic filter, without the application of external magnetic field DC, show three resonant modes: dipole, quadrupole and hexapole, with maximum reflections in the dipole and hexapole modes and maximum transmission in the quadrupole. We analyzed two plasmonic keys, one obtained by applying an external electric field over the filter, allowing us to move regions of maximum isolation to regions of maximum transmission, showing the characteristic of dynamic adjustment of graphene. The other key is obtained by applying an external magnetic field DC on the filter, causing the dipole mode to undergo a rotation of 45, transmitting the signal from port 1 to 2, with rotating resonant modes ω+ , ωand a stationary mode ω0 , due to the degeneracy breaking caused by the external magnetic field. For the multifunctional device with resonator, we have the same results obtained for the filter, with the difference being the new power divider function in quadrupole mode, in addition to the filter functions in the dipole and hexapole. Applying an external voltage to the structure, we can move the dipole and hexapole modes to the quadrupole region, having an electro-optical switch in that region. For the multifunctional device without a resonator, we only have the divider functions and when we apply an external voltage only in the central region of the device, we have an electro-optical switch. Variations of physical and geometric parameters were made and the results were studied analytically, using the Temporal Coupled Modes Theory, to ratify the results found numerically by the COMSOL Multiphysics and HFSS software, showing that the results obtained by the two methods are in good agreement. We analytically show the possibility of choosing the operating frequency range of the devices from the choice of the resonator radius, as well as the dynamic control of the structures through the variation of the chemical potential of graphene.

  • ILAN SOUSA CORREA
  • DIGITAL SIGNAL PROCESSING FOR THE FRONTHAUL OF 4G AND 5G NETWORKS

  • Data: 10/07/2020
  • Mostrar Resumo
  • Cloud Radio Access Network (C-RAN) is an architecture to decrease implementation costs of mobile networks deployments, in which the traditional basestations are split into the Baseband units (BBUs) and Remote Radio Units (RRU). BBUs are located in datacenters and perform most of the digital signal and network processing. Several BBUs are located in a datacenter, which allows decreasing electricity, connectivity and thermal conditioning costs. RRUs are located at the cell sites and perform a few or no processing, which comprises transmission and reception of signals to interface with users’ equipment. In C-RAN a network segment called fronthaul connects the BBUs and the RRUs, in which, in most of the cases, CPRI protocol is used and allows transporting baseband signals to be transmitted and received baseband signals, resources to synchronize in frequency and time BBUs and RRUs, and control data.

    A consequence of the evolution of the mobile networks is the decrease of the cell radius, due to several factors, such as, the transmission in higher carrier frequencies. This process is known as densification of the mobile networks. Besides, next generation mobile networks have more dependence on multiple antenna techniques, and it results in a significant increase in the fronthaul requirements to transport the signals. Because of that, there is a concern the fronthaul technologies evolution do not follow the evolution of the mobile networks. Therefore, there is interest from industry and academy parties on technologies to make the fronthaul cheaper and more efficient. The result is that many works have investigated technologies for the fronthaul.

    In this context, this thesis investigates digital signal processing techniques that allows more efficient signals transport in fronthaul, for which the transport of frequency-multiplexed analog signals is studied. This form of transmission contrasts with the transport time-multiplexed digitized signals, which is adopted in current technologies such CPRI. The transport of analog signals has potential to decrease significantly the fronthaul bandwidth required to transport the signals in relation to the time-multiplexed digitized transport. However, analog transmission has a drawback of causing distortion in the signals. Specifically, this thesis investigates digital signal processing techniques to allow efficient multiplexing and demultiplexing to be deployed in the BBU and RRU. These techniques are evaluated in relation to the computational complexity and the distortions. It is also distortions caused by the transmission in fronthaul, for which it is proposed a procedure to estimate the signal-to-noise ration of the fronthaul. The signal-to-noise ratio is applied to calculate a pre-emphasis that is applied to the signals before transmission in fronthaul. The techniques are evaluated in experiments of transmission in an optical link. Results are shown as measurements, distortion estimation, and complexity of the algorithms.

  • ALLAN BARBOSA COSTA
  • The use of Active Methodologies for Teaching-Learning Systems in Telecommunications

  • Data: 03/07/2020
  • Mostrar Resumo
  • Universities have been seeking to adopt active teaching methodologies in their curricular structure, such as Project and Problem Based Learnig (P2BL), together with the use of simulation tools in classes, which facilitate the teaching and learning process, not only for students. engineering students, but all students who need more detailed visual resources to understand the problem addressed. In this sense, this work proposes the use and development of a computational tool for planning Wireless Communications Networks to assist in the teaching of Computer Engineering, Information Systems, Telecommunications Engineering and Electrical Engineering disciplines, using Virtual Reality techniques and the specialized and consolidated literature of the area, for the design of arbitrary scenarios associated with radiopropagation models that simulate the behavior of the signal in different scenarios, in the first outdoor phase and in the second indoor phase. The types of antennas with their respective gains, their polarization and different heights, the frequency of system operation, the power of the transmitter and the equivalent parameters in the mobile unit are considered in the simulator. In this way, it is possible to create outdoor scenarios in this version and indoor and outdoor scenarios in future versions to run the simulation using some of the propagation models defined in the literature. Thus, there is a three-dimensional visualization of the coverage area, intensity of the signal received in a given region of the scenario, shadow area, among others, in a totally virtual environment.

  • ANDRE DE OLIVEIRA FERREIRA
  • PHOTOVOLTAIC-WIND WATER PUMPING SYSTEM WITH CONNECTION AND CONTROL VIA A TWO-INPUT DC-DC CONVERTER

  • Data: 30/06/2020
  • Mostrar Resumo
  • In this work, a small hybrid photovoltaic-wind water pumping system is modeled and analyzed through computational simulations. In the proposed system, photovoltaic generator and wind generator are connected via a two-input DC-DC converter, whose output is directly coupled to a DC motor-pump. The two-input DC-DC converter makes the use of a battery bank optional, and acts on the sources drained currents simultaneously or individually to operate them at desired points of their characteristic curves. The simulations demonstrate good performance of the system, which it is feasible to be implemented in practice and can be used in remote regions or where necessary.

  • LUCAS DE SOUSA PACHECO
  • MOBILITY AND CLOUD MANAGEMENT IN WIRELESS HETEROGENEOUS 5G NETWORKS

  • Data: 30/06/2020
  • Mostrar Resumo
  • Mobility management is a key area to ensure connectivity and the continuity of the services consumed by mobile users. This dissertation analyzes how the next generation of 5G ultra-dense networks will pave the way for the distribution of video in vehicular networks (VANETs), which will be composed of a heterogeneous ultra-dense infrastructure, joining existing wireless communication technologies to obtain greater spectral efficiency. A handover algorithm, called HoVe, is the mais contribution of this work. HoVe is an algorithm based on multiple criteria for video distribution on ultra-dense 5G VANETs. The simulation results show HoVe’s efficiency in providing videos with 19 % higher quality than state-of-the-art algorithms, improving the package delivery rate by at least 30%. This work studies a particular case of VANETs that benefits from computing at the edge of the network, the case of Autonomous Connected Vehicles, or CAVs. Edge and mist computing are emerging solutions for remote data processing for autonomous vehicles, offering higher computational power, as well as the low latency required by autonomous driving. This work also proposes the MOSAIC algorithm for service migration and resource management for communication between layers and between layers in edge and fog computing. Simulation results show the efficiency of the proposed algorithm in terms of latency, migration failures, and network throughput.

  • ULISSES WEYL DA CUNHA COSTA
  • A FUZZY STRATEGY FOR PLANNING CENTRALIZED ACCESS NETWORKS IN THE INSTALLATION OF HYBRID FIBER RADIO SYSTEMS

  • Data: 19/06/2020
  • Mostrar Resumo
  • 5G networks have arrived and are able to shift paradigms within the areas of connectivity, maintainability, scalability and availability. Their aim is to ensure that users can remain online with their devices at any time and in any place. In light of this, solutions for centralized networks are becoming attractive since they are manageable and low-cost. In these conditions, the use of computing techniques such as fuzzy logic benefits the supervision and planning of networks by optimizing and controlling resources as well as managing the system. However, planning a centralized network tends to raise challenges in the optical sectors that are located between the telecommunications center and the base station. Technologies such as radio over fiber are being examined to meet the demands in the fronthaul market, although they raise many other challenges. For this reason, in this study, we have adopted an intelligent strategy to determine in a balanced way what radio over fiber signals should be allocated in the optical sector. This strategy is implemented using fuzzy logic and may be used in decision making to plan the future of centralized networks. The results show that it is possible to make tradeoffs between the capital expenditure and performance of the system.

  • MARCELINO LOPES CORREA DA SILVA JUNIOR
  • IMPROVEMENT OF PLASMONIC NANOANTENNAS FOR CELLS

  • Data: 05/06/2020
  • Mostrar Resumo
  • Currently, organic photovoltaic systems have performance with very different levels of development, such devices convert sunlight into electricity from organic semiconductors that constitute the active layer of these devices that, generally, are made up of fullerene derivatives and conjugated polymers, having the efficiency increased from the use of silver nanoantennas on this layer. In this study, the optimization of the geometric parameters of nanoantennas and the unitary solar cell was carried out using the finite element method, with the analysis made in the periodic organic solar cell consisting of a reflecting block and a cylindrical nanoantenna formed by the noble metal silver, and the active layer formed by the material P3HT: PCBM, whose representation of the physical characteristics of these materials were modeled from the interpolation of experimental results. The structural configurations of the plasmonic nanostructures and the performance of the device were monitored from the photophysical properties of the system, and as demonstrated from new geometric models of nanoantennas and a nanoantenna array formed by the convex cone nanoantenna together with a pyramidal nanoantenna, there was a better solution for different light incidence angles compared to a single nanoantenna. The location of the nanoanennas was also analyzed to study the absorption behavior in the active layer. Therefore, there was an average increase in the absorption efficiency of this organic solar cell, both for magnetic transverse polarization and for electric transverse polarization, in comparison with the use of conventional nanoantenna in the wavelength range of (300: 800) nanometers.

  • LUIZ CLÁUDIO LOBO DA SILVA JÚNIOR
  • MITIGAÇÃO DE VARIAÇÕES DE TENSÃO EM UMA INDÚSTRIA CERVEJEIRA USANDO BANCO DE CAPACITORES FIXOS E CHAVEADOS

  • Data: 04/06/2020
  • Mostrar Resumo
  • MITIGAÇÃO DE VARIAÇÕES DE TENSÃO EM UMA INDÚSTRIA CERVEJEIRA USANDO BANCO DE CAPACITORES FIXOS E CHAVEADOS

  • FÁBIO FERREIRA RIBEIRO
  • DESIGN DE ANTENAS PLANARES PARA APLICAÇÕES EM 60 GHZ

  • Data: 29/05/2020
  • Mostrar Resumo
  • DESIGN DE ANTENAS PLANARES PARA APLICAÇÕES EM 60 GHZ

  • LUCAS DE LIMA BASTOS
  • SID - SISTEMA DE IDENTIFICAÇÃO DUPLA DE USUÁRIOS DE DISPOSITIVOS VESTÍVEIS ATRAVÉS DOS SINAIS DE FOTOPLETISMOGRAMA E DE ELETROCARDIOGRAMA

  • Data: 28/05/2020
  • Mostrar Resumo
  • Com o crescimento da e-health, os dispositivos vestíveis destacaram-se devido à sua praticidade e conforto na detecção dos dados pessoais. Dispositivos vestíveis em e-Health fornecem acesso de fácil uso, bem como um retorno de informações para o usuário. Em geral, esses dispositivos possuem uma variedade de sensores que capturam várias informações do ambiente e do usuário. As informações mais populares coletadas por smartwatches e pulseiras é sobre a medição de batimentos cardíacos, passos, oxigenação e fotopletismografia (PPG) e eletrocardiograma (ECG). Cada processo com sensores tem ruídos, ondas eletromagnéticas e movimentos que podem interferir ao identificar, analisar e verificar o indivíduo. A partir disso, a filtragem é um passo indispensável em qualquer processo. A identificação é dividida em etapas, e o principal e essencial é a filtragem porque é onde o pré-processamento começa. Esses dispositivos vestíveis dependem de dispositivos móveis para autenticação do usuário. Se o usuário precisar de validação, ele recorrerá a métodos tradicionais em outros equipamentos que possuem sensores de reconhecimento, como íris, rosto ou impressões digitais. Para superar esses problemas, esta dissertação é dividida em duas etapas. A primeira trata do pré-processamento do sinal (captação e filtragem). Segunda etapa trata do modelo de autenticação de pessoas a partir de sinais fotopletismografia (PPG) e eletrocardiograma (ECG)

  • BRUNO SANTANA DE ALBUQUERQUE
  • USE OF ACTIVE METHODS IN THE TRANSFORMATION OF A UNIVERSITY BUILDING INTO THE ZERO ENERGY BUILDING: CASE STUDY OF THE CENTRAL LIBRARY

  • Data: 06/05/2020
  • Mostrar Resumo
  • This thesis proposes an energetic evaluation of a University Building transformation into the Nearly Zero Energy Building (EEZ), by using active methods such as Photovoltaic System (PV), and presents its application in the form of a case study. The purpose of this study was to analyze the energy balance between the UFPA Central Library, the PV, the distribution system and the storage system, aiming at the load autonomy. Satisfactory results were obtained for different scenarios created by the variability of the load, according to the university calendar, and the intermittency of the photovoltaic generation. The use of the PV generate enough to supply most of the building load, however only 53% of this energy benefited the building, the energy surplus supply others university loads. Therefore, the use of the storage system allows greater use of the photovoltaic energy generated in the building.

  • CAMILO LELIS ASSIS GONCALVES
  • USING DEEP LEARNING AND COMPUTER VISION TECHNIQUES FOR DETECTION AND TRACKING OF COMPONENTS IN MINING TRAIN WAGONS

  • Data: 27/04/2020
  • Mostrar Resumo
  • The design of automatic inspection systems for the inspection of train wagons and railway  components that can cause derailment is a crucial factor for increasing productivity and safety in industrial environments. We propose a method for the detection and tracking of components of mining train wagons using a detector based on Convolucional Neural Networks and Deep Learning. In our experiments, our focus was on detecting the so called wagon's “super structure” , but the technique can be easily extended to detect other components.

  • FRANCISCO EGUINALDO DE ALBUQUERQUE FÉLIX JÚNIOR
  • Data Science Applied to Public Data: Case Studies on Brazilian Social Security

  • Data: 17/04/2020
  • Mostrar Resumo
  • Data Science is an interdisciplinary area related to data analysis, which aims to extract knowledge and possible decision-making about specific problems. This topic indicates an evolutionary trend in recent years, due to a large amount of unprocessed data generated daily, encouraging researchers and companies to carry out increasingly complex studies and analyses, assuring scientific advances in various fields, as well as insure competitive advantages on corporations. In this context, open government data, because they repeatedly need pre-treatments and computational methods to process their data sets, present themselves as potential sources of information to be explored taking the Data Science's perspective, allowing the development of strategies each time more efficient and optimized in public management. Given this, and allied to the recent discussions related to the reform in the Brazilian social security, this dissertation presents two case studies referring to analyzes in the national social security system. The first study used the microdata referring to the demographic censuses of 2000 and 2010, made available by IBGE, proposing to evaluate the participation that retirements and pensions have in the income inequality of the population in the years evaluated about Brazilian states and municipalities. For this, the Gini index decomposition methodology was applied to this portion of benefits, dividing them into categories, lower or equal to one minimum wage and above one minimum wage. The results show that, although the analyzed benefits contribute to the Brazil income concentration, the portion corresponding to a minimum wage contributes to the deconcentration of income, and the portion above one salary contributes to the concentration, being a repetitive pattern throughout the country. On the other hand, the second study proposed an evaluation of the impacts caused by the pension reform, which is proposed in PEC 06/2019, For this, a \textit{Data Warehouse} structure was developed, responsible for storing the microdata provided by the Social Security CPI. Thus, applying data batch processing strategies and using the information provided by IBGE and AEPS, was simulated the rules predicted by the reform regarding the pensions granted in the analyzed time interval. After the simulations, it was observed that PEC 06/2019 would hinder access to benefits, in which approximately 83,28\% of the pensions would not have been granted had it been in effect since 1995.

  • DAIYUKI MAIA FUJIYOSHI
  • MODELOS FDTD PARA ANÁLISE DE SISTEMAS DE ATERRAMENTO: DISPERSÃO DO SOLO UTILIZANDO APROXIMADOR DE PADÉ E IONIZAÇÃO DO SOLO CONSIDERANDO MÚLTIPLOS ESTÁGIOS E RESPECTIVAS RESISTIVIDADES RESIDUAIS

  • Data: 03/04/2020
  • Mostrar Resumo
  • Dois modelos FDTD (Finite-Difference Time-Domain) para solos dispersivos e ionizados, respectivamente, são propostos para representar realisticamente as respostas transitórias dos sistemas de aterramento. O modelo para solos dispersivos é desenvolvido inserindo a dependência da condutividade e permissividade elétrica com a frequência na equação de Maxwell-Ampère através do aproximador de Padé para o termo σ+jωε. A partir disso, são obtidas equações de atualização explícitas para o método FDTD. Ainda, para validar o modelo de solos dispersivos, foram realizados testes experimentais em sistemas de aterramento. No modelo FDTD para solos não lineares, são modeladas quatro fases para a ionização do solo: sem ionização, presparking (primeiro estágio da ionização), sparking (segundo estágio da ionização) e desionização. Mecanismos identificados experimentalmente na literatura para ionização da água são associados com as fases de presparking e sparking da ionização do solo. Com base nisso, deduziu-se que a ionização fraca do gás (fase de presparking) presente dentro das bolhas produzidas devido aplicação de correntes elevadas e a ionização da solução aquosa (fase de sparking) ocorre durante o processo de ionização no solo. Uma função matemática é proposta para representar o crescimento suave da condutividade elétrica em um ponto do solo durante a fase de sparking. Também, sugere-se que, quando os efeitos associados ao crescimento limitado da quantidade de cargas livres e suas mobilidades restritas são consideradas, a resistividade residual deve ser adotada não somente na fase de presparking, mas também durante o estágio de sparking. O modelo FDTD para solos ionizados é validado através da reprodução numérica de experimentos publicados na literatura. Os resultados obtidos através dos modelos FDTD desenvolvidos neste trabalho apresentaram excelente concordância com os respectivos resultados experimentais.

  • RAMON CRISTIAN FERNANDES ARAUJO
  • SISTEMA PARA CLASSIFICAÇÃO AUTOMÁTICA DE DESCARGAS PARCIAIS EM BOBINAS ESTATÓRICAS DE HIDROGERADORES USANDO REDES NEURAIS ARTIFICIAIS E MAPAS PRPD

  • Data: 31/03/2020
  • Mostrar Resumo
  • Neste trabalho, são propostos uma metodologia e um sistema de classificação de múltiplas fontes de descargas parciais (DPs) em enrolamentos estatóricos de hidrogeradores, utilizando Redes Neurais Artificiais (RNAs). A base de dados é composta de mapas PRPD (Phase-Resolved Partial Discharges) provenientes de medições de DP online de hidrogeradores operando em ambiente real. No trabalho, são propostas as seguintes contribuições: (i) desenvolvimento de nova métrica de desempenho de classificadores, que remove o viés introduzido por distribuições heterogêneas das classes de saída na base de dados; (ii) desenvolvimento de novos atributos extraídos dos padrões PRPD, objetivando facilitar a tarefa de reconhecimento utilizando menos variáveis; (iii) nova técnica de filtragem de padrões PRPDs, os quais são tratados como imagens; e (iv) rejeição de padrões inválidos, contendo apenas ruídos. Tais contribuições foram desenvolvidas ao longo do trabalho considerando dois cenários, de diferentes graus de complexidade. No primeiro, realizou-se o reconhecimento de padrões com uma única fonte de DP, ainda não utilizando a filtragem supramencionada. Atributos baseados no conceito de projeção de imagens são extraídos dos PRPDs, e utilizados como entrada das RNAs para treinamento. Taxas de acerto acima de 94% foram obtidas pela melhor RNA. No segundo cenário, os PRPDs apresentam múltiplas fontes de DP simultâneas. A técnica de filtragem desenvolvida foi aplicada para remoção de ruídos e separação dos múltiplos tipos de descargas. A tarefa de classificação foi decomposta em problemas menores, cada qual solucionado por uma RNA treinada com atributos de entrada específicos. Taxas de acerto globais em torno de 90% foram obtidas para as classes de DP. Por fim, a metodologia também foi validada mediante reconhecimento de DPs em tempo real na Usina Hidrelétrica de Tucuruí, sem quaisquer intervenções manuais.

  • DAYNARA DIAS SOUZA
  • EVALUATION OF GUIDED MODES IN COPPER CABLES FOR DATA TRANSMISSION IN TERABIT PER SECOND

  • Data: 27/03/2020
  • Mostrar Resumo
  • Copper-based technologies have been using twisted-pair cables as transmission lines, i.e., exploiting the TEM (Transverse Electromagnetic) mode to transmit data. However, the use of ever-higher frequencies drastically increase the attenuation of the TEM mode, limiting the reach and the achievable data rate of the system. On the other hand, a recent work propose a new approach for exploiting the transmission capacities of those cables: use their high-order guided modes. These higher-order TE (Transverse Electric) or TM (Transverse Magnetic) modes arise when the wavelengths associated to the operating frequencies are smaller than the cross-sectional dimensions of the cable. When using twisted pair cables as waveguides, the possibility of achieving transmission rates of the order of Terabit per second was envisaged, assuming that the model of the surface guided mode of a single bare-wire, known as the Sommerfeld line, properly describes the attenuation of the higher order guided modes of a twisted pair. However, it is evident that Sommerfeld model is unappropriated since the pairs of a copper cable exhibit a physical structure much more complex. This work investigates the propagation of various guided modes in twisted pair cables, from numerical simulations in HFSS software, considering real constructive characteristics such as pair twisting and conductor and insulator materials. The use of higher-order guided modes on coaxial cables is also evaluated. Based on the results obtained, it is also determined the aggregate data rate of each cable as a waveguide via Shannon’s capacity. The results show that there are around 20 propagation modes available on each cable up to 300 GHz. Data rate results show that, for 10 meters, it is possible to reach more than 1 Tbps on just one twisted pair, up to 3 Tbps on a four-pair twisted cable and approximately 0.5 Tbps in a coaxial cable.

  • LENO RODRIGUES MARTINS
  • DEVICES BASED ON BIDIMENSIONAL PHOTONIC CRYSTALS AND COUPLED MODE THEORY FOR PHOTONIC COMPONENTS WITH MAGNETIC SYMMETRY

  • Data: 26/03/2020
  • Mostrar Resumo
  • In this work two new communication system devices are presented, consisting of a T-junction of three waveguides based on a 2D photonic crystal with square lattice. One waveguide is the input port, while the other two serve as output ports. The first component can fulfill three functions: it can switch OFF the two output ports; can be used as a 3 dB divider of input power; and, it can switch ON any one of the two output ports. Changing the operating regime is achieved by a DC magnetic field that magnetizes a ferrite resonator located at the intersection between the waveguides. The second component, on the other hand, performs the circulation of electromagnetic signals, for which a comparative study of the operation was performed for the dipole and quadrupole resonance modes. In addition, an approach based on the theory of coupled temporal modes for the analysis and design of electromagnetic components with low symmetry was developed, which was applied in the study of a W circulator.

  • BRENDA PENEDO TAVARES DE SOUSA
  • COUPLING GUIDED MODES IN TWISTED PAIR CABLES USING RADIAL SYMMETRY ANTENNAS IN THE TERABIT DSL SCENARIO

  • Data: 26/03/2020
  • Mostrar Resumo
  • The development of data transmission standards and access technologies has always been linked to the need to supply high data rates. Thus, technologies already implemented, such as the DSL (Digital Subscriber Line) system that uses twisted pairs for transmission, have been adjusting to support this growing data demand. However, twisted pairs, as well as all physical medium of propagation in DSL systems, are used as a transmission line, using the transverse electromagnetic mode (TEM). However, the physical limitations of the twisted pair as a transmission line prevent the system from reaching speeds in the ranges of Terabit per second. So, recently, the use of twisted pairs as a waveguide, as an alternative to the transmission line mode, is already the object of study and brings with it the possibility of further increasing the data rate in this available infrastructure. However, one of the challenges for this implementation is the coupling of the guided modes in the twisted pair, which are very complex structures compared to the most used waveguides. In this scenario, this dissertation aims to evaluate the coupling of the radiated signal between an antenna with radial propagation and the twisted pair cable, analyzing which antenna structure is more compatible with the twisted pair cable. Considering that neither the structure of the twisted pair as the twisted pair cable has a closed analytical model for the behavior of the electromagnetic field in these structures, all the results were obtained from numerical simulations in the HFSS software (High Frequency Structure Simulator), in terms of the antenna scattering parameter and the intensity of the electric field in the twisted pair. With these parameters, it was possible to evaluate the coupling efficiency between the antenna and the waveguide, as well as to evaluate the signal guidance and to predict the transmission rate available to users. In these evaluations, it was highlighted the coupling of the antenna structure with the shielded twisted pair cable, which reached levels of up to 78.85% at frequencies of 0.3 THz, in addition to confirming that despite the use of these cables for data transmission is not as effective as shown in the literature, it is still feasible, since it has been shown from numerical simulations that signal guidance throughout its structure is possible.

  • SANDIO MACIEL DOS SANTOS
  • Data Science Applied to Federal Government Open Data: Case Studies on the Economy of Brazilian Municipalities

  • Data: 13/03/2020
  • Mostrar Resumo
  •    The data analysis process in recent years has been highlighted in the Brazilian scenario since the granting of Law 12.527/2011, which guarantees access to public information and, therefore, allows greater transparency of public spending for society. Additionally, countless discussions will arise around the Brazilian social security data, such as social security reform. Based on the context of open and public data, two case studies about Brazilian government data are discussed. In both case studies, Data Science techniques are applied, as it possesses interdisciplinary characteristics during its data analysis process. Also, Data Science is a technique easily applicable to different areas of knowledge. Thus, the first case study aims to use statistical analysis to highlight whether social security benefits (retirement payment, pensions, benefits, etc.) paid by the municipalities have the same financial impact between the five major regions of Brazil (Midwest, Northeast, North, Southeast, and South) between 2010 and 2017. The analyzed results point that municipalities that have between 10 and 20 thousand inhabitants, present the biggest deficit in the accounts concerning the collection and transferred amounts. The second case study aims to use the STVAR forecasting model to estimate the behavior of the economic cycle of the municipality of São Paulo through the expenditure, revenue, and GDP variables. The model assessment uses the impulse response function and is used to measure the behavior of the economic cycle after an exogenous shock

  • IGOR WENNER SILVA FALCAO

  • Data: 06/03/2020
  • Mostrar Resumo
  • O aumento no volume de serviços e aplicações móveis, além do crescimento acelerado das demandas de acesso sem fio, representam desafios significativos para a próxima geração de redes móveis, a quinta geração (5G). Esse aumento no volume de aplicações é reflexo do crescente número de dispositivos que estão conectados à rede, consumindo de maneira desordenada e gerando alta carga de dados. Outro ponto de grande impacto no comportamento do fluxo de dados é a migração diária em larga escala de pessoas nos centros urbanos, causando o chamdo Efeito de Maré. Este promove a flutuação espaço-temporal do tráfego ao longo do dia, causando um problema para o controle e gerenciamento da rede. O fenômeno de marés provoca ainda outras adversidades, dentre elas há a baixa eficiência no uso dos recursos de hardware, o desbalancemento de carga, a subutilização de recursos e a ociosidade de capacidade de rede. Com base nestas informações e considerando o conhecimento dos operadores de serviços sobre mobilidade de assinantes, dados do movimento de usuários da cidade de Nova York foram extraídos através de uma LBSN (Location-Based Social Network). Considerando a alta demanda de tráfego esperada para o 5G e os problemas oriundos do Efeito de Maré na arquitetura de rede atual, nesta dissertaçaõ é proposta uma heurística com duas abordagens de provisionamento de recursos de hardware (uma baseada na taxa de transferência agregada e outra no número de usuários conectados). Os resultados apontam que o provisionamento de rede atendeu à variabilidade do tráfego do cenário utilizado, minimizando a Probabilidade de Usuário Bloqueado, maximizando a eficiência da Unidade de Banda Base (BBU) e quantificando as Small Cells (SCs) necessárias para atender à demanda dos usuários.

  • ALEX BARROS DOS SANTOS
  • A machine learning framework for ECG biometric systems

  • Data: 28/02/2020
  • Mostrar Resumo
  • With the new environment of IoT and the deployment of 5G networks, a huge amount of data will be generated. New applications will be created and others will be completely redesigned. In this sense, the demand for health services has increased due to a society greater concern with health and, also, the price decreasing for the acquisition of wearable devices. Moreover, the applications require more data protection and privacy, so, biometrics has become one of the main mechanisms for protecting information used by users in all kid of systems and applications. This work investigates the use of an ECG signal in biometrics systems and the machine learning techniques that could be used in this application. This new signal is an alternative not only to increase current safety standards by providing the individual's continuous authentication but also to assess health with cardiac monitoring already well established in medicine by evaluations. To advance in this area, this dissertation is proposing a framework to build a composed data set from different data sources. Defining techniques for extracting signal considering mobile applications and design a structure that allows the use of ECG as a biometric signal in a scalable and heterogeneous environment considering different machine learning techniques such as Support Vector Machine, Random Forest and Neural Networks.

  • EWERTON CRISTHIAN LIMA DE OLIVEIRA
  • PROPOSAL OF A FRAMEWORK FOR NONLINEAR MULTIVARIABLE DYNAMIC SYSTEMS IDENTIFICATION

  • Data: 27/02/2020
  • Mostrar Resumo
  • The techniques of dynamic systems identification are algorithms of most importance for generating mathematical and computational models capable to represent the dynamic of systems and processes present in many fields of society, such as: industrial processes; automobiles; food production; aerospace vehicles; biological systems and etc. The identification of these systems, which generally have more than one variable of input and output (multivariable systems) and also are nonlinear, it is very important for science and engineering in relation to the development of new control techniques, fault monitoring and prediction of operating state of these mechanisms. Nonetheless, the identification of nonlinear MIMO (Multiple Input Multiple Output) systems is a hard task, as much due the difficulty of implementing the classic algorithms for solve this problem, as the fact that nonlinear systems require complex models for represent their dynamics in satisfactory way. In order to solve this problem, this work proposes a framework capable of performing as much the identification of nonlinear multivariable dynamic systems in fuzzy TSK model, which can represent in simple way the coupling among the variables involved in identification, as the selection of regressor vector used in model. The framework is tested and compared with RNA and a Hammerstein-Wiener model in identification of two nonlinear MIMO industrial plants:  Continuous Stirred Tank Reactor (CSTR); Industrial Dryer. The comparison of these three techniques is made with base in indices of Mean Squared Error () and Variance Accounted For (), further the analysis of residues between the observed and estimated data. The results show that the proposed framework got the best performance, based in the two indices, in 80% of outputs estimation of the two multivariable plants, and also reached the best performance in 60% of residual analysis of plants identification.

  • NAGIB COELHO MATNI NETO
  • Optimal Gateway Placement Based on Fuzzy C-Means for Low Power Wide Area Networks

  • Data: 27/02/2020
  • Mostrar Resumo
  • Low Power Wide Area Network (LPWAN) technologies recently gained interest from the research and industrial community. Internet of Things (IoT) devices communicate directly with gateways, which act as bridges towards a central network server and the Internet. In this context, it is important to study how to place multiple gateways in an area considering Quality of Service, Capital expenditure (CAPEX), and operational expenditure (OPEX) requirements. This is because network planning and optimization are considered to be significant issues that impact on the application performance, CAPEX, and OPEX. In this paper, we propose an optimal LoRa gateway placement (PLACE). It considers the Gap statistics method to find the number of LoRa gateway, which is used to compute the gateway placement using the Fuzzy C-Means algorithm. Simulation results show that PLACE reduced in 36\% the CAPEX and OPEX compared to the grid and random gateway placement, while keeps a similar Packet Delivery Ratio.

  • VITOR DOS SANTOS BATISTA
  • ANÁLISE DE DESEMPENHO DE METAHEURÍSTICAS APLICADAS AO PROBLEMA DE RESTAURAÇÃO DE REDES DE DISTRIBUIÇÃO

  • Data: 20/02/2020
  • Mostrar Resumo
  • Nos últimos anos diversas meta-heurísticas foram utilizadas para solucionar o problema de restauração de Sistemas de Distribuição de Energia (SDE) de forma eficiente. Dentre elas destaca-se o Algoritmo Evolutivo Multiobjetivo por Tabela (AEMT), que juntamente com a utilização da Representação Nó-Profundidade (RNP), trouxeram um grande avanço na área pois a RNP sendo utilizada como estrutura de dados é possível realizar modificações na topologia do SDE sem perder a radialidade e restabelecer o fornecimento de energia para todas as cargas desligadas após a falta. Devido a falta de exploração de outras metaheurísticas que utilizam a RNP como estrutura de dados, este trabalho visa realizar uma análise de desempenho comparando o AEMT com outras três meta-heurísticas, a Busca Tabu, Colônia de Abelhas e Estratégias evolutivas. A análise foi realizada em 3 SDEs com 84, 119 e 135 barras e foram simuladas 3 faltas em cada sistema.

  • CRISTIANO BRAGA DE OLIVEIRA
  • Controllable Graphene Electromagnetic Filters in the THz Range

  • Data: 19/02/2020
  • Mostrar Resumo
  • Four graphene-based structures in the terahertz region are analyzed. The proposed structures are two electromagnetic filters formed by two coaxial graphene discs (or two rings) placed on opposite sides of a dielectric substrate and two magnetized graphene disc structures of radius r = 3µm (or radius R =µm) over a dielectric substrate. The proposed graphene and magnetized graphene structures were numerically modeled in the commercial HFSS software and analytically calculated using the Temporal Coupled-Mode Theory (TCMT). The results of numerical modeling and analytical calculations were compared using the transmission and reflection parameters, which showed a good agreement for both cases. For the structures of two electromagnetic filters other parameters were analyzed, such as the coupling between the two discs (or rings) and the dynamic control of the structure through the chemical potential variation µc in numerical modeling, where both showed the conciliation of simulations with the equations calculated by TCMT. The frequency response of the proposed structures is analyzed and discussed during this thesis.

  • JONATHAN MUNOZ TABORA
  • VOLTAGE HARMONICS EFFECTS ON THE TEMPERATURE AND PERFORMANCE OF IE2, IE3 & IE4 INDUCTION MOTOR CLASSES

  • Data: 19/02/2020
  • Mostrar Resumo
  • The introduction of new technologies as well as the improvement of materials and processes has contributed to accelerate the growth in the efficiency of the electric induction motors (IM). Currently in the market it is possible to observe the operation of IM classes IE3 and IE4, as well as minor efficiencies, in the same way proposals for IM class IE5 are being developed. This work aims to show the impact of 2nd, 3rd, 5th and 7th order voltage harmonics on the temperature and performance of IE2, IE3 and IE4 induction motor classes, the latter being a hybrid motor of permanent magnets and squirrel cage (Line Start Permanent Magnet Motor, LSPMM's). The measurements were divided into two stages, first feeding each of the motors with undistorted voltages and then entering each of the harmonics individually and in combination in percentages of 2% until reaching 25%. The results showed that better efficiency classes present considerable improvements in relation to consumption, temperature and noise, however, also showing non-linear characteristics, as was the case with the LSPMM. It is also presented as the presence of individual harmonics in electric motors, results in the appearance of other harmonics, according to the percentage of distortion present. Finally, in order to predict the variation of temperature in relation to the percentage of different voltage harmonic distortion, statistical models were created resulting in good approximations for the temperature increase in the presence of voltage harmonics.

  • MAYRA MOURA MOREIRA
  • TRANSPORTE ELETRÔNICO VIA TUNELAMENTO EM SISTEMAS 1D E QUASI-1D COM ELETRODOS DE CARBONO

  • Data: 19/02/2020
  • Mostrar Resumo
  •             Research in nanotechnology and nanoelectronics has aroused much interest in the sscientific context and, especially in recent decades, many efforts have been made to achieve the desired atomic and molecular level control over industrial processes such as manufacturing/design of molecular devices, miniaturization and/or flexibility of electronic equipment. Among the studies in these research fields stand out the carbon allotropes, such as carbon nanotubes (CNT), which are cylindrical structures obtained from the winding of a sheet of graphene and the carbyne wire formed by a linear chain of carbon atoms. The first junction consists of a sodium atom in the central region and carbyne wires as electrodes. The second is a quasi -one-dimensional (quasi-1D) junction and is composed of single-walled carbon nanotube (SWCNTs) closed at the tips as electrodes and again a sodium atom in the central region, being that in both systems (1D and quasi-1D) there is no effective bond between the central atom and the electrodes. To obtain the results we used the Density Functional Theory combined with the non-equilibrium Green’s functions formalism. The results obtained as: current-voltage curve, differential conductance, transmittance, state density and conduction channels show that the sodium atom significantly affects the electron transport properties and the comparison of the results obtained for the studied junctions with those of 1D and quasi-1D systems without the sodium atom in the central region can ratify such results. Therefore, the results show that the transport properties are directly affected by the molecular geometry of the systems and this fact may help in the manufacture of future molecular devices.

  • ALAN MARCEL FERNANDES DE SOUZA
  • USE OF MACHINE LEARNING TECHNIQUES AND DEEP LEARNING TO EXTRACT KNOWLEDGE AND MODELING OF THE PRIMARY ALUMINUM PRODUCTION PROCESS

  • Data: 14/02/2020
  • Mostrar Resumo
  • The production of primary aluminum is carried out in several factories around the world. With the technological advances in the last decades, the high power of storage and data processing has allowed to solve problems that previously were considered extremely difficult. In this sense, a new paradigm emerges: industry 4.0, which is based on intelligent processes, integrated management, managed energy, high standards and quality. Many of the challenges that permeate industry 4.0 include machine learning techniques that facilitate data interpretation, enabling models to emulate the behavior of the production system with high accuracy, and to find hidden patterns in the huge data set. This PhD qualification proposes models based on machine-learning techniques (Artificial Neural Networks, various learning algorithms) and deep learning (Long-Term Memory Networks) to emulate the behavior of temperature, fluorided alumina and alumina concentration of a furnace reduction of primary aluminum from several inputs, using real data. In addition, the clustering of furnaces with similar behavior was carried out with the aim of increasing the accuracy of the mentioned models. The results indicate that the models based on Long-term Memory Networks are 20 to 25% more accurate than those based on Artificial Neural Networks. Additionally, it was verified that the clusters found do not significantly improve the model's accuracy. Further tests are still needed to confirm this proposition. It is important to mention that an extensive review of the literature was made through a systematic review that considered hundreds of scientific studies that approach modeling in the area of primary aluminum production.

  • RAMZ LUIZ FRAIHA LOPES
  • ABORDAGEM MULTIOBJETIVO OUTDOOR PARA POSICIONAMENTO DE ESTAÇÕES RÁDIO BASE E MODELO HÍBRIDO APLICADO À AVALIAÇÃO DA EXPOSIÇÃO HUMANA À RADIAÇÃO NÃO-IONIZANTE

  • Data: 07/02/2020
  • Mostrar Resumo
  • This work presents a multiobjective tool for the planning of telecommunications services. This tool makes use of a discrete radio propagation modeling based on the K-Nearest Neighborhoods (KNN) classifier. The model takes into account different attributes of the environment considered in the calculation of propagation loss. In this case, the study was conducted in the facilities of the Federal University of Pará, representing a typically Amazonian environment. To develop the model, measurement campaigns were carried out in three different frequencies: 521 MHz, 2100 MHz, and 2600 MHz. The study of fading at these frequencies was carried out aiming at the generalization of possible frequencies for inclusion in the model. Tests for 700 MHz, 1800 MHz and 2400 MHz frequencies were performed to show the adequacy of the polynomial obtained in the generalization of the frequencies. The proposed model was applied on two scenarios to optimize the positioning of the base stations (ERB) under study. To calculate the optimal positioning of the ERBs, an importance criterion was adopted for each point of the considered scenario, based on a previous classification of the studied environment. The proposed model was applied in two scenarios, illustrating the results by a color map of the received power intensity at each point. Compared with the received power intensity data from performed measurement campaigns, the coverage estimates obtained with the proposed tool present significantly better results, illustrating a future scenario with a more efficient service in the studied territory.

  • PALINE ALVES SARAIVA
  • LOW COST PHOTOVOLTAIC SYSTEM IMPLEMENTATION IN CENTRALIZED RADIO ARCHITECTURE

  • Data: 31/01/2020
  • Mostrar Resumo
  • Growing demand for higher data rates and better quality of Internet services has resulted in high investments in mobile network infrastructure by operators. In this context, Centralized Radio Architecture (CRA) is a promising solution that relies on centralizing, sharing, and better-allocating network resources, resulting in reduced deployment and operation costs when properly planned. While the benefits of CRA are numerous, this cost reduction can also be enhanced through the adoption of alternative energy sources. One of the options for this is the use of solar energy through photovoltaic systems, which adopts the sizing of its basic components, such as panels and inverters. However, one of the main barriers to the concrete use of such a system is its high cost of implementation, which cannot be overlooked. Therefore, the proper disposal of such equipment through optimization approaches, considering the energy demand of CRA , represents a challenge to be overcome. To this end, this paper proposes a strategy to minimize the cost of implementing a photovoltaic system by reducing the number of inverters, which is formulated as a Linear Integer Programming (ILP) problem, with the aim of further reducing costs related to CRA. From the results, it is evident that the optimization technique used implies the reduction of the Total Cost of Ownership (TCO) of the photovoltaic system, as well as the environmental sustainability through the reduction of carbon dioxide (CO₂) emissions in the atmosphere

  • CARMELA SOUZA OLIVEIRA
  • THE APPLICATION OF PHOTOVOLTAIC SYSTEMS IN 5G NETWORK TECHNOLOGY

  • Data: 31/01/2020
  • Mostrar Resumo
  • With the deployment of the next generation of mobile networks, a significant increase in data consumption is estimated and, consequently, a substantial impact on energy consumption. In light of this scenario, it is interesting to think of alternative sources that can meet this energy demand and additionally act to mitigate greater environmental impacts. Based on this economicand, above all, environmental perspecive, this work proposes the use of a photovoltaics system as a strategy for the potentialization of energy consumtion in a less aggressive way to the environment. The experiments carried out evaluate the viability of the proposal from the implementation in two RAN (Radio Access Network) architectures that can be employed to the new generation (5G). The results demonstrate the financial viability in the installation of photovoltaic stru7ctures when compared to conventional sourcesof power generation.

  • PATRIK COELHO LOPES
  • Comparative Analysis of Different Cases of Plasmonic Nanoantennas in Reception Mode in Optical Nanocircuit Application.

  • Data: 30/01/2020
  • Mostrar Resumo
  • In this work, a study is made for the different cases of optical nanoantennas. At nanoantennas considered are: dipole, dipole-loop, isolated loop and nanorod-loop, initially the transmission mode is analyzed to obtain parameters important for the study of nanoantennas, such as input impedance, coefficient of reflection, radiation efficiency, gain diagram. Then for analysis in the mode nanoantennas are excited by a linearly polarized plane wave, varying the direction of polarization. Where the power received by the load versus frequency is The nearby electric field is investigated for all four cases. The following is the application of an optical nanocircuit, which is composed of a circular nanoantenna of reception connected to a bifilar Optical Transmission Line (OTL) on one side, and a dipole on its terminal. In this case, a plane wave is the source and the near field are investigated, it is also made for analysis comparison mode optical nanocircuit separately for connected dipole and loop cases OTL with a load, the power received by the load versus frequency is calculated varying the polarization direction of the plane wave. And finally to get results closer to realistic applications an aperture probe with a beam is applied gaussian focus on nanocircuit. Numerical analyzes will be performed by the Finite Element Method (FEM).

  • DANIELE MOURA DE QUEIROZ
  • A BIG DATA ARCHITECTURE PROPOSAL FOR FAKE NEWS DETECTION

  • Data: 24/01/2020
  • Mostrar Resumo
  • In last years, a large amount of information has been transmitted through the internet, especially in social media, providing ease in gaining knowledge on various topics, but making people susceptible to false information that can cause diverse damages. The spread of this false information has made it difficult to detect reliable news sources, increasing the need for computational tools that can help identify the reliability of digital content. In addition, estimates indicate that the amount of digital data produced per day is over one million gigabytes, of which 79% consists of unstructured data. This massive amount of data generated daily at high speed and in different types of formats such as text, images, videos and audios, makes analysing this data a big challenge. Thus, emerges the concept of Big Data, mainly defined by volume, variety and velocity. With the advent of big data technologies, it is possible to use a range of tools and techniques to efficiently store, process and analyse the massive volume of data in order to help investigate the credibility of shared news over the internet. In this work we discuss the importance of Big Data to avoid fake news, based on an appropriate conceptual and technological framework, and present a proposal of Big Data architecture for storage, processing and analysis of large data sets, aiming to assist in the investigation of truth of news. For this, experiments were performed using a mass of data containing different formats, ie structured and unstructured data, extracted from news sources and forming a corpus composed of false and true news. This mass of data was stored in a Hadoop cluster using the Hadoop Distributed File System (HDFS). The corpus was processed through the MapReduce programming model and the news was classified through the Mahout library. The preliminary results produced by the development of this study reveal an architecture capable of storing, processing and analyzing Big Data in the context of fighting fake news.

  • GABRIEL FELIPE DA SILVA BARROS
  • Non-reciprocal four-port graphene-based device with ring-elliptical ressonator for THz applications

  • Data: 21/01/2020
  • Mostrar Resumo
  • A new type of four-ports circulator is suggestted and analyzed in this paper. The cross section of the componentes features a three layer structure consisting of graphene, silica and silicon. The plane of the circulator figure consists of a graphene circular resonator and four waveguides connected to it. The graphene resonator is normally magnetized in its plane by an external DC magnetic field. The physical principle of the devide is based on the dipole resonance of the magnetizes  graphene resonator. We investigated the influence of different parameters on the characteritics of the circulator. We use Coupled Mode Theory to prove the numerical calculations obtained through computer simulations, the device obtained approximately - 17 dB isolation and -3 dB insertion losses with 4.55 THz center frequency with 1 T polarization DC magnetic field, where the center frequency can be controlled by altering the fermi energy of graphene.

  • THIAGO LIMA DE OLIVEIRA
  • Four-por circulator with graphene-based disc resonator in the THz range

  • Data: 20/01/2020
  • Mostrar Resumo
  • A new type of graphene-based four-port  circulator for the terahertz frequency range is proposed and analyzed in this paper. Consisting of two parallel waveguides laterally coupled to a disc-shaped magnetized resonator. The cross section of the components features a three layer structure consisting of graphene, silicon dioxide and silicon. The graphene resonator is normally magnetized in its plane by an external DC magnetic field. The physical principle of the device is based on the dipole resonance of the magnetized graphene resonator. The influene of different parameters on the characteristics of the circulator was investigated. Numerical simulations demonstrate - 15 dB isolation, insertion losses arouund -2.5 dB and 5.7% bandwidth with the center frequency is 5.03 THz. The DC bias magnetic field is 0.8 T. The center frequency of the circulator can be controlled by changing the fermi energy of graphene.

2019
Descrição
  • RAIMUNDO JOSE SANTOS MOTA
  • PROJETO E SÍNTESE DE SUPERFÍCIE SELETIVA DE FREQUÊNCIAS PARA O PADRÃO IEEE 802.15.3C VIA TÉCNICA DE OTIMIZAÇÃO HÍBRIDA MULTIOBJETIVO DE ALTA PRECISÃO

  • Data: 19/12/2019
  • Mostrar Resumo
  • In this work is presented a hybrid bioinspired optimization technique that associates a General Regression Neural Network (GRNN) with the Multiobjective Bat Algorithm (MOBA), for the design and synthesis of the Frequency Selective Surfaces (FSS), aiming its application in data communication systems by diffusion of millimeter waves, specifically, in the IEEE 802.15.3c standard. The designed device consists of planar arrangements of metallizations (patches), diamond-shaped, arranged over a RO4003 substrate. The FSS proposed in this study presents an operation with ultra-wide band characteristics, its patch designed to cover the range of 40.0 GHz at 70.0 GHz, i.e., 30.0 GHz bandwidth and 60.0 GHz resonance. The upper and lower cutoff frequencies, referring to the transmission coefficient’s scattering matrix (dB), were obtained at the cutoff threshold at -10dB, to control the bandwidth of the device.

  • FLAVIA PESSOA MONTEIRO
  • USING TRUE RMS CURRENT MEASUREMENTS TO ESTIMATE HARMONIC IMPACTS OF MULTIPLE NONLINEAR LOADS IN ELECTRIC DISTRIBUTION GRIDS

  • Data: 19/12/2019
  • Mostrar Resumo
  • Currently, for analyzing harmonic impacts on voltage at a point of interest, due to multiple nonlinear loads, the literature recommends carrying out simultaneous and synchronized measurement campaigns in all suspicious points with the use of high cost energy quality analyzers that are usually not available at the customers’ facilities and very often also not at the electric utilities. To overcome this drawback this paper proposes a method of assessing the harmonic impact due to multiple nonlinear loads on the total voltage harmonic distortion using only the load current true RMS values which are already available in all customers’ installations. The proposed methodology is based on Regression Tree technique using the Permutation Importance indicator which is validated in two case studies using two different electrical systems. The first case study is to ratify the use of Permutation Importance to measure the impact factor of each nonlinear load in a controlled scenario, the IEEE-13 bus test system, using ATP simulation (Alternative Transient Program). The second is to apply the methodology to a real system, an Advanced Measurement Infrastructure System (AMI) implanted on a campus of a Brazilian University, using low cost meters with only true RMS current measurements. The results achieved demonstrated the feasibility of applying the proposed methodology in real electric systems without the need for additional investments in high-cost energy quality analyzers.

  • TIAGO DOS SANTOS GARCIA
  • COMPARATIVE ANALYSIS OF WIRELESS OPTICAL NANOLINKS COMPOSED OF YAGI-UDA AND DIPOLE PLASMONIC NANOANTENNAS

  • Data: 17/12/2019
  • Mostrar Resumo
  • In this work, we present a theoretical analysis of wireless optical nanolinks formed by plasmonic nanoantennas, where the antennas considered are Yagi-Uda and cylindrical nanodipoles made of Au. The numerical analysis is performed by the linear method of moments, where the transmission power and the near electric field are investigated and optimized for three nanolinks: Yagi-Uda/Yagi-Uda, Yagi-Uda/dipole and dipole/dipole. Some results are also obtained by the Finite Element Method. The results show that all these case can operate with good transmission power at different frequencies by adjusting the impedance matching in the transmitting antennas and the load impedance of the receiving antennas.

  • MARLON JOHN PINHEIRO SILVA
  • COMPARATIVE STUDY OF SWARM INTELLIGENCE TECHNIQUES IN ORDER REDUCTION OF LINEAR DYNAMIC SYSTEMS

  • Data: 17/12/2019
  • Mostrar Resumo
  • Model order reduction has been a recurring problem and several techniques have emerged over the years, when, from the point of view of controller design, their elaboration and construction became inadequate, considering the high degree of redundancy, which large real physical systems may possess. In the field of deterministic mathematics, many works, already consecrated in the literature, have proposed to solve such problem. Recently, techniques involving metaheuristic methods in a predetermined search space using Swarm Intelligence (SI) have been used quite successfully and a new tool has been shown as a solution. Based on this context, this paper presents the understanding of the problem from the point of view of linear systems theory; conducting a comparative study between the Swarm Intelligences: Firefly Algorithm, PSO - Particle Swarm Optimization and SFLA - Shuffled Frog Leaping Algorithm.

  • FILIPE CAVALCANTI FERNANDES
  • PROBABILISTIC SELF-ORGANIZING MAP FOR AUTOMATIC PARTIAL DISCHARGE PATTERNS CLASSIFICATION IN HYDROGENERATORS

  • Data: 16/12/2019
  • Mostrar Resumo
  • The most commonly used way to assess the stator isolation condition in hydrogenerators is monitoring partial discharges (DPs). In this work, we present a system for DP pattern classification using a new approach called Probabilistic Self-Organizing Map. Several literature techniques have been combined for preprocessing and pattern visualization. The methodology proposed obtains the separation boundaries on the map that maximize accuracy and automatically determine the probabilities for each type of Dp pattern.

  • FABRÍCIO PINHO DA LUZ
  • COMPARATIVE ANALYSIS OF DISPENSAL COMPENSATION PERFORMANCE IN OPTICAL FIBER NETWORKS

  • Data: 13/12/2019
  • Mostrar Resumo
  • Este trabalho aborda o uso de métodos para tratamento da dispersão em fibras ópticas, mostrando a eficácia da utilização para um melhor resultado do Fator de qualidade (Q. Factor) e da taxa de erro de bit (Min. Ber) na transmissão de dados por redes de fibras ópticas. Desse modo, esta dissertação tem por objetivo fazer uma análise do desempenho de uma das técnicas de Pós-compensação em sistemas Multiplexação por Divisão de Comprimento de Onda Densa, baseado em redes ópticas passivas (DWDM-PON) com 16 canais e 100GHz de espaçamento para uma taxa de transmissão de dados de 10Gbps através do método de Pós-compensação de dispersão; propõe a utilização de técnicas de dispersão, a de Pós-compensação e a de dispersão Cromática na transmissão de dados por fibras ópticas com utilização de fibras compensadoras de dispersão (DCF) para um melhor resultado do fator de qualidade (Q-Factor) e da taxa de erro de bit (Min Ber). A metodologia aplicada teve base em levantamentos bibliográficos de trabalhos na mesma linha de pesquisa sobre métodos de tratamento dos efeitos não lineares, em especial o de dispersão em fibras ópticas; em seguida foi feita a modelagem da rede óptica no software OptiSytem da Optiwave Corporation para implementação das simulações dos métodos utilizados para tratamento da dispersão em fibras ópticas. Concluiu-se, a partir do estudo de três sistemas de compensação de dispersão, onde uma ligação DCF foi utilizada para esse fim, que os valores do fator Q e do BER foram comparados e analisados a uma taxa de transmissão de 10 Gb/s; que o fator Q e o OSNR para o sistema de compensação de simétrica (mista) eram os maiores, sendo considerado o melhor esquema de compensação de dispersão entre os três apresentados neste estudo.

  • RAIMUNDO CLAUDIO SOUZA GOMES
  • SMARTLVGRID - UMA PLATAFORMA APLICADA À CONVERGÊNCIA SMART GRID DE CIRCUITOS LEGADOS DE BAIXA TENSÃO

  • Data: 12/12/2019
  • Mostrar Resumo
  • SMARTLVGRID - UMA PLATAFORMA APLICADA À CONVERGÊNCIA SMART GRID DE CIRCUITOS LEGADOS DE BAIXA TENSÃO

  • BRUNO RAMOS ZEMERO
  • METODOLOGIA PARA O PROJETO PRELIMINAR DE EDIFÍCIOS UTILIZANDO OTIMIZAÇÃO MULTIOBJETIVO BASEADA NA SIMULAÇÃO DE DESEMPENHO

  • Data: 11/12/2019
  • Mostrar Resumo
  • O consumo de energia em edifícios tem um grande impacto energético e ambiental em todo o mundo. O projeto arquitetônico tem um grande potencial para resolver esse problema, porque o envelope do edifício exerce influência sobre o desempenho geral do sistema, mas essa é uma tarefa que envolve muitos objetivos e restrições. Nas últimas duas décadas, estudos de otimização aplicados à eficiência energética de edifícios ajudaram projetistas a escolher as melhores opções de projeto. No entanto, ainda há uma falta de abordagens de otimização aplicadas ao estágio inicial de projeto, que é o estágio mais influente para a eficiência energética do edifício ao longo de todo o seu ciclo de vida. Portanto, esta tese apresenta um modelo de otimização multiobjetivo para auxiliar os projetistas no projeto preliminar do edifício, por meio do algoritmo PAES (Pareto Archived Evolutionary Strategies) com o EnergyPlus Simulator acoplado, para avaliar as soluções. O processo de busca é executado por um matriz binária onde os componentes do matriz evoluem ao longo das gerações, juntamente com os outros componentes do edifício. A metodologia visa encontrar soluções ótimas com o menor custo construtivo associado à maior eficiência energética. No estudo de caso, foi possível simular o processo de utilização do modelo de otimização e analisar os resultados em relação a: Desempenho econômico, Desempenho ambiental, Desempenho energético, Desempenho térmico, Usabilidade e Precisão, provando que a ferramenta serve como suporte no projeto de construções. As soluções ótimas atingiram uma média de 50% de economia de energia em relação ao consumo típico, redução de 50% nas emissões operacionais de CO2 e retorno do investimento em menos de 3 anos nos quatro diferentes climas.

  • TIAGO DE SOUZA ARAUJO
  • DESIGN AND EVALUATION OF A SERIOUS ENGINE REHABILITATION GAME

  • Data: 10/12/2019
  • Mostrar Resumo
  • The area of physical therapy rehabilitation always aims to improve the quality of life of patients, but the process of physical therapy can be considered tedious and tiring. Considering this problem, the Serious Games are presented as an aid tool in the recovery process of patients undergoing physical therapy treatments, which use virtual reality as a motivating element in the patient recovery process. The present work presents the design and evaluation process of a serious motor rehabilitation game which was evaluated by professionals and patients and presented relevant results in the criteria of ease of learning, efficiency, level of inconsistencies, user satisfaction and ease of memorization. through the use of the System Usability Scale (SUS). The Serious Exergame Utility - Questionnaire (SEU-Q) was also used to evaluate the perceived usefulness of the proposed Serious Game, which helped to identify important aspects related to the benefits of its use.

  • IURY DA SILVA BATALHA
  • LARGE SCALE ANALYSIS AND MODELING FOR FREQUENCIES 8, 9, 10 AND 11 GHz IN INDOOR ENVIRONMENTS

  • Data: 06/12/2019
  • Mostrar Resumo
  • Recent research into radio propagation and large-scale channel modeling shows that frequencies can be used above 6 GHz for the new generation of mobile communications (5G). This thesis provides a detailed account of measurement campaigns that use directional horn antennas in co-polarization (V-V and H-H) and cross-polarization (V-H) in line-of-sight (LOS) and obstructed-line-of-sight (OLOS) situations between the transmitter and receptor; they were carried out in a corridor and computer laboratory located at the Federal University of Para (UFPA). The measurement data were used to adjust path loss prediction models of radio propagation, through the minimum mean square error (MMSE) method, for indoor environments in the frequencies of 8, 9, 10 and 11 GHz. The parameters for the models that were determined are as follows: path loss exponent (PLE), polarization exponent (co- and cross-polarization), effects of shadowing and path loss exponent for wall losses. Standard deviation means, standard deviation point by point, CDF and histogram are included as evaluation statistical metrics. The approximations with regard to the large-scale path loss models for frequencies of 8, 9, 10 and 11 GHz show convergence with the measured data, owing to the method employed for the optimization of the MMSE to determine the parameters of the model.

  • JORGE ANTONIO MORAES DE SOUZA
  • Method for Assessing Projects Of Settlement – MAPS

  • Data: 06/12/2019
  • Mostrar Resumo
  • A Study on Changes in Land Use and Land Cover in Settlement Projects in the Amazon and their Impact on Native Forest Degradation.

  • JEAN CARLOS AROUCHE FREIRE
  • ANÁLISE DE DESEMPENHO DE ALGORITMOS PARA CLASSIFICAÇÃO DE SEQUÊNCIAS REPRESENTANDO FALTAS DO TIPO CURTO-CIRCUITO EM LINHAS DE TRANSMISSÃO DE ENERGIA ELÉTRICA.

  • Data: 05/12/2019
  • Mostrar Resumo
  • Maintaining power quality in electrical power systems depends on addressing the major disturbances that may arise in their generation, transmission and distribution. Within this context, many studies have been developed aiming to detect and classify short circuit faults in electrical systems through the analysis of the electrical signal behavior. Transmission line fault classification systems can be divided into two types: online and post fault classification systems. In the post-missing scenario the signal sequences to be evaluated for classification have variable length (duration). In sequence classification it is possible to use conventional classifiers such as Artificial Neural Networks, Support Vector Machine, K-nearest neighboors and Random forest. In these cases, the classification process usually requires a sequence pre-processing or a front end stage that converts the raw data into sensitive parameters to feed the classifier, which may increase the computational cost of the classification system. An alternative to this problem isthe FBSC-Frame Based-Sequence Classification (FBSC) architecture. The problem with FBSC architecture is that it has many degrees of freedom in designing the model (front end plus classifier) and it should be evaluated using a complete dataset and rigorous methodology to avoid biased conclusions. Considering the importance of using efficient short-circuit fault classification methodologies and mainly with low computational cost, this paper presents the results of the KNN-DTW (K-Nearest Neighbor) algorithm analysis study associated with Dynamic similarity measurement. Time Warping (DTW) and HMM (Hidden Markov Model) algorithm for fault classification task. These two techniques allow the direct use of data without the need for frontends for signal pre-processing, as well as being able to handle multivariate and variable time series, such as signal sequences for the post-miss case. To develop the two proposed systems forclassification, simulated data of short-circuit faults from the UFPAFaults public database wereused. To compare results with methodologies already presented in the literature for the problem, the FBSC architecture was also evaluated for the same database. In the case of FBSC architecture, different front ends and classifiers were used. The comparative evaluation was performed from the measurement of error rate, computational cost and statistical test. The satisfactory results achieved demonstrate the applicability of the two techniques proposed for the short circuit fault classification problem.
  • JOSE DE SANTANA FIEL
  • CLASSIFICATION OF EPILEPTIC RESTING-STATE EEG SIGNALS BASED ON LINEAR CLASSIFIERS AND A CROSS-SPECTRUM FEATURE

  • Data: 04/12/2019
  • Mostrar Resumo
  • Millions of Brazilians are affected by epilepsy. The diagnosis of patients with epilepsy is critical for initiating appropriate treatment. However, the diagnosis relies on visual inspection of neuronal electrical activity, recorded by electroencephalography (EEG), by trained neurophysiologists. Due to this, this process is time consuming and may require days of continuous EEG recording, which makes the diagnosis costly. Hence, the present dissertation proposes a framework for automatic identification of the EEG of epileptic subjects. The method can be applied to short-term records of resting-state EEG. The proposed system combines the use of a feature extracted from the power spectral density of EEG signals and machine learning algorithms. The attribute used is an estimate of functional connectivity between EEG pair of channels, named debiased weighted phase-lag index. The algorithms used for classification were linear discriminant analysis (LDA) and support vector machines (SVM). EEG signals were recorded during the interictal state, i.e., the period between seizures and had no epileptiform activity. In order to test the method proposed, records of 11 epileptic patients and 7 healthy subjects were used. The algorithms used reached their maximum performances, 100% accuracy and unit area under the receiver operating characteristic (AUROC), when a feature vector with 190 attributes was used as input. The results show the effectiveness of the proposed system, given the high segregation capacity of the groups.

  • FLAVIO MENDES DE BRITO
  • FRONTHAUL SIGNAL COMPRESSION TECNHIQUES EVALUTAION

  • Data: 27/11/2019
  • Mostrar Resumo
  • The growing data demand of mobile networks has motivated the creation and evolution of architectures aiming to supply such transfer requirements. To meet these requirements, a number of challenges need to be met, including data transfer at the link between the Base Station Unit (BBU) and the Remote Radio Head (RRH). Known as fronthaul, this link requires high speed information transfer and one method to increase the rate is data compression. Therefore, this study aimed to evaluate different techniques used in fronthaul data compression. Initially, the efficiency of some quantizers such as the scalar quantizer (SQ), two-dimensional vector (VQ) and the Trellis Coded Quantization (TCQ) was verified. To increase compression, the Huffman encoder was used. Another analysis consisted of combining these quantizers with resampling, Block Scaling and Huffman coding. In both analyzes, it was found that the system using TCQ as quantizer obtained the best relationship between Error Vector Magnitude (EVM) and computational cost, offering an EVM lower than the scalar quantizer and a computational cost lower than the vector quantizer.

  • LUAN ASSIS GONCALVES
  • AN ANALYSIS THE USAGE OF MULTI-SCALE INFORMATION IN THE MAPPING OF PSNR TO PERCEPTUAL SCORE

  • Data: 18/11/2019
  • Mostrar Resumo
  • The prediction of visual quality is crucial in image and video systems. Image quality metrics based on the mean square error prevail in the field, due to their mathematical straightforwardness, even though they do not correlate well with the visual human perception. Latest achievements in the area support that the use of convolutional neural networks (CNN) to assess perceptual visual quality is a clear trend. Results in other applications, like blur detection and de-raining, indicate the combination of information from different scales improves the CNN performance. However, to the best of our knowledge, the best way to embody multi-scale information in visual quality characterization is still an open issue. Thus, in this work, we investigate the influence of using multi-scale information to predict image distortion. Specifically, we propose a single-stream dense network that estimates a spatially-varying quality metric parameter from reference image. The proposed method achieved a reduction of 36.37% and 69.45% for the number of parameters and FLOPs, respectively, and its performance is compared with a competing state-of-the-art approach by using a public image database.

  • MARCELO SOUSA COSTA
  • IMPACTO TÉCNICO E ECONÔMICO DA INTEGRAÇÃO DE UMA GERAÇÃO DISTRIBUÍDA DE ALTA CAPACIDADE EM UM SISTEMA DE DISTRIBUIÇÃO COM REGULADORES DE TENSÃO EM CASCATA

  • Data: 14/11/2019
  • Mostrar Resumo
  • This dissertation analyzes the technical and economical impact of a distributed generation in a distribution system composed of two circuits with two cascade step voltage regulator bank (SVRs) in each, being a case study in the circuits PR-09 and PR-11, both of them. 34.5 kV of the Paragominas Substation of the Centrais Elétricas do Pará – CELPA. This is the assessment of the technical and economic impact on consumers end energy distributors, resulting from the operation of a distributed generation (GD) of 12.5 MVA in the presence of two cascaded step voltage regulator bank (SVRs).

    Distribution networks with the presence of large distributed generation may subject SVR to scenarios of reversal of active power flow which, depending on the control modes "Active Bidirectional Flow to Opposite Limit" and "Reverse Flow by Cogeneration", result in abnormal situations, which may cause the voltage regulator to lose its regulating capacity, depending on the adjustment employed in the electronic control of the RT, as a consequence consumers may be subjected to severe undervoltage or overvoltage. This phenomenon, in which the voltage regulator loses the ability to control the desired bar voltage, is known as the runaway condition. In addition, large GDs, depending on their location in the distribution system, can cause critical overvoltages. Some actions can be taken to reduce or mitigate this effect, such as resetting the feeders, changing the Voltage Regulator setpoint, and modifying Distributed Generation mode of operation. The economic assessment was made for all operating scenarios studied, being important to show, in addition to the technical impact, the financial impact for customers and distributor.

  • VANDERSON GERALDO ARANHA DA SILVA
  • MANUTENÇÃO PREDITIVA EM SISTEMAS ELÉTRICOS DE POTÊNCIA UTILIZANDO REGISTROS DE DISPOSITIVOS ELETRÔNICOS INTELIGENTES (IEDs)

  • Data: 08/11/2019
  • Mostrar Resumo
  • Today, electricity generation and transmission utilities are paid for the availability of their transmission functions (FTs) and no longer for what is generated and transmitted in the National Interconnected System (SIN). In this context, more and more efforts are made by generating and transmitting utilities so that untimely disconnections do not occur or be avoided. In addition to the loss of revenue when unplanned outages occur in the system, utilities are subjected to a rigid oversight process by regulators agents, such as the National System Operator and the National Electric Energy Agency. Investments in technology are allowing new directions for the operation and maintenance of power equipment, since high-capacity data-processing devices are enabling optimized predictive maintenance techniques based on the protection, control and monitoring of electrical quantities of the electrical system, as well as guaranteeing the speed and security of information. Intelligent Electronic Devices (IEDs) are multiprocessor systems with hardware and software that continuously work with electrical quantity measurements, protection, command, control, monitoring and have robust memories to record lists of events and waveforms of the analog signals in real time. In this work, real cases will be presented in which FTs shutdowns were avoided with the analysis of the lists of events and waveforms, which allows utilities to anticipate the problem, have the best decision making and significantly reduce its financial losses in the operation and maintenance of its electrical system.

  • VANESSA CASTRO REZENDE
  • METODOLOGIA PARA A CLASSIFICAÇÃO AUTOMÁTICA DE DOENÇAS EM PLANTAS UTILIZANDO REDES NEURAIS CONVOLUCIONAIS

  • Data: 07/11/2019
  • Mostrar Resumo
  • As redes neurais convolucionais são uma das técnicas de aprendizado profundo que, devido ao avanço computacional dos últimos anos, alavancaram a área de visão computacional ao possibilitar ganhos substanciais nos mais variados problemas de classificação, principalmente aqueles que envolvem imagens digitais. Tendo em vista as vantagens na utilização dessas redes, diversas aplicações para a identificação automática de doenças de plantas foram desenvolvidas com o objetivo de fornecer uma base para o desenvolvimento de assistência especializada ou ferramentas de triagem automática, contribuindo para práticas agrícolas mais sustentáveis e maior segurança na produção de alimentos. Nesse contexto, este trabalho tem como objetivo propor uma metodologia para a classificação de múltiplas patologias referentes a diversas espécies de plantas tendo como insumo uma base de dados composta de imagens digitais de doenças em plantas. Inicialmente, essa metodologia envolveu etapas de tratamento das imagens da base de dados de doenças em plantas para possibilitar que estivessem aptas a serem entradas nos modelos de redes convolucionais selecionados (VGG16, RestNet101v1, ResNet101v2, ResNetXt50 e DenseNet169), assim como a geração de dez novas bases, a partir da base de referência, com dimensões de 32×32, 40×40, 48×48, 56×56 e 64×64, variando entre as 50 e 66 classes com maior representatividade, com o intuito de submeter os modelos a situações diversas. Após o treinamento dos modelos, um estudo comparativo foi conduzido com base em métricas de classificação amplamente utilizadas na área de aprendizagem profunda, como a acurácia no teste, f1-score e área sob a curva. A fim de atestar a significância dos resultados obtidos, foi realizado o teste estatístico nãoparamétrico de Friedman e dois procedimentos post-hoc, que demonstraram que a ResNetXt50 e a DenseNet169 obtiveram resultados superiores quando comparadas a VGG16 e as ResNets de 101 camadas. Em suma, a metodologia proposta neste estudo se mostrou eficiente no que tange a criação de um método para a identificação automática de patologias em plantas, podendo ser útil no que tange o diagnóstico precoce das doenças.

  • PAULO AUGUSTO SHERRING DA ROCHA JUNIOR
  • DESIGN AND IMPLEMENTATION OF A COMPUTER NUMERICAL CONTROL SYSTEM: SNAP CONSTRAINED SMOOTH TRAJECTORIES

  • Data: 31/10/2019
  • Mostrar Resumo
  • Computer Numerical Control (CNC) is a technology made up of several blocks. Among these, lies the Trajectory Planning block, responsible for reference profile generation that are fed to position control loops. The need for Trajectory Planning arises from the mechanical constraints inherent to every plant to which CNC technology is applied. The machine's operational limits must be respected, in order to avoid several issues, such as: loss of precision, early wear of machine's parts and excessive vibration. This paper proposes a novel smooth real-time trajectory generation setup based on an embedded system platform. A real-time snap and jerk bounded control algorithm is proposed, to achieve continuous and smooth feed motion in traditional Numeric Control code file, dealing both with straight lines and arcs. A local motion blending algorithm, applicable to the proposed method, is also presented. The developed algorithm was deployed to a BeagleBone Black, an embedded System-on-Chip, single board computer and tested in a prototype router machine. A comparison between the proposed method against the seven segments and trapezoidal acceleration methods is presented, both in terms of performance and of real-time computing viability. Simulation and Experimental results demonstrate the effectiveness of the proposed method to generate velocity, acceleration, jerk and snap bounded three dimensional trajectories, reducing the RMS error in up to 8.2% and 22.38% when compared to the Seven Segments and to Trapezoidal Acceleration methods, respectively. Assessing the error area on straight angles, the proposed method produced error areas 24% and 80% smaller when compared to the Seven Segments and to Trapezoidal Acceleration methods, respectively.

  • JAHYRAHÃ LEAL DOS SANTOS CRUZ
  • STOCHASTIC AUGMENTATION WITH EXTENDED PREDICTION HORIZON BASED ON THE PID FOR A MULTIVARIABLE SYSTEM

  • Data: 25/10/2019
  • Mostrar Resumo
  • This research aimed to investigate and design a control system based on a 10-step ahead Long Range Prediction Horizon Stochastic Augmentation (AEHPLA) procedure, which consists of combining the characteristics of a linear controller with a stochastic predictive controller, resulting in a more robust control system with predictive, linear and stochastic characteristics. For the application of the Stochastic Augmentation, the control system chosen was the digital PID controller, which results in an augmented prediction horizon controller, which will be compared to the digital PID controller. Both controllers were tested, by simulation, in a process that represents the dynamics of a helicopter, which is called 2DOF Helicopter (H2DOF), manufactured by Quanser. H2DOF is a multivariable system that has been decentralized by state space transformation to transfer function, generating two SISO systems, one for pitch angle and one for yaw angle, so that in decentralization it was considered that the influence of coupling is modeled as an internal disturbance of the system. The advantage of this technique is that it reduces the complexity of the multivariable system through the simplified control algorithms. In addition, decentralization requires pairing the best input with the best output, which is performed using the Relative Gain Array (RGA) method. For the purpose of proving the efficiency of the AEHPLA based control, simulation tests were performed in the Matlab programming environment: output load disturbance, input load disturbance, Gaussian perturbation, control effort weighting parameter variation and step type reference change. All tests were evaluated using performance and robustness indices. In all tests the AEHPLA-based control system obtained the best result compared to the PID controller.

  • PEDRO FERREIRA TORRES
  • DEVELOPMENT AND MODELING OF A LOW VOLTAGE DISTRIBUTION NANOGRID WITH DISTRIBUTED GENERATION SYSTEMS

  • Data: 23/10/2019
  • Mostrar Resumo
  • The concept of direct current distribution minigrids has been gaining ground in academia and industry regarding the development of distribution grid applications with high penetration of distributed energy sources and storage systems. The adoption of a direct current distribution system facilitates the integration of sources such as photovoltaic and wind generation and storage systems such as batteries, as these technologies operate intrinsically in direct current. In this sense, this work presents the development of a direct current distribution nanogrid installed in the laboratory of the Group of Studies and Development of Energy Alternatives (GEDAE), of the Universidade Federal do Pará. The developed grid is composed by three PV generation systems and storage in battery banks and three load banks, distributed over the 200 m grid in a ring topology, on a 24 Vdc bus. Two simulation methodologies were developed and are capable of reproducing the nanogrid’s operational behavior under static and dynamic conditions, allowing the evaluation of the grid performance over a day of operation. Tests are also presented with measurements at strategic points of the grid to evaluate the system behavior under specific operating conditions, being normal or under contingency. The results attest the nanogrid's ability to reliably meet the loads, as long as it respects the limitations of the implemented power generation and storage system. In addition, it was found that the characteristics related to the charge controller topology benefits the power quality for the developed grid size and topology.

  • LORENA DOS REIS MORAES
  • Competitive Autoassociative Neural Networks for Electrical Appliance Identification for Non-intrusive Load Monitoring

  • Data: 23/10/2019
  • Mostrar Resumo
  • Residential environments are responsible for a large part of the consumption of electricity, and it is very relevant to help consumers in their decision making, aiming to achieve greater energy efficiency. For the consumer it is important to know about their monthly bill of energy consumption so that they can identify in these periods of their highest consumption as well as the most consumed equipment. Non-intrusive load monitoring (NILM) emerges exactly as a technique capable of assisting consumers with information about individual consumption of equipment, thus providing information that enables them to take initiatives to reduce their consumption and increase energy efficiency.

     In a NILM system four steps are key: the acquisition of aggregate data through the single sensor, the detection of equipment on / off events from the aggregate load, the extraction of disaggregated signal characteristics and the identification of equipment from the characteristics. extracted from the disaggregated signal.

     In the context of NILM systems, this work proposes the development of a new methodology for the recognition of electrical equipment in a residential environment using the Auto Associative Neural Networks Competition. For the development of the methodology three public databases containing a disaggregated load database of several equipments were used. The main idea of the proposed methodology is that, once validated, it can be applied to any database in the future, aiming at the development of new equipment recognition systems for new NILM systems. The good results achieved so far, with the methodology applied, recognizes 7 devices in each database, indicating that the proposed methodology may be able to perform the recognition task satisfactorily, which may contribute to the future creation. non-intrusive monitoring systems that meet market demands.

  • LUANA GONCALVES
  • ASSESSMENT OF COMPUTED TOMOGRAPHY IMAGES  WITH LOSSY CODING USING BAYESIAN NETWORKS

  • Data: 21/10/2019
  • Mostrar Resumo
  • Currently, the medical images have a significant impact on the diagnosis of pathologies, consequently, the development of metrics for the evaluation of such images has been increasingin in order to  preserve or improve its original features when subjected to compression, enhancement and digital transmission operations. The complexity in order to performance analysis of a metric includes the correlation of metrics with the subjective data obtained experimentally and also the difficulty of obtaining such data. Therefore, development of new metrics and comparative evaluation of metrics applied to diagnostic images are relevant. In this work, a methodology for the acquisition of subjective data and visual quality assessment metrics Bayesian network based  developed specifically for the context of diagnostic images   are proposed.

  • JULIO CESAR REIS DA SILVA
  • TRANSPORTE ELETRÔNICO ENTRE NANOPARTÍCULAS METÁLICAS

     

  • Data: 11/10/2019
  • Mostrar Resumo
  • Um dos grandes desafios da atualidade é a manipulação efetiva da eletrônica na escala nanométrica. Essa ideia foi iniciada por Aviram e Ratner em 1974 na criação de um diodo retificador unimolecular. A partir de então, investigações importantes têm se destacado em modelagem teórica de transporte eletrônico, com o intuito de se estudar a relação de dependência da estrutura da ponte molecular com as propriedades eletrônicas das ligações realizadas com os eletrodos, e desta forma construir um dispositivo eletrônico funcional. Assim, o trabalho de pesquisa realizou um estudo teórico das propriedades eletrônicas em junções de única molécula de Au, submetida em uma ponte molecular e pontos quânticos, através de análise das curvas características de Corrente-Tensão, Condutância diferencial-Tensão, Transmitância – Energia e Tensão, Densidade dos Estados do Dispositivo em função da Energia e Autocanais de Condução. Para tanto, usou-se a Teoria do Funcional da Densidade combinada a Função de Green de Não-Equilíbrio via pacotes de Softwares livres Siesta e Transiesta. Os resultados indicam a presença de muitos entrelaçamentos de regiões de probabilidades de transporte eletrônico, com certas diferenciações, gerando principalmente mudanças com estes que possuem pontos quânticos. Por fim, estes dispositivos eletrônicos de Au apresentaram vários indícios para outras pesquisas com outros tipos de materiais envolvidos nas mesmas ideias centrais de mudança de geometria com pontes moleculares e pontos quânticos para o controle de cargas e geração de novos fenômenos.


    Artigos Relecionados com a defesa da Dissertação:

    REIS-SILVA, J.C.; FERREIRA, D.F.S.; LEAL, J.F.P; DEL NERO, J.; Enhancing and optimizing electronic transport in biphenyl derivative single-molecule junctions attached to carbon nanotubes electrodes. Solid State Communications, 252, 46-50 (2017). DOI: 10.1016/j.ssc.2017.01.015

    S. M. Corrêa; D. F. S. Ferreira; M. R. S. Siqueira; J. C. Reis-Silva; J. F. P. Leal; C. A. B. da Silva Jr; J. Del Nero. Investigation of electronic transport under mechanical strain in a molecular junction composed of a polyyne bridge connected to SWCNT electrodes. Physical Chemistry Chemical Physics, 19 (33), 22078-22087 (2017). DOI:10.1039/C7CP03080K


  • ARILSON GALDINO DA SILVA
  • HYDROLOGIC FORECASTING MODEL USING ARTIFICIAL NEURAL NETWORKS: A CASE STUDY IN THE XINGU RIVER BASIN – ALTAMIRA-PA

  • Data: 10/10/2019
  • Mostrar Resumo
  • Knowledge about the extent of riverbed overflow is extremely necessary for the determination of areas at risk. The City of Altamira-PA, located on the banks of the Xingu River, historically suffers from extreme events of floods that provoke floods, causing great damages to the population. Considering the problem, this paper presents a monthly level prediction system of the Xingu River based on neural networks perceptron of multiple layers. For the development of the system, rainfall data were used in the basin and sub-basins of the Xingu River, and SST information (Sea Surface Temperature) from 1979 to 2016. The satisfactory results demonstrate the great applicability the artificial neural networks to the problem.

  • FATIMA PRISCILA ARAUJO TEIXEIRA
  • COEXISTENCE ANALYSIS BETWEEN 5G SYSTEMS AND SERVICES FIXED IN MILLIMETER WAVE BAND

  • Data: 07/10/2019
  • Mostrar Resumo
  • This works aims to analyze the impact of interference of a 5G system over a legacy 26 GHz fixed point-to-point system and, thus, obtain a minimum protection distance for these systems to operate without interfering with each other. To obtain these results, simulations were performed using the Monte Carlo method. The impact of 5G network co-channel interference on the fixed service was evaluated considering different parameters such as Fs antenna height, cell number, FS antenna gain and number of users. In the results obtained, the 7-cell tri-sectored network topology, combined with a 60 m FS height, had the greatest impact on the required protection distance, while other parameters such as gain and power had a moderate impact. These results imply that coexistence will be possible when all appropriate parameters are measured for each case in question. Another contribution of this dissertation is the availability of a coexistence model in the SEAMCAT simulator, which can help new scenarios for coexistence analysis.

  • DIORGE DE SOUZA LIMA
  • ELECTROMAGNETIC AND MECHANICAL ANALYSIS IN TRANSFORMERS UNDER INRUSH CURRENT AND SYMPATHETIC INRUSH

  • Data: 01/10/2019
  • Mostrar Resumo
  • The power transformer is one of the most important equipment in the electric power system, allowing the feasibility of connecting the generating centers to the consumer centers, even over long distances. Reliable and continuous operation is of fundamental importance for service maintenance and is subject to various types of disturbances that can lead to failures. In this perspective, studies of the dynamic behavior of transformer windings through computer simulations have been widely used to safely and accurately evaluate their operation. Therefore, this paper presents the methodology for research on a 50 MVA power transformer using the finite element method for steady state and time domain analysis. Thus, the study was performed by means of couplings (electromagnetic-mechanical circuit). In the first analysis (circuit study), the ATPDraw software was used to obtain the behavior of the inrush current and solidarity energization during the transformer bank energization. Therefore, in the ANSYS MAXWELL software, electromagnetic studies were performed. For this, a real 3D model was used (taking into account the characteristics of the core lamination and windings, some of them in disc format). Thus, the results are presented as the behavior of magnetic induction and electromagnetic forces in the equipment windings. Finally, in the ANSYS STRUCTURAL software, structural (mechanical) studies were performed. Also, as before, a close-to-real 3D model was used, presenting as results the behavior of the total deformation in the winding, the mechanical stress suffered and the degree of safety during the occurrence of energization. The steady state studies were considered three operating conditions: nominal condition, solidarity energization and inrush current. For the nominal condition, the equipment's plate data was used, for the energizing condition (solidarity energization and inrush current) the largest amplitude obtained during the simulation was used. It is noteworthy that for the time domain analysis, only the condition of the inrush current was analyzed, both for the high computational cost required and for being the worst condition in the steady state analysis.

  • HUGO RODRIGUES DE BRITO
  • FORMULAÇÃO ANALÍTICA PARA ESTUDO DE REDES DE DISTRIBUIÇÃO ATIVAS CONSIDERANDO A PRESENÇA DE REGULADORES DE TENSÃO

  • Data: 26/09/2019
  • Mostrar Resumo
  • Reguladores de tensão (RTs) localizados em alimentadores radiais de média tensão têm participação recorrente em diversas estratégias de mitigação dos impactos da interconexão de unidades de geração distribuída (GD). Entretanto, análises expeditas de parâmetros característicos de redes de distribuição ativas não costumam considerar o efeito das comutações de tape dos RTs em seus equacionamentos. Esta dissertação propõe uma formulação analítica para avaliar a influência desses dispositivos, baseada na adaptação matemática de equações clássicas da literatura. O aparato teórico deduzido diz respeito à variação de tensão ao longo da linha, ao requerimento de potência reativa, às perdas elétricas do sistema e à capacidade de hospedagem de GDs. A proposta é validada via estudos comparativos em um sistema-teste simples, bem como em um alimentador rural extenso de 34,5 kV que inclui dois RTs em conexão cascata e uma GD de elevada penetração em sua extremidade. O Open Distribution Simulator Software (OpenDSS) é utilizado para fins de modelagem e simulações de fluxo de carga convencional e de séries temporais. Os resultados evidenciam os méritos da formulação desenvolvida na correta estimação de parâmetros de redes de distribuição ativas com a presença de RTs, o que caracteriza uma melhoria em relação às ferramentas convencionais para estudos preliminares de integração de GDs.


  • THIAGO LIMA SARMENTO
  • COMPARISON OF SATELLITE TRACKING TECHNIQUES IN INCLINED ORBIT

  • Data: 26/09/2019
  • Mostrar Resumo
  • This work implements satellite tracking techniques in inclined orbit and compares their performances with other techniques, describing operaton and implementng in a simulaton environment and in a real control system to generate the performance evaluaton of each one. One of the techniques investgated is reinforcement learning. Tracking satellites in inclined orbit is of paramount importance for telecommunicatons using this type of link, allowing automatc communicaton maintenance and extending the service life of satellite services in this situaton. Algorithms widely used in tracking, both in the literature and in commercial equipment, result in estmates or predictons of satellite positon rather than actual positon, and require a study of the specifc characteristcs of the region where the base staton is located. The complexity and investments in the tracking technique vary according to the commitment made in the antenna installaton and control systems, being necessary to compare the existng methods before their implementaton. The work develops the environment necessary to simulate satellite communicaton, from recepton to antenna movement, to analyze the performance of the technique in

  • VALERIA MONTEIRO DE SOUZA
  • PRÉ-DESPACHO ÓTIMO DA GERAÇÃO DISTRIBUÍDA PARA MELHORIA DA OPERAÇÃO DE REDES DE DISTRIBUIÇÃO COM PRESENÇA DE REGULADORES DE TENSÃO NO MODO BIDIRECIONAL

  • Data: 25/09/2019
  • Mostrar Resumo
  • Os sistemas de energia elétrica têm sido significativamente alterados nos últimos anos devido à crescente integração de Geração Distribuída (GD) em suas redes. Entretanto, apesar das vantagens identificadas em se aumentar o uso de GDs, a modificação do caráter passivo dessas redes incorre em diversos impactos. Para que esses sistemas possam ter suas características de segurança, confiabilidade e robustez asseguradas, diversos estudos têm sido desenvolvidos para mitigar os problemas detectados provocados por esse tipo de geração e maximizar seus benefícios. Nesse contexto, é realizado, nesta dissertação, um estudo de integração de um Produtor Independente de Energia (PIE) em um alimentador rural extenso localizado no estado do Pará, o qual possui reguladores de tensão (RTs) em cascata e apresenta a possibilidade de manobra de rede com um alimentador vizinho. Com a conexão do PIE, os RTs desse alimentador podem ter seu fluxo de potência ativa invertido tanto pela potência injetada pela GD quanto pela reconfiguração topológica da rede, deixando-os sujeitos a perderem sua capacidade de controle com a ocorrência da condição de runaway. Sendo assim, os cenários operativos possíveis, com diferentes configurações dos RTs e considerando curvas de carga reais, foram analisados utilizando simulações realizadas no OpenDSS (Open Distribution Simulator Software). A partir da avaliação desses resultados, foi proposta uma estratégia de pré-despacho ótimo da GD do PIE visando não apenas evitar que a condição de runaway ocorra, como também contribuir para a garantia de níveis adequados de tensão e preservação da confiabilidade da rede na qual ele será integrado. Os testes de desempenho da estratégia confirmaram sua viabilidade como ferramenta de mitigação dos impactos causados por GDs de alta penetração em redes de distribuição reconfiguráveis que possuem RTs.

  • SUZANE ALFAIA DIAS
  • Uma estratégia para Alocação Eficiente de Recursos Móveis Utilizando Sistema Fuzzy para um Esquema de Planejamento e Provimento de QoS.

  • Data: 25/09/2019
  • Mostrar Resumo
  • Com o crescimento dos dados móveis e as rápidas tendências de urbanização, haverá uma densidade extremamente alta de links de counicação sem fio nas cidades, sendo assim os usuários esperam um ambiente onde possam ter acesso à internet aos seus dispositivos a qualquer hora e local. Devido a problemas no CAPEX/OPEX, uma implantação de small cells não é uma estratégia ecnômica em cenários  de tráfego de dados intenso, desta forma, a utilização de UAVs para melhorar a cobertura e o desempenho da rede torna-se viável. A fim de Qualidade de Serviço da rede, foi proposto um sistema computacional para realizar tomada de decisão que recebe como entrada informações da rede como vazão, taxa de perda de pacote e atraso, e retorna a qualidade de rede para aquele tipo específico de aplicação. O sistema como um todo verifica a necessidade ou não do uso de Veículos Aérios Não Tripulados (UAVs) para melhorar a qualidade da rede e a cobertura da área de maior demanda. De outra forma, os UAVs permanecem na estação base. Através do método proposto houve melhorias na Qualidade de Serviço (QoS) da rede, permitindo uma perda de pacotes e no atraso, e um aumento na vazão.

  • ANA LAURA PINHEIRO RUIVO MONTEIRO
  • DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA OTIMIZAÇÃO DE CÁLCULO LUMINOTÉCNICO DE INTERIORES BASEADO EM ALGORITMO GENÉTICO

  • Data: 17/09/2019
  • Mostrar Resumo
  • There is a large quantity of lamps and luminaires that present characteristics, such as the amount of lumens and lifetime of lamps. Thus, there are several possible combinations of lamps and luminaires that can be employed as a solution to adapt the lighting of a given indoor environment. What will differentiate each solution will be the cost of investment and the time of financial return. This work presents the development of a tool that provides the user with the possibility to carry out lighting studies for any internal business environment, considering multiple scenarios and following the regulations set by the NBR ISO/CIE 8995-1:2013. Studies are carried out in an optimized method by running a genetic algorithm, which has as objective function minimization of time of financial return on investment of lamps and luminaires, which are necessary for the achievement of luminance area. For the development of the tool spreadsheets were associated with the Python programming language and the PyCharm as the development software. The lumens method was used for lighting sizing, the simple linear regression technique was used to estimate the rate of electrical power for a period of 10 years and Net Present Value alongside the discounted payback for analysis of financial return of the solutions generated by the tool. The developed tool was applied in four different scenarios in the Center of Excellence in Energy Efficiency of the Amazon (CEAMAZON) building. Valid solutions for all scenarios were found, that is, a quick payback, taking into consideration the initial investment, annual consumption and maintenance, if any. The best solutions were simulated by the software DIALux as an aid in the projection of the distribution of luminaires in environments. The aspects described in this work show the functionality and applicability of this tool, in order to support the user in the planning of lighting projects sizing, having achieved the established goal, showing functionality and effectiveness.

  • HUGO RIVIERE SILVA MORAES
  • Aplicação de Redes Neurais Profundas ao Diagnóstico de Faltas Incipientes em Transformadores

  • Data: 11/09/2019
  • Mostrar Resumo
  • Este trabalho apresenta os resultados obtidos da pesquisa de aplicação de Redes Neurais Profundas para o problema de diagnóstico de faltas incipientes em transformadores baseado na análise dos gases dissolvidos em óleo (DGA). Dois modelos são propostos utilizando Redes Neurias Autocodificadoras Empilhadas e redes Neurais Convolucionais. Para o desenvolvimento do sistema foi utilizada a base de dados TC10 de equipamentos faltosos inspecionados em serviço e usada para a publicação da norma IEC 60599.

  • ALLAN RODRIGO ARRIFANO MANITO
  • Estimação das Parcelas de Contribuição de Cargas Não Lineares na Distorção Harmônica de Tensão de um Barramento de Interesse do Sistema Elétrico de Potência utilizando Rede Neural Artificial

  • Data: 06/09/2019
  • Mostrar Resumo
  • Apresenta-se neste trabalho uma metodologia para estimar a contribuição de cargas não lineares na distorção de tensão de um barramento de interesse do sistema elétrico de potência. A estimação é realizada através da construção de um modelo com base em redes neurais artificiais (RNA), em que a entrada do modelo é constituída pelas correntes harmônicas provenientes das cargas não lineares que compõem o sistema em estudo, e a saída da RNA corresponde aos valores de tensão harmônica no barramento sob estudo, para a mesma frequência harmônica. O estudo é realizado para cada ordem harmônica individualmente e os dados necessários para a construção do modelo bem como para validação dos resultados são obtidos a partir de campanhas de medição sincronizadas e por meio de simulação computacional, através de estudos de fluxo de carga harmônico. A partir de comparações dos resultados de referência via simulação computacional com os resultados obtidos via modelo neural, é observado que a metodologia desenvolvida é capaz de classificar corretamente o grau de impacto de cargas não lineares na distorção de tensão em uma barra de interesse do sistema elétrico.

  • FABRICIO MENEZES MARES
  • EXPERIMENTAL EVALUATION OF DIFFERENT MATHEMATICAL MODELS APPLIED IN PERFORMANCE PREDICTION OF PHOTOVOLTAIC GENERATORS

  • Data: 04/09/2019
  • Mostrar Resumo
  • Among the devices that guarantee the generation of electricity through the photovoltaic conversion process the module is the basic (elemental) unit of a photovoltaic system. The literature review revealed that exists “countless” mathematical models used to predict the performance of modules. However, in general, they can be classified into two categories: power models and models based on the equivalent photovoltaics cell/module circuits. Therefore, in this work 14 models were selected, being 11 of power, 2 based on equivalent circuits and 1 which is the composition of both, but all with the objective of estimating the maximum power (Pmp), which reflects the desired operating point on a given system. The evaluation process of the selected models was made from two statistical approaches: the descriptive, also referred to as traditional; and the comparative, which seeks to relate the estimates versus the measured values and admitted as reference. For this, 4 different photovoltaic modules were used, but of the same technology (polycrystalline), experimentally measured using a monitoring system installed in the testing area of the Study Group and Development of Energy Alternatives (GEDAE / UFPa). Statistical evaluations made it possible to identify the most adherent models, both in terms of precision and accuracy. However, it is important to emphasize that this is not enough to determine a single best model, because depending on the application objectives, it may be that the effort is a determining factor, or even more important than its accuracy. Thus, besides the statistical evaluations, at the end of this work an ordinal classification of the models is presented, considering a compromise relationship established between precision, accuracy and effort.

  • RODRIGO RODRIGUES PAIVA
  • SUPERFÍCIE SELETIVA DE FREQUÊNCIAS INTELIGENTE BASEADA EM GRAFENO

  • Data: 02/09/2019
  • Mostrar Resumo
  • Neste trabalho, desenvolve-se uma formulação baseada no método diferenças finitas no domínio do tempo e na técnica exponencial matriz para modelagem de folhas de grafeno. Aplica-se a referida formulação para modelar superfícies seletivas de frequências (FSS) propostas neste trabalho, cuja célula unitária possui dois elementos de grafeno. A partir da mudança dos valores de potencial químico destes elementos, a estrutura pode operar com bandas de rejeição única ou dupla, reconfiguráveis. Propõe-se, portanto, uma FSS inteligente.

  • VICTOR HENRIQUE RODRIGUES CARDOSO
  • Optical Curvature Sensor Based on Core Diameter Mismatch Technique Applied for Flow Measurement

  • Data: 02/09/2019
  • Mostrar Resumo
  • Recent advances and cost savings in optical devices have spurred a high interest in sensors based on fiber optics applied to measure physical and mechanical parameters. Several reseraches have demonstrated the great advantages of optical sensors such as low cost, compatibility, immunity to eletromagnetic interference, applicability and its versatility as temperature sensors, vibration, magnetic field, curvature, among others compared to convencional sensors. Wide versatility of optical sensors enable curvature measurement with wide aoolicability as fluid flow sensor and Health Structural Monitoring monitoring (SHM).

    This work aims to study the propagation of optical power in the structure based on coer diameter mismath technique (CDM), Singlemode-Multimode-Singlemode-Multimode-Singlemode (SMSMS), with curvature aiming at application as a low cost alternative, easy fabrication and acceptable sensitivity for flow measurement in pipes. The two multimode sections present in the sensor act as a coupler and re-coupler of core and cladding modes, and the singlemode section, in te middle, acts as a sensing element. The sctructure was analyzed by experimental measurements and numerical simulations. Experimental analyzes were performed for curvature meaurement and for flow measurement. In both the sensor generates interference patterns when it is bent. Numerical modeling was performed using the finite difference beam propagation method using software BeamProp 9.0 from the company Rsoft TM. Results demonstrate that aplicability as curvature sensors and flow measurement is feasible.

  • VICTORIA YUKIE MATSUNAGA DE OLIVEIRA
  • Optimal allocation of distributed generation in distribution networks using hybrid algorithm based on Cuckoo Search and Genetic Algorithm

  • Data: 02/09/2019
  • Mostrar Resumo
  • This thesis presents a novel Cuckoo Search (CS) algorithm called Cuckoo-GRN (Cuckoo
    Search with Genetically Replaced Nests), which incorporates the benefits of genetic algorithm (GA) into the CS algorithm. The proposed method handles the abandoned nests from CS more efficiently by genetically replacing them, significantly improving the performance of the algorithm by establishing optimal balance between diversification and intensification. The algorithm is used for the optimal location and size of distributed generation units in a distribution system, in order to minimise active power losses while improving system voltage stability and voltage profile. The allocation of single and multiple distribution generation units is considered. The proposed algorithm is extensively tested in mathematical benchmark functions as well as in the 33-bus and 119-bus distribution systems. Simulation results show that Cuckoo-GRN can lead to a substantial performance improvement over the original CS algorithm and others techniques currently known in literature, regarding not only the convergence but also the solution accuracy.
  • ERICK MELO ROCHA
  • Investigation of Strategies for Detection and Diagnosis of Faults in Industrial Systems Based on Identification of Closed Loop Systems

  • Data: 30/08/2019
  • Mostrar Resumo
  • This work investigates and proposes methodologies for detecting faults in industrial plants equipped with control systems operating in closed loop. The feedback control reduces the sensitivity of the closed-loop system to plant variations. Thus, the detection of faults in systems operating in closed loop is challenging due to. In this work, we propose the use of a tool to estimate the open mesh transfer function from closed loop data, in order to estimate parametric models for fault investigation. The technique investigated is an adaptation of the Two-Stage Method, which unfolds the process of closed-loop identification in two sequential stages of open-loop identification. In the first step, an approximation of the complementary sensitivity function for the closed loop system is identified. Subsequently, an approximation of the sensitivity function is estimated from the estimates obtained for the complementary sensitivity function. By using parametric identification techniques, an estimate of the uncorrelated noise input signal is obtained. This allows to obtain a reasonably accurate model of the open-loop plant. Results of computer studies are presented and discussed in order to highlight the strengths and weaknesses of the proposed strategy.

  • KAYT NAZARE DO VALE MATOS
  • Contribuição do Controle Secundário de Tensão Aplicado a um Parque Eólico Composto de Aerogeradores DFIG à Estabilidade de Tensão de Longo-Prazo

  • Data: 30/08/2019
  • Mostrar Resumo
  • Esta tese investiga o uso do controle secundário de tensão (CST) em um parque eólico composto de geradores de indução duplamente alimentados (DFIG) e seus efeito na estabilidade de tensão de longo-prazo. Primeiramente, o desempenho do CST aplicado ao parque eólico é comparado com o caso em que somente é utilizado o controle primário de tensão (CPT). Uma análise detalhada é conduzida através de simulações no domínio do tempo, considerando regimes de velocidade de vento alta e baixa, limites variáveis de controles dos aerogeradores, cargas estática e dinâmica, bem como o modelo dinâmico do limitador de sobre corrente (OEL) e do comutador de tap sob carga (OLTC). Baseando-se nos resultados, o uso do CST em um parque eólico composto de aerogeradores DFIG pode postergar o colapso de tensão do sistema de potência. Além disso, uma situação adversa foi obtida mostrando que o CST pode levar o conversor do lado da rede (GSC) do DFIG a absorver uma quantidade significativa de potência reativa da rede elétrica e perder a capacidade de injetar reativos na rede. Para resolver este prolema, são propostas duas estratégias de controle auxiliares inseridas na malha de controle do GSC para impedir o fluxo inverso de reativos no GSC, bem como forçar o fornecimento de potência reativa para o sistema através do GSC. Os resultados indicam a eficácia das estratégias de controle auxiliares em postergar o colapso de tensão e aumentar a margem de estabilidade de tensão do sistema.

  • MARCUS VINICIUS DE OLIVEIRA DIAS
  • 5G MIMO AND LIDAR DATA FOR MACHINE LEARNING: MMWAVE BEAM-SELECTION USING DEEP LEARNING

  • Data: 29/08/2019
  • Mostrar Resumo
  • Modern communication systems can exploit the increasing number of sensor data currently used in advanced equipment and reduce the overhead associated with link configuration. Also, the increasing complexity of networks suggests that machine learning (ML), such as deep neural networks, can effectively improve 5G technologies. The lack of large datasets make harder to investigate the application of deep learning in wireless communication. This work presents a simulation methodology (RayMobTime) that combines a vehicle traffic simulation (SUMO) with a ray-tracing simulator (Wireless InSite), to generate channels that represents realistic 5G scenarios, as well as the creation of LIDAR sensor data (Blensor). The created dataset is utilized to investigate beam-selection techniques on vehicle-to-infrastructure using millimeter waves on different architectures, such as distributed architecture (usage of the information of only a selected vehicle, and processing of data on the vehicle) and centralized architectures (usage of all present information provided by the sensors in a given moment, processing at the base station).

    The results indicate that deep convolutional neural networks can be utilized to select beams under a top-K classification framework. It also shows that a distributed LIDAR-based architecture provides robust performance irrespective of car penetration rate, outperforming other architectures, as well as can be used effectively to detect line-of-sight (LOS) with reasonable accuracy.

  • MARCOS VINICIUS SADALA BARRETO
  • Research and Development of a Framework for Testing Automatic Control Strategies for Performance Improvement in Apache Web Servers
  • Data: 29/08/2019
  • Mostrar Resumo
  • In this work it is reported and discussed the results of a study aimingat to develop a computing environ mentesuitable to carry out feed a back control for performance improvement of Apache Web Server systems. The proposed approach provides response servisse to HTTP request sand makes interventions in the values of the available parameters in order to controlthe system in closed loop. The parameters for control actuation are Max Request Work sand Keep Alive Time out while the control led process variables are the computer memory resource and the percent of processor time use. The developed tools is not intrusive in the sense that it does not modify the source code of the web server orthe operating system. Results of experimental tests, by using system identification and PI control, show that performance improvement can be obtained during transient response.

  • DERCIO MANUEL MATE
  • COMPRESSÃO DE SINAIS EM SISTEMAS DE RÁDIO SOBRE FIBRA DIGITAL PARA REDES FRONTHAUL

  • Data: 23/08/2019
  • Mostrar Resumo
  • A introdução de tecnologias como Carrier Aggregation (CA), Massive Multiple Input Multiple Output (MIMO) e Coordinated Multipoint (CoMP), visando melhorar a capacidade dos sistemas móveis de banda larga, aumenta o desafio para implantação do Mobile fronthaul devido à limitação da capacidade da infraestrutura, para suportar altas taxas de transmissão. Uma abordagem usada para lidar com a limitação da capacidade do frontahul é a compressão do sinal transmitido. Várias técnicas vêm sendo desenvolvidas para compressão do sinal no fronthaul e, a maioria dessas técnicas comprimem o sinal transmitido em banda base. Neste trabalho é desenvolvida uma técnica de compressão, para cenários específicos dos sistemas Rádio-sobre-Fibra digital configurados para transmissão do sinal em frequência intermediária. Esta técnica usa informações sobre o estado de canal de rádio (Channel state information), para controlar a compressão do sinal no fronthaul. Os resultados das simulações com a técnica desenvolvida demonstram a sua capacidade para reduzir o erro de quantização, permitindo a transmissão de sinais com modulação de 64 QAM, usando resoluções menores (até 4 bits por amostra) no quantizador. Portanto, taxas de compressão de 2:1, nos dados úteis, e um EVM próximo a zero são alcançados. Além disso, a técnica de compressão desenvolvida supera as técnicas μ-Law e A-Law, demonstrando tempos de execução dentro do limite de latência esperado nos sistemas 5G (1ms). Por fim, o desempenho da rede fronthaul é avaliado experimentalmente em um enlace ótico de 20 km, considerando cenários com e sem compressão do sinal.

  • WIRLAN GOMES LIMA
  • SYNTHESIS OF MULTILAYER FREQUENCY SELECTIVE SURFACES VIA BIOINSPIRED OPTIMIZATION

  • Data: 23/08/2019
  • Mostrar Resumo
  • The analysis of electromagnetic devices via computer software usually demands high computational cost and high processing time. Sometimes, to meet certain design goals, finding the optimal structural parameters can take days or even weeks when done by trial and error and seeking accurate answers in highly complex structures. In this scenario, bioinspired computing tools (BIC) are strong allies in saving time, computational cost and, consequently, money. To enhance the power and efficiency of these tools, hybrid methods have been developed in which neural networks work together with optimization algorithms to achieve even more satisfactory results. In this context, this work presents the use of two multiobjective bioinspired optimization hybrid models for the design and synthesis of multilayer frequency selective surfaces (FSS). Initially, an electromagnetic investigation of the patch-like structures that will compose the multilayer FSS is made, which are a triangular loop and a solid diamond printed on a fiberglass substrate (FR-4), through computational simulations via CST® Micro software. Wave Studio, whose numerical technique is used for finite integrals (FIT). Three filters with different characteristics are designed: the first filter must have a resonant frequency of 10 GHz and a bandwidth of 8 GHz; the second filter must have lower and higher cutoff frequencies of 8 GHz and 12 GHz, respectively, acting as a reject band, fully reflecting the X band and; the third filter, having a dualband response, must have a higher cut-off frequency for the first band equal to 8 GHz and a lower cut-off frequency for the second band equal to 12 GHz, acting as a bandpass allowing transmission band X and reflecting part of the adjacent bands. Cutoff frequency and bandwidth values were obtained at a threshold of -10 dB. The synthesis process consists of tuning the objectives of the structures inserted in the cost function of the optimization algorithms. The modeling of the structures is performed by a general regression neural network (GRNN) and the optimization process is performed by the algorithms, being the multiobjective genetic algorithm (GA Multi) and multiobjective cuckoo search algorithm (MOCS). The results obtained by the hybrid methods are simulated by the commercial software CST® and Ansoft DesignerTM HFSS for model validation, since they use different numerical techniques, being the finite integral technique and the finite element method, respectively. Good agreement between the simulated results was observed, showing a reduction in the processing time of the structures, besides showing that the GRNN-AG Multi model stood out in relation to the GRNN-MOCS, being the most efficient for the optimization of multilayer FSS.

  • RAPHAEL BARROS TEIXEIRA
  • ANÁLISE DE SISTEMAS NÃO-LINEARES E SÍNTESE DE OPERADORES INVERSOS POR SÉRIES DE VOLTERRA DIAGONAIS

  • Data: 22/08/2019
  • Mostrar Resumo
  • ANÁLISE DE SISTEMAS NÃO-LINEARES E SÍNTESE DE OPERADORES INVERSOS POR SÉRIES DE VOLTERRA DIAGONAIS

  • PEDRO DOS SANTOS BATISTA
  • Network slice admission using reinforcement learning and information-centric networking for mobile networks

  • Data: 21/08/2019
  • Mostrar Resumo
  • The evolution of current 4G mobile network, the so-called 5G, is targeting an increased traffic load at a lower price, thus optimization of the delivery network plays an important role at this new network; another aspect of the evolution is that 5G has the ambition to be a highly customized network, which can be reliable enough to be used in industrial automation and cheap enough to be used for mobile broadband services. In this context, this thesis assesses two aspects of 5G, the first is to use information-centric networking (ICN) to improve the efficiency of multimedia delivery on mobile broadband services; and the second is the application of a reinforcement learning strategy as an enabler for the highly configurable network, which could pose a challenge to be understood and configured manually. We investigate ICN because it is one of the most promising research topics for the future internet. ICN aims at circumventing several issues of current internet protocol, among them, achieving a more efficient multimedia distribution. Given the significant growth rate of video transmission over mobile networks, it is sensible to consider how 4G/5G networks can leverage ICN. There is a substantial body of work considering ICN for fixed networks and also for the core of mobile networks. Less attention has been dedicated to ICN on the radio access network (RAN) or ICN-RAN, which has currently a user plane based on many connection-oriented protocols. To fully benefit from ICN, mobile networks must enable it on the RAN, not only on the core. This work details an ICN deployment on the RAN of the fourth and fifth generation of mobile networks and also presents a testbed that enables proofs of concept of this ICN-RAN using 4G. The results indicate, for example, that evolving ICN features can be tested with currently available tools, but the lack of hardware accelerators and optimized code limit the bit rate that can be achieved in real-time processing. In the context of network customization, the most prominent enablers are the so-called network slices. Slices can be understood as a part of the network that is customized to deliver certain services. The service requirements are imposed by the tenant, which acquire slices from an infrastructure provider. The 5G infrastructure provider must optimize the infrastructure resource utilization, usually admitting as many slices as possible, however, infrastructure resources are finite, and admitting all the slices could increase the probability of service level agreement violation. This thesis investigates the application of reinforcement learning agents that learn how to increase the infrastructure provider revenue by intelligently admitting network slices that bring the most revenue to the system. We present a neural networks-driven agent for network slice admission that learns the characteristics of the slices deployed by the tenants from their resource requirements profile and balances the benefits of slice admission against resource management and orchestration costs.

  • RODRIGO VEIGA DA SILVA
  • Regulação de tensão e frequencia em microredes ilhadas com veículos elétricos e geração distribuida utilizando otimização por enxame de partículas

  • Data: 16/08/2019
  • Mostrar Resumo
  • Regulação de tensão e frequencia em microredes ilhadas com veículos elétricos e geração distribuida utilizando otimização por enxame de partículas

  • JOÃO VICTOR COSTA CARMONA
  • MODELING OF QUALITY LOSS OF H.264 VIDEOS CONSIDERING PSNR AND LOSS OF FRAMES

  • Data: 16/08/2019
  • Mostrar Resumo
  • Multimedia applications have grown a lot in recent years, new applications like online games, teleconferencing, video on demand and IP telephony are just a few. However, there is a greater emphasis on the consumption of high-resolution video streaming over wireless communications networks, mainly due to the proliferation of mobile devices and a significant increase in access networks, which make it easier and information. Thus, as a consequence of this type of traffic, there is a need for investments in techniques and mechanisms that provide the end user with the desired quality and satisfaction with high resolution content. This work aims to perform video quality loss modeling, through performance analysis of various resolutions, specifically standards in HD and UHD, at 720p, 1080p and 2160p. In this sense, a strategy of probabilistic evaluation of loss of quality in wireless networks is performed, through a Naive Bayes, analyzing the interrelationship between the inferences generated by the group of target metrics. Thus, we analyze factors such as loss of PSNR, loss of frames I, P, B and Total (for the H.264 codec), due to packet loss.

  • JORGE EVERALDO DE OLIVEIRA
  • PHOTONIC BAND STRUCTURES IN MICROSTRIP ANTENNA WITH APPLICATIONS IN MICROWAVE AND TERAHERTZ

  • Data: 16/08/2019
  • Mostrar Resumo
  • In this work we are analyzing the simulations of two microfita antennas. The first is an antenna using the ceramic material Bismuth Niobate (BiNbO4) doped with Vanadium Pentoxide (V2O5) on the substrate. The antenna patch was designed with indented power line to facilitate matching of impedances and the substrate with air holes was placed just below the patch to further decrease the losses. The second is a nanoanthene with Graphene Patch in the Terahertaz range and PBG (Photonic Band Gap) substrate with triangular mesh, and holes in the following height configurations h1, h2 and h3. At time h1 the substrate is fully drilled, while at heights h2 the holes will be made top to bottom of the substrate and the height h3 is the antenna with substrate drilled from the bottom up to the middle of the substrate. Therefore three antennas are created in these geometries using a triangular hole network. The arrangement of the holes in the dielectric substrate constitute the PBG structure, to increase the performance and efficiency of these antennas, extinguishing surface waves in the substrate of microfite antennas. The adopted geometry also improves antenna parameters such as efficiency and bandwidth. The commercial software HFSS and CST were used for the simulations of the antennas. After the numerical simulation steps the results of the parameters of these devices were obtained. The first antenna (periodic lattice with ceramic substrate) obtained a return loss of -36.21 dB, at a resonance frequency of 10.26 GHz, with a bandwidth of 2.18 GHz. In the simulations of the antennas of microfita with Patch of Grafeno the antenna h3 obtained double transmission band with chemical potential of graphene of 0,3 eV.

  • DAIMAM DARLAM ZIMMER
  • CONTROL AND NON-RECIPROCAL DEVICES IN THE SUB-THZ RANGE BASED ON TWO-DIMENSIONAL PHOTONIC CRYSTALS

  • Data: 05/07/2019
  • Mostrar Resumo
  • The present work investigated the possibilities of new devices for integration in circuits operating in the sub terahertz range, these are based on photonic crystal technology, the developed components consist of dielectric cylinders of gallium arsenide (GaAs), arranged to form a square network filled by air. The devices are designed to operate in the sub-

    Terahertz frequency range. The first device is an key switch, Its operation being based on the orientation of a dipole mode on the magneto-optical resonator, that enters through one of the device ports, the geometry of this device consists of two waveguides forming an angle of 90º. The device has two states, on state where there is signal transmission (state on) and a state where signal blocking occurs (state off ), the transition between them being controlled from the variation of an external DC magnetic field H0 applied in the magneto-optical resonator. The switch has bandwidth of 8%, with insertion losses of -2 dB and insulation of -59 dB. The second devices have the function of insulators, devices that allow the propagation of the electromagnetic signal in one direction (forward) and blocks the signal propagating in the opposite direction (backward), its functionality and based on the principle of ferromagnetic resonance FMR, from the ferrite cylinder located in the center of the and subjected to the application of a constant external DC magnetic field H0 = 2700KA/m. The insulator presented has its waveguides aligned and connected to a resonant cavity composed of two stubs and the ferrite cylinder is located in the region of junction between the cavity and the waveguides. Reflections inside the resonant cavity of the device, combined with the incident signal, originate inside the magnetized ferrite cylinder a field distribution that resembles that of electromagnetic vortex. The numerical calculations performed show that in the range 0.105–0.109 THz, the device exhibits insertion losses of less than -1 dB and insulation -22 dB. Featuring bandwidth of 0.8% GHz for operation around center frequency 0.1066 THz. The third device is a power divider presenting its waveguides forming a T, with the differential of having a calcogeneto Ge2Sb2Te5 resonators which controls the device by varying the refractive index. An electromagnetic signal excites within the resonator a quadrupole mode to the amorphous state where transmission occurs and the dipole mode in the crystalline state causes the state of isolation of the device. The device has insertion loss of less than -3.4 dB and insulation of -50 dB, for operation in the range of 0.105-0.1085 THz.

  • VITORIA ALENCAR DE SOUZA
  • Signal Compression for fronthaul of CRAN  based Networks using an Evolutionary Algorithm

  • Data: 28/06/2019
  • Mostrar Resumo
  • Centralized radio access networks are present as a potential alternative for next generation of wireless networks, because they are able to provide high data rates and allow the reduction of structural and operational costs in the network. The centralized architecture implements the concept of fronthaul, and enables the challenge to increase the capacity of data transmission in these links. In this way, the study of digital signal compression techniques presents itself as an alternative to reduce the cost of implementing centralized radio access networks.This work investigates the use of vector quantization methods in the compression of complex samples of baseband LTE signals. We propose the use of Genetic Algorithms in the training of sub-optimal codebooks for the vector quantization process in order to reduce the errors imposed in this process and consequent increase in fronthaul capacity. Results showed that the proposed compression algorithm allows reduction of fronthaul data rates associated with acceptable errors. It has been shown to be possible data rate compression factors of 3 to 12 times, with errors of approximately 1 % to 2%, respectively, proving the effectiveness of codebook training process in LTE signals present in the downlink of centralized radio access networks.

  • THIAGO MOTA SOARES
  • Three-Phase Harmonic State Estimation Including Transformer Saturation

  • Data: 28/06/2019
  • Mostrar Resumo
  • This work presents the development of a three-phase harmonic state estimator for energy distribution systems that incorporates the effect of the saturation of transformers on the levels of harmonic distortion. This harmonic state estimator determines the modulus and phase angle of the nodal voltage and the injected current of a distribution network by means of the weighted least squares method, in which the resolution of the systems of normal equations is based on the decomposition into values singular At each iteration of the state estimation algorithm, the current injected into the bars connected to the distribution transformers of a distribution network is corrected by the addition of the magnetizing current in each harmonic order of interest. In addition, this work presents a methodology for creating pseudo-measurement, at fundamental frequency, which makes the system completely observable. This algorithm is able to satisfactorily estimate the harmonic state of a distribution network, since it has low estimation errors.

  • JOSE RUBEN SICCHAR VILCHEZ
  • SISTEMA INTELIGENTE DE BALANCEAMENTO DE FASES EM REDES DE BAIXA TENSÃO PARA UNIDADES CONSUMIDORAS MONOFÁSICAS
  • Data: 10/06/2019
  • Mostrar Resumo
  • SISTEMA INTELIGENTE DE BALANCEAMENTO DE FASES EM REDES DE BAIXA TENSÃO PARA UNIDADES CONSUMIDORAS MONOFÁSICAS
  • FABRICIO ROSSY DE LIMA LOBATO
  • Resource Dynamic Provisioning In Space-Division Multiplexing Elastic Optical Networks Considering Impairments Physical Layer

  • Data: 07/06/2019
  • Mostrar Resumo
  • In elastic optical networks (EON) employing weakly-coupled single-mode multi-core fibers (MCF), inter-core crosstalk (XT) can affect significantly the network performance, particularly when the number of cores and the path length increase. Hence, from the network perspective, the impairment-aware routing, spectrum and core assignment (IA-RSCA) problem is the most important concern of MCF-EON. In this thesis, we propose a dynamic provisioning methodology that solves independently the IA-RSCA problem taking impairments physical layer into account. To achieve the XT impact minimization, we decompose the IA-RSCA problem into two subproblems: the IA routing sub-problem and the IA spectrum and core assignment (IA-SCA) sub-problem. For the routing solution, a pre-computation method based on the k-shortest path is used, and a physical layer impairment verification phase is performed taking the required optical signal to noise ratio into account. For the IA-SCA sub-problem, the novel XT-aware greedy algorithm is proposed to minimize the XT impact on the MCF-EON performance as follows: for each new connection, the level of detected XT power of the new connection and interfering connections relative to the XT power threshold of each connection is minimized on the average over all those connections. This minimization is achieved by choosing the core and frequency slot of the new connection. In order to take the spectral overlapping extension of the new and interfering connections into account in the detected XT power, a novel frequency slot overlapping index is introduced. The performance of the proposed algorithm is evaluated through computer simulations. The results show that the total blocking probability and network average utilization achieved by the proposed algorithm are better than the ones obtained by core prioritization, random and first-fit strategies, for different scenarios of XT level and spectrum fragmentation.

  • SAMARA LEANDRO MATOS DA SILVA
  • Ultra wide band graphene circulators for THz region

  • Data: 07/06/2019
  • Mostrar Resumo
  • Non-reciprocal components are an indispensable part of many microwave and optical systems. In the future, THz technology will also require these components. Existing publications show that the bandwidth of graphene based circulators in the THz region can be 10% to 20% with the use of very complicated structures. The suggested circulator consists of a graphene junction with a concave pattern and three waveguides symmetrically connected to it. Graphene is supported by SiO2/ Si layers. The circulating behavior is based on the non-symmetry of the graphene conductivity tensor that appears due to magnetization by a DC magnetic field normally applied to the plane of the graphene. We discuss the main parameters that define bandwidth and its influence on bandwidth. Circulators have record bandwidth that is twice as high as those published. We have shown that the circulator Y may have a bandwidth of 42% in the frequency range (2.75 THz to 4.2 T Hz), with insulation better than -15 dB and insertion losses greater than -2 dB, provided by the polarization DC magnetic field 1.5 T and the chemical potential of graphene 0.15 eV. For the two 4-port circulators we achieved a bandwidth of 44% for the same physical parameters.

  • INGRID ARIEL NASCIMENTO CAVALCANTE
  • Deep Learning Applied to Communications: Modulation Classification and Congestion Control.

  • Data: 31/05/2019
  • Mostrar Resumo
  • The goal of this dissertation is to explore Deep Learning (DL) techniques applied to communications. DL has achieved success in areas such as computer vision and object detection and it is timely to investigate DL in communication problems. We tackle two different problems. More specifically, we explore in this dissertation how DL in conjunction with Reinforcement Learning (RL) can be employed to attend the strict requirements of the 5G system imposed to the Fronthaul network, as part of the C-RAN architecture. We compare Congestion Control using Deep Reinforcement Learning (DRL) algorithms with traditional methods, using as figures of merit throughput and latency. Besides congestion control, DL is also applied to Modulation Classification (MC), which is another communication problem. MC is important, for instance, in Cognitive Radio and military applications. In this dissertation, we discuss the benefits and drawbacks of using DL as an alternative for MC and show its efficiency in comparison to other machine learning methods applied to MC.

  • FERNANDO MANOEL CARVALHO DA SILVA SANTOS
  • Impact Evaluation of Wind Generation on the Short and Long-Term Operating Reserve using Time Series

  • Data: 30/05/2019
  • Mostrar Resumo
  • It is a general consensus that increasing the integration of wind power in the total generation mix means operating and planning methodologies, as well as operational standards, must be revisited. The main reason is that the number of random variables and system complexities considerably increases with the addition of wind power. The main idea of this thesis is to discuss operating reserve issues from short- and long-term perspectives when a significant portion of the generation system is composed of wind power. By modeling and evaluating the generation and load uncertainties, the paper analyzes the complicated relationship between all these variables. Moreover, the thesis proposes a discussion of the probability distribution functions of the reserve needs in order to evaluate the impact on operating reserve capacity. It essentially means that load and wind power forecasting errors and forced unit generating outages will be represented, which characterize the main operating system obstacles associated with the performance of the operating reserve. In fact, under or over forecasting involving system load or system production can lead to different effects on system’s balance, mainly when the portion of wind power is significant in the total system generation. The experiments are conducted on the modified configuration of the IEEE-RTS 96 and on the planning configuration of the Portuguese Generation System.

  • ANDRÉ LUCAS PINHO FERNANDES
  • Technical Economic Assessment of Fronthaul and Backhaul Alternatives for Centralized Radio Architectures in 5G Indoor Scenarios

  • Data: 28/05/2019
  • Mostrar Resumo
  • The fifth generation (5G) of mobile communication systems is the key element of a society that is becoming increasingly interconnected and digitalized. Future applications in social and industrial sectors will require from 5G networks higher standards of capacity, availability and reliability. Centralized access radio architectures (CRA) are emerging as a network transport alternative to meet the demands of the 5G, especially for indoor environment, where users spend most of their time. Such solution divides the transport network into two sections, backhaul and fronthaul, which can be subdivided into several levels of links. The fronthaul in CRAs is generally optical-metallic to take advantage of the high capacity of optical fibers and the acceptability of metallic cables in the information technology (IT) market. However, technologies such as G.(mg)fast digital subscriber line standard and phantom mode transmission can ensure high data rates to short lengths of metallic cables. The backhaul of CRAs should be optical in preference, in this way passive optical networks (PONs) become a good backhaul alternative in case of fronthaul exclusively in indoor environment, once they can provide large capacity at a reduced costs when compared to other fiber architectures. However, because of their point-to-multipoint nature, PONs may not meet the expected demands of availability and reliability for the 5G. From this context, in this work an technical and economic analysis for CRAs attending the indoor environment in the 5G context is performed, considering optical-metallic or full metallic fronthaul, as well as protected or unprotected PON backhaul. The analysis was carried out through a set of mathematical models and considered a dense urban environment, addressing both isolated buildings and an area containing ten thousand buildings. The results indicate that the best fronthaul alternative for a average building of a dense urban setting is the fully metallic one, provided that G.(mg)fast and phantom mode transmission are used. In addition, they also indicate that the use of protection schemes in a PON-based backhaul can meet the 5G availability requirements at an acceptable cost in a dense urban scenario

  • MARX MIGUEL MIRANDA DE FREITAS
  • Performance analysis of G.mgfast and fronthaul 5G access networks based on coaxial cables

  • Data: 27/05/2019
  • Mostrar Resumo
  • With the expansion of data demand, current access technologies may soon become obsolete. It is estimated that from 2020 with the arrival of 5G technology and fifth generation fixed broadband, rates of at least 10 Gbps should be provided to end users. In addition, criteria such as low latency, flexibility and energy savings are key factors. In this work, the application of the coaxial cables in the frontaul of 5G networks and in Gigabit G.fast access networks also known as G.mgfast, in order to find high capacity and energy efficiency are evaluated. In this work, it will be shown that rates of up to 40 Gbps can be achieved in an RG06 coaxial cable with support for 140 antennas meeting 3GPP transmission criteria. In addition, we will see that data rates of up to 10 Gbps can be reached in RG59, RG06 and RG11 cables in G.mgfast networks, but bearing in mind that there is an optimum relationship between the rate and transmitted power. In addition, an optimization algorithm applied to coaxial cables as well as a type of analogue fronthaul are also proposed.

  • BRENDA VILAS BOAS
  • COMPRESSION OF CHANNEL STATE INFORMATION IN MULTIPLE INPUT MULTIPLE OUTPUT MOBILE SYSTEMS

  • Data: 24/05/2019
  • Mostrar Resumo
  • The firsts trials of Firth Generation of wireless networks (5G) are taking place worldwide. A variety of use cases are envisaged, requiring flexible and scalable technologies to meet their key performance indicators. Massive MIMO is a 5G enabling technology that improves spectral efficiency. To exploit the advantages of MIMO, the transmitter needs to have information about the channel condition (CSI) of each User Equipments (UE). 5G is being standardized in Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD) operational modes; hence, MIMO has to be feasible in both duplexing modes. As TDD operates downlink and uplink on the same frequency, it can rely on channel reciprocity to acquire the CSI needed to further design precoding and user scheduling, for instance. However, FDD cannot exploit channel reciprocity; therefore, massive MIMO in FDD mode is most challenging because the increasing number of antennas turns the feedback of CSI impractical. Hence, compressing CSI in MIMO FDD systems is of interest. Furthermore, the use of vast spectrum ranges, sub-6 GHz and mmWaves bands, leads to different channel characteristics. Moreover, the close packaging of antenna elements increases the spatial correlation among a MIMO array. Consequently, this correlation can be exploited to leverage compression of CSI. This dissertation presents an overview of CSI compression methods and proposes an heuristic transform coding method based on evaluation of transform basis and MIMO channel characteristics

  • MARCIO NIRLANDO GOMES LOPES
  • Modelling of the potential for hydropower generation: a contribution to energy planning in the Amazon region

  • Data: 08/05/2019
  • Mostrar Resumo
  • This research presents an innovative methodology to predict the potential for hydropower generation using artificial intelligence techniques. A comparative analysis between the deep learning technique called Group Method of Data Handling (GMDH) and artificial neural networks with different optimization algorithms were applied for evaluation according to the case study for the future Jatobá plant, a plant in the Tapajós river basin, state of Pará, Brazil. The mean monthly rainfall in the subbasins of the Tapajós River was used as input to feed the developed models, which convert the volume of rain into energy. The non-physical models employed showed excellent skill and good efficiency to simulate this naturally complex and non-linear process, according to the statistical parameters of evaluation. Simulations were also carried out to evaluate the impact of climate change on hydropower generation for the future Jatobá power plant. The GMDH model presented a better performance among the others, highlighting its behavior during the dry season, critical period for the hydropower generation and that defines the steady energy of the enterprise. The success of this approach will reduce uncertainties and subsidize preliminary studies for plant implementation, as well as simulate scenarios to support planning, reduce costs and generate synthetic data for time series of power generation covering periods without observational field data.

  • EDSON KOITI KUDO YASOJIMA
  • A Modified Genetic Algorithm for Real Coded Problem Optimization

  • Data: 26/04/2019
  • Mostrar Resumo
  • This work presents a modified Genetic Algorithm using a new crossover operator (ADX) and a novel statistic correlation mutation algorithm (CAM). Both ADX and CAM work with population information to improve existing individuals of the GA and increase the exploration potential via the correlation mutation. Solution-based methods offers good local improvement of already known solutions while lacking at exploring the whole search space, evolutionary algorithms provide better global search in exchange of exploitation power. Hybrid methods are widely used for constrained optimization problems due to increased global and local search capabilities. The modified GA improves results of constrained problems by balancing the exploitation and exploration potential of the algorithm. The conducted tests present average performance for various CEC’2015 benchmark problems, while offering good reliability and superior results on path planning problem for redundant manipulator and most of the constrained engineering design problems tested when compared with current works in the literature and classic optimization algorithms.

  • ALEXANDRE FARIAS BAIA
  • A Competitive Structure of Convolutional Autoencoder Networks for Arrhythmia Classification

  • Data: 17/04/2019
  • Mostrar Resumo
  • This work presents the proposal of two automatic systems to aid in the detection of anomalies in heart beats and medical decision support. The systems were developed for the identification of rhythmic arrhythmia and morphological arrhythmias from signals obtained from an electrocardiogram (ECG). Both systems are based on a competitive structure of Convolutional Autoencoders (CAE), and each network was trained to reconstruct the signals presented at its entrance. For the case of the rhythmic classifier, the system was developed from the use of the ECG signals, without undergoing a feature extraction process, and for the case of the morphological classifier, the system was based on the QRS complex extracted from the ECG signal. For the development and testing of the systems, the database MIT-BIH Arrhythmia of ECG signals was used. An accuracy of 88.9% was achieved for the Rhythmic Classifier and 81.73% for the Morphological Classifier, in the case in which the evaluation basis is considered. The results obtained demonstrate the applicability of the proposed competitive structures to the arrhythmia classification problem.

  • AUREA MILENE TEIXEIRA BARBOSA DOS SANTOS
  • EDUCATIONAL DATA MINING: A STUDY ON SOCIOECONOMIC INDICATORS IN EDUCATION IN INEP DATABASE

  • Data: 09/04/2019
  • Mostrar Resumo
  • The Educational Data Mining enables the discovery of factors that make it possible to improve educational proposals, as well as to predict student performance and factors that influence learning. In view of this, the present work uses the database provided by INEP, with the purpose of explaining better which socioeconomic variables influence the grades that the students obtained in the test of the Enem 2016, one of the exams of major importance and with an high quantity untapped data. The PCA technique was applied and Bayesian Networks were generated to analyze the performance. The results show that income, parental schooling and school type are strong influencing factors.

  • NILTON RODOLFO NASCIMENTO MELO RODRIGUES
  • Smart terahertz graphene antennas

  • Data: 05/04/2019
  • Mostrar Resumo
  • In this work, two graphene antennas are proposed. The first antenna is a graphene device with dynamical control of radiation pattern. This device is formed by a graphene dipole with two coplanar graphene parasites. Working in the frequency range 1.94−2.13 THz, this antenna has four operation states that can be selected by setting specific chemical potentials by external electric field on the graphene elements. In state 1, a dipole-like radiation diagram is produced. States 2 and 3 are characterized by specific directional radiation patterns. By selecting the operation state 4, the antenna is switched off. When a silicon dioxide substrate with thickness of 1 micrometer is considered, chemical potentials are adjusted so that the device operates in 1.94−2.15 THz range, with negligible changes of its four radiation patterns with respect to the case without substrate. The second antenna consists of a loop graphene antenna with reconfigurable operation band. This antenna consists of a ring graphene element excited by a graphene-based emitter photomixer. By modifying the chemical potential of graphene, the device can operate at multiple frequencies in THz band. The maximum of the antenna total efficiency occurs near to its second resonance frequency, in which the antenna presents a dipolelike radiation pattern. The fractional bandwidth and the operation band of this device can be changed from 21.74% (2.05−2.55 THz) to 30.64% (2.57−3.5 THz). It is shown that the loop antenna, in its second resonance frequency, operates in a way that is compatible to the model of array of small dipoles.

  • CARLOS ALBERTO OLIVEIRA DE FREITAS
  • Cultural Memetic Algorithm for Optimization of Problems of Real Variables

  • Data: 29/03/2019
  • Mostrar Resumo
  • The technology has made great strides in recent years, yet computing resources for certain applications need optimization so that the costs involved in solving some problems are not high. There is a very broad area for research into the development of efficient algorithms for multimodal optimization problems, but the cultural multimodal algorithms are not always evaluated by efficient statistical tests. The purpose of this work is to analyze the behavior of the Cultural Algorithms, with populations evolved by the Genetic Algorithm when the local search heuristics are used: Tabu Search, Beam Search, Hill Climbing and Simulated Annealing. In order to perform the analysis, a memetic algorithm was first developed by the hybridization of the cultural algorithm with the local search heuristics: Tabu Search, Beam Search, Hill Climbing and Simulated Annealing, being selected one at a time. Real-world problems usually have multimodal characteristics, so evaluations were performed using multimodal benchmark functions, which had their results evaluated by non-parametric tests. Also, the memetic algorithm was tested in real optimization problems with constraints in the engineering areas. In the evaluations carried out, were found better results than those in the scientific literature searched.

  • ALANA LIMA DE SOUSA
  • ESTIMATION OF DISTRIBUTED GENERATION HOST CAPACITY IN DISTRIBUTION NETWORKS WITH GENETIC ALGORITHMS

  • Data: 29/03/2019
  • Mostrar Resumo
  • The use of distributed generation (DG) and distributed energy sources (DER) close to the consumer centers has been gaining prominence around the world. The high penetration level of DG will shift the operation paradigm of electric energy systems, affecting power quality delivered to consumers. The active power injection from DG can cause several consequences to distribution systems, being overvoltage issue the most impacting of them. The reverse power flow from the DG units can cause voltage rise issue on distribution networks and consequently the DG shutdown. During unity power factor (pf) operation of DG, the distribution operators control overvoltage by active power curtailment. In this scenario emerges the GD hosting capacity concept, which consists of estimating the maximum power injected by GD without compromising voltage quality of the distribution system. This dissertation estimates the DG hosting capacity on MV distribution systems using genetic algorithms, considering as main limiting factor the overvoltage issue. Performance tests were performed on IEEE 33-bus and IEEE 69-bus systems

  • WILLIAM MOREIRA DE ASSIS
  • Experimental Validation of Electrical Models of Residual Voltage Stress Test Arrays

  • Data: 22/03/2019
  • Mostrar Resumo
  • This work proposes an electric model for residual stress tests in ZnO suppressors for standardized and non-standardized waveforms using models of para-rays already consolidated in the literature. The Proposed Model was validated from tests carried out at the UFPA High and Extra High Voltage Laboratory (LEAT), obtaining results of residual voltage and discharge current measurements. In the tests, the 30kVrms nominal voltage arrester subjected to discharge current with waveforms, ranging from 8μs to 5μs of wavefront time, and inductors were used available in the laboratory to change the values of front and tail of impulsive waveforms. In addition, simulations were performed in the ATP Draw software to evaluate the accuracy of the model for other types of waveform, which could not initially be performed in the laboratory. The model result was compared to the measurement results. The model proved to be satisfactory for all impulsive waveforms. The parameters of the model are easy to determine, and all necessary information for the lightning arrestor and pulse generator is contained in manufacturers' manuals and catalogs.

  • PAULO HENRIQUE GONCALVES BEZERRA
  • A Collaborative Routing Protocol for Video Streaming with Fog Computing in Vehicular Ad Hoc Networks.

  • Data: 22/03/2019
  • Mostrar Resumo
  • Vehicular Ad hoc Networks (VANETs) play an important role in the efficiency of road traffic by improving safety and acting as a facilitator of services for passengers, drivers and public safety officers. Recent improvements in the routing protocols and topologies used in vehicular networks have contributed to improvements in scalability, reliability and the quality of the information-sharing experience. Vehicles can cooperate with each other to stream videos of accidents or disasters and provide visual information of the monitored area with great precision. This Ph.D thesis proposes a Collaborative Routing Protocol for Video streaming VANETs (CRPV) using the service of fog storage to minimize the sharing of content. The routing table is based on an indicator that is generated by combining the speed, location and recording angle parameters of each vehicle involved in vehicular collaboration to reduce the unnecessary exchange of video data in vehicle-to-vehicle communications. The results of the simulations show that the proposed model performs favorably when compared to other routing protocols with respect to the availability of end-to-end communication and Quality of Experience.


  • WATERLOO FERREIRA DA SILVA
  • ANÁLISE DOS IMPACTOS HARMÔNICOS NA QUALIDADE DA ENERGIA ELÉTRICA UTILIZANDO KDD-ESTUDO DE CASO NA UNIVERSIDADE FEDERAL DO PARÁ

  • Data: 18/03/2019
  • Mostrar Resumo
  • ANÁLISE DOS IMPACTOS HARMÔNICOS NA QUALIDADE DA ENERGIA ELÉTRICA UTILIZANDO KDD-ESTUDO DE CASO NA UNIVERSIDADE FEDERAL DO PARÁ

  • THIAGO ANTONIO SIDONIO COQUEIRO
  • A Fuzzy Logic System for Vertical Handover and Maximizing Battery Lifetime in Heterogeneous Wireless Multimedia Networks

  • Data: 15/03/2019
  • Mostrar Resumo
  • The applications that consume high bandwidth and energy consumption have been increasing considerably fast in mobile networks. However, the mobile devices do not offer support to battery capacity for the intensive / continuous use of such applications. In addition, mobile networks currently have a high degree of heterogeneity and comprise a wide variety of networks with different technologies, such as LTE, Wi-Fi and WiMAX. Therefore, it is necessary the tradeoff to ensure that QoE is provided to users in this scenario, as well as an energy efficiency strategy designed to extend the battery life of mobile devices. This thesis proposes an intelligent architecture based on fuzzy logic, capable of providing support to decision making to save the energy of mobile devices within an integrated LTE and Wi-Fi network. The simulated experiments show the benefits and feasibility of the proposed solution.

  • ANTONIO FERNANDO MARTINS CARDOSO
  •  

    ANALYSIS OF MODELS, SIMULATIONS AND PULSE TESTS IN A DISTRIBUTION TRANSFORMER.

  • Data: 12/03/2019
  • Mostrar Resumo
  • In this dissertation the transient phenomena present in the electric power systems were studied, specifically analyzing voltage surges derived from the incidence of atmospheric discharges in transmission and distribution lines and how these affect one of the most important components of the electrical network, the transformer. A high voltage test was performed on a three-phase distribution transformer with 30kVA, primary power connected at triangle 13.8kV, secondary at star 220 / 127V applying full voltage pulses of 100kV and reduced voltage pulses of 50kV at the primary of the transformer. The waveform provided in the international standards was adopted to the characterization of an atmospheric discharge. Comparing the results obtained with the tests, with models presented by the same distribution transformer, in the software Alternative Transients Program (ATP), we observed the consistency and precision of these models adopted here for the representation of transformers in studies of high voltage and frequency, thus validating them.

  • HUGO MENEZES BARRA
  • DESIGN OF ROBUST CONTROLLERS AND CANCELLATION OF POLES TO RECOVER FAULTS IN A HIGH VOLTAGE SYSTEM.

  • Data: 28/02/2019
  • Mostrar Resumo
  • This work presents and discusses the implementation of classic and robust pole cancellation controllers to recover the current after the application of shorting type faults, besides other analyzes are made, such as the impact that the short causes in the voltage Vabc , current Iabc and as the passive filter developed to mitigate the higher energy harmonics of this system (which are of the 5th and 7th order) act on this voltage and current respectively.
    The system chosen is based on the Cigrée Benchmark (Sood, 2004) and represents an important industrial system, which is the furnace for the casting of aluminum ingots, used in multinational companies, among them, Hydro Alunorte. to be a contribution to industrial companies, especially in our region.
    The developed controllers first used the classic IP pole-cancellation methodology and the other one aiming for a greater reliability margin in its use, since it is designed to be a robust controller and that responds to the uncertainties of the plant that are caused by the set of elements of electronics, such as inductors and resistors.
    Therefore, the plant was linearized and from the transfer function of the interval plant, a robust controller was developed using the numerical methods of Kharitonov and Bhattacharyya, which relate the set of interval polynomials and their transfer functions to the formation of a polyhedron where one can choose the controller from the gain and phase margins established by the designer, thus increasing the reliability of the designed controller.
    The results obtained in the simulation tests showed the good performance of the designed controller, with a fast recovery of the current, after the applied fault. This allowed for the important result of providing a safe operation of the industrial plant, where without the use of the controller could lead to problems such as accidents, production stoppage and loss of stability.

  • WAGNER ORMANES PALHETA CASTRO
  • Nonreciprocal graphene-based devices in the THz region

  • Data: 28/02/2019
  • Mostrar Resumo
  • Four new types of nonreciprocal graphene-based devices operating in the Terahertz region are suggested and theoretically analyzed in this work. They are two three-port circulators with Y and W geometries and two power dividers with different geometries. The cross section of the components has a three-layer structure, composed of graphene, silica and silicon. The planes of the figures of these components consist of a circular resonator of graphene and waveguides connected to it. The graphene resonator is magnetized normally of its plane by an external DC magnetic field, and the physical principle of operation of the devices is based on the dipole resonance of the magnetized graphene resonator. Using the Magnetic Group Theory, we analyze the scattering matrices of the symmetrical components of the devices. In addition, for the analysis of the circulators, the Analytical Temporal Coupled Mode Theory was also used. Numerical simulations were performed by a full wave computational program and the calculations demonstrate isolation levels better than -15 dB for both the circulators and the dividers. The Y-circulator has insertion losses around - 2.6 dB, bandwidth of 7.4% at the center frequency of 5.38 THz, whereas the circulator W showed insertion losses of - 2 dB, bandwidth of 4.5% at the center frequency of 7.5 THz. The DC bending magnetic field in the two cases was 0.45 T and 0.56 T, respectively. The power dividers have shown to posses the division of the signal between the two output ports of -5 dB with in the frequency band of 6% and the magnetic filed of 0,8 T. The influence of geometric and physical parameters on the characteristics of the circulators is discussed. The frequency bands of the devices can be controlled dynamically by changing bias voltage applied between the graphene layer and the substrate.

  • WALDEIR DE BRITO MONTEIRO
  • Evaluation Of A Crosstalk Estimation Method in C-RAN networks With Cooper Fronthaul using Linear Regression and Neural Network.

  • Data: 26/02/2019
  • Mostrar Resumo
  • The implementation of the 5G standard will make the current mobile network architectures evolve towards C-RAN configurations, which are characterized by concentrating processing on a base station, from where the signal is distributed to remote antennas. To maintain uniform coverage, these systems rely on a dense network of low-power antennas scattered throughout buildings. This approach increases the complexity of the network’s Multi Input Multi Output (MIMO) system, which may hamper certain measurements involving equipment at both ends of the link. This work presents a method for the estimation of Far End Crosstalk (FEXT) and Insetion Loss (IL) using only one end of the link in order to avoid synchronization problems present in complex MIMO systems. Compared to other methods with similar proposals, the presented technique combines a simpler approach to a lesser degree of dependence on dual loop measurements, besides complementing techniques that can accomplish these measurements, but in a restricted range of frequencies.

  • ANDREY VIANA PIRES
  • ELECTROMAGNETIC SCATTERING ON GRAPHENE USING IMPEDANCE TRANSFORMS

  • Data: 22/02/2019
  • Mostrar Resumo
  • Graphene is a two-dimensional material with good electrical properties that make possible new telecommunications applications in telecommunications on the terahertz range. This work presents an alternative analysis of the scattering problem in a graphene sheet using the impedance transform. The Green functions, electromagnetic fields and properties of the plasmonic surface wave on the graphene are demonstrated. The numerical results show the spatial field distributions and spectral analysis of the plasmonic wave as a function of media properties, frequency and chemical potential. The results show that the impedance transform is adequate for scattering analysis in graphene sheets because it uses the natural autofunctions of the problem.

  • WELLINGTON VIANA LOBATO JÚNIOR
  • Platoon-based Driving Protocol for Multimedia Transmission over VANET

  • Data: 22/02/2019
  • Mostrar Resumo
  • Vehicular Ad-hoc NETworks (VANETs) allow users, services, and vehicles to share information, and will change our life experience with new autonomous driving applications. Multimedia will be one of the core services in VANETs, and are becoming a reality in smart environments, ranging from safety and security traffic warnings to live entertainment and advertisement videos. However, VANETs have a dynamic network topology with short contact time, which leads to communication flaws and delays, increasing packet loss and decreasing the Quality of Experience (QoE) of transmitted videos. To cope with this, neighbor vehicles moving on the same direction and wishing to cooperate should form a platoon, where platoon members act as a relay node to forward video packets in autonomous VANETs. This master’s dissertation introduces a Game Theory approach for Platoon-based driving (GT4P) for video dissemination services in urban and highway VANET scenarios. GT4P encourages the cooperation between neighbor vehicles by offering reward (money or coupon) for vehicles participating in the platoon. In this sense, GT4P establishes a platoon by taking into account vehicle direction, speed, distance, link quality, and travel path, which reduces the impact of vehicle mobility on the video transmission. Simulation results confirm the efficiency of GT4P for ensuring video transmissions with high QoE support compared to existing platoon-based driving protocols.

  • JOSE MARIA DA SILVEIRA GOMES
  • A Socio-demographic  analysis of the Incidence of Leprosy in  Brazilian Legal Amazon: An approach based on Bayesian Networks 

  • Data: 08/02/2019
  • Mostrar Resumo
  • The research aims to analyse the association of leprosy incidence in relation to indicators of human development, habitation and income level, considering the Brazilian Amazon region in relation to the entire country. An ecological study, based on data obtained on cases of leprosy in Brazil for the year 2010, made available by the Information System of Disease Notifications (SINAN) through the Informatics Department of the National Health Service (DATASUS) and the socio-economic indicators found in the Demographic Census Research database of the Brazilian Institute for Geographical and Statistical Survey – IBGE, as well as information from the Municipal Human Development Index, regarding education and income, obtained from the {platform} / website of the Human Development Atlas of Brazil, also for the year 2010. The methodology combined data mining with the analysis of spatial distribution. For municipalities of the Brazilian Amazon region the probability of presenting a high rate of leprosy incidence is 65.7%; but this value declines to 13.1% when the analysis contemplates other regions of the country.  When the data show that a municipality presents the lowest level of PopDensityAbove2 (<15.41%), the probability that this municipality does not present cases of the disease is 60%; on the other hand, when it presents the highest level (above 32.58%) this probability drops to 22.7%.      Using the Bayesian network model found, there is a significant association between the percentage of homes with more than 2 inhabitants and the rate of incidence of leprosy. Although the relationship between the rate of incidence, socio-economic factors (no water supply, no toilet, poverty and overcrowding of the home), low educational indices and income has already been reported in several studies, the insertion of the variable that considers population density of the home contributes to the discussion of the phenomenon.

  • PAULO TASSIO DA LUZ MELO
  • Total Cost of Ownership for 5G Communications Infrastructures for Smart Grid.

  • Data: 24/01/2019
  • Mostrar Resumo
  • Smart Grid communications networks are considerably different from the traditional communication systems used to access the Internet when considering users, applications, Quality of Service and, especially, the impacts/losses due to malfunctions. Such data networks are generally owned and used exclusively by electrical system operators and require a high financial investment. Therefore, this paper presents an economic analysis to compare different possibilities of data network deployment for the Smart Grid. The results showed that 5G in comparison to other technologies obtained the best evaluation for the implementation of the communication of a data network applied to the Smart Grid, since the data of Quality of Service and the results obtained in the Total Cost of Ownership showed that in the medium and long term the 5G has its lower cost compared to other technologies used. Using a network configuration with 150 Femtocells and 2 Macrocells, Quality of Service obtained in regular and restricted transmission mode was 100% for uplink and 99.4% for downlink.

  • MARIANE DE PAULA DA SILVA GONÇALVES IMBIRIBA
  • Two-Level Allocation for H-CRAN Architecture Based in Offloading 

  • Data: 24/01/2019
  • Mostrar Resumo
  • The accelerated data and apps growth represents significant challenges to the next generation of mobile networks. Amongst them, it is highlighted the necessity for a co-existence of new and old patterns during the transition of architectures. Thus, this paper has investigated solutions for offloading into a hybrid architecture, also known as H-CRAN (Heterogeneous Cloud Radio Access Network Architecture), that centralizes processing and searches a better use of the network resources. The strategy of optimization was analyzed through the evolutive algorithm PSO (Particle Swarm Optimization), in order to find a suboptimal solution to the allocation of two levels (TLA) in the H-CRAN architecture and another one based on FIFO (First In, First Out), for benchmarking purposes. SNR (Noise Interference Signal) average, Maximum Bit Rate, the number of users with or without connections and number of connections in RRHs and macro were used as performance measurements. Through the results, it was noticed an improvement of approximately 60% in the Maximum Bit Rate when compared to the traditional approach, enabling a better service to the users.

  • LESLYE ESTEFANIA CASTRO ERAS
  • A RADIO PROPAGATION MODEL FOR MIXED PATHS IN AMAZON ENVIRONMENTS FOR UHF BAND

  • Data: 22/01/2019
  • Mostrar Resumo
  • The present work proposes a radio propagation model for the Amazon region called Mixed Path. The techniques used for Mixed Path model are Geometrical Optics (GO) and the Uniform Theory of Diffraction (UTD).  Only ten rays are considered the main contributors to calculate the total electric field. Increasing the number of rays does not improve the accuracy of Mixed Path model since the scenario is for receivers located in long distances. Then slope diffraction or multiple reflections means a low electric field that does not contribute significantly to the total electric field.  The parameters of Mixed Path model such as electrical constants, antennas height, buildings height among others, are analyzed in order to know the influence of them in the received electric field. Measured data in the central frequency of 521 MHz of a Digital Television station in the city of Belem of Pará are used to validate Mixed Path model. This city is located in the Amazon region of Brazil and presents mixed routes formed by city, river, and forest. Because digital television has a wide coverage and reception flexibility, Mixed Path was designed for receivers at the user’s level for the service of Mobile Digital Television (M-DTV) and for fixed receivers on the roofs of homes for Home digital television (H-DTV). Finally, the proposed model and other models in the literature are compared with the data measured for M-DTV, being Mixed Path the model with the lowest RMS error.

  • FREDERICO GUILHERME SANTANA DA SILVA FILHO
  • OPTIMIZATION OF THE POSITIONING OF MULTIPLE CELLS IN OUTDOOR ENVIROMENTS OF THE AMAZON REGION UTILIZING THE OPTIMIZATION ALGORITHM BY PARTICLE SWARM AND FLOWER POLLINATION

  • Data: 14/01/2019
  • Mostrar Resumo
  • With the increase of the number of devices connected to the internet, by internet of things (IoT) or by personal communication, as smartphones and tablets, and consumers demanding even more access to high rates of date and quality of service, researchers all over the world have been investing great effort to draw the technologies of the next mobile generation (5G). A promising proposal is the utilization of millimeters waves to the new wireless systems, in view of, primarily, the enormous spectrum quantity available. However, it implies on the implantation of new services on high frequency bands. Despite of the expectation to reach even higher frequency rates with lower delays, the length of these waves makes this solution a huge challenge because the signal propagation in this condition is very hostile. The biggest smallcells exploration is also seen as a key technology to the evolution of the current mobile data to 5G, nevertheless the implantation of these cells in this type of scenery must be done in an optimized way to guarantee the data efficiency. This dissertation, is presented as a proposal of the optimization of multiple smallcells positioning in a densely wooded outdoor environment, using two bioinspired algorithms: Optimization by particle swarm (PSO) and Flower Pollination (FPA), combined with two propagation models of the next generation (5G): ABG e CI, simulated in different frequency bands: 3.5 GHz, 10 GHz, 24 GHz, 28 GHz, 60 GHz e 73 GHz. The specific analyzed environment is Batista Campos Square located in the city of Belem, in the State of Para. The results showed that both algorithms efficiently placed the smallcells, guaranteeing a better coverage on the extension of the square. In the OPS evaluation analysis, even though it executes in less time, it doesn’t converge to the optimum solution with the 1000 interactions utilized in simulations, being necessary a greater number of interactions, while the FP has a higher execution time, but it converges to the optimum solution with less than 500 interactions.    

2018
Descrição
  • MYLENA NAZARÉ MEDEIROS DOS REIS FERREIRA
  • The complexity of mental fatigue signals in healthy people is due to the absence of specific perturbations in the electroencephalographic activity, and by the singularity and variability of the cognitive profile of each individual. Identifying this mental state requires the analysis of several factors that involve the brain behavior in its regions in various frequency bands. In concern to the industry, mental fatigue compromises the efficiency of the production chain by affecting the perception (concentration and attention) of people, which increases the risk of accidents and production costs. Thus, monitoring the cognitive condition is necessary for the maintenance of the productive and cognitive performance of the evaluated subject. This work proposes the classification of fatigue using a competitive structure of Associative Neural Networks. This type of neural network allows to find the association between the input data and the reconstructed data from a compact architecture, being indicated for real-time applications. The characteristics vector used for classification is composed of the normalized information of three frequency bands (theta, beta and alpha) and four metrics that, according to the literature, differentiate mental states from electroencephalographic data in terms of Power Spectral Density. The results show the capacity and usability of autoassociative neural networks in patterns classification.

  • Data: 21/12/2018
  • Mostrar Resumo
  • Associative Neural Network, Classification of mental fatigue, Cognitive performance

  • ERMINIO AUGUSTO RAMOS DA PAIXAO
  • OPTIMIZED MAPPING BETWEEN RRH-BBU LOOKING FOR BALANCING CHARGE IN C-RAN ARCHITECTURE USING INTELLIGENCE COMPUTATIONAL

  • Data: 20/12/2018
  • Mostrar Resumo
  • The Cloud Radio Access Network (C-RAN) is an architecture proposition for next-generation mobile networks (5G), aimed at centralized management and processing, collaborative radio and real-time cloud computing. Such features enable this architecture to dynamically adjust the connections between Remote Radio Heads (RRHs) and Baseband Units (BBUs). However, if this feature is neglected, network problems such as blocked call and poor connection may occur. This work addresses this issue and proposes an optimized mapping model between RRH-BBU, seeking a fairer and more efficient balancing. In this sense, the Key Performance Indicator (KPI) of blocked calls was used to measure Quality of Service (QoS) metrics. In order to minimize them, an algorithm by Particle Swarm (PSO) was developed. A literature scenario composed of 19 RRHs distributed in a geographical area was used, which can be mapped in a BBU pool that manages two BBUs that have three sectors each. The initial configuration generated, on average, 80 blocked calls. Results obtained indicate a reduction of up to 100% of blocked calls and a more egalitarian load distribution among the BBUs. In addition, realistic scenarios with different user profiles were implemented, demonstrating that such factors directly impact the load generated by the BBUs and, consequently, affect their balancing. In order to verify the proposed formulation, in Network Simulator (NS-3) the same scenario used in the modeling was implemented, through the comparison of optimized and non-optimized scenarios, in order to the impact of serving more users in the network, where satisfactory results were obtained.

  • RAFAEL FOGAROLLI VIEIRA
  • Optimization of Resource Allocation in Hierarchically Distributed Data Centers

  • Data: 19/12/2018
  • Mostrar Resumo
  • The rapidly increasing volume of services and applications, in addition to the high wireless access demand, are significant challenges for the next generation of mobile networks. The growth in the volume of applications is the reflection of the quantity of "things" that are being connected to the network and generating a huge data traffic. A new paradigm that is gaining recognition in the field of wireless networks, and is also responsible for part of this growth in the volume of services and applications, is the Internet of Things. The high amount of data that is generated by connecting those devices to the network will require significant computational resources to be processed and stored. A prominent  approach to handling such large amount of data is the use of Cloud Computing, which uses datacenters for storage and data processing. However,  traditional Cloud Computing, which has centralized resources, is not able to handle the high volume of data and the strict latency and Quality of Service requirements. Thus, to address such adversities, a new emerging concept known as Edge Cloud Computing has been proposed as an extension of the traditional Cloud Computing, bringing computational resources to the edge of the network and thereby creating a hierarchy of datacenters. In this way, the stricter requirements from services and applications, such as obtaining near-instant user experience, can be satisfied. In this work, a mathematical formulation for the dimensioning and provisioning of a hierarchy of DCs is proposed. According to the obtained results, the hierarchy of DCs provisioned and dimensioned using the proposed model can be better when compared to the others, being able to allocate 99\% of the set of applications that were used in the tests and to decrease the data flow in the backhaul links that is generated by the high number of applications the would circulate through the network. The analysis highlight the necessity of bringing computational resources to the network's edge in addition to an efficient applications allocation strategy in order to guarantee a better network performance.
     
  • IGOR RUIZ GOMES
  • POSICIONAMENTO ÓTIMO DE ESTAÇÕES RÁDIO BASE DO SERVIÇO MÓVEL CELULAR UTILIZANDO MODELO DE CONHECIMENTO DISCRETO EM PROPAGAÇÃO OUTDOOR

  • Data: 14/12/2018
  • Mostrar Resumo
  • Modelos de propagação são muito utilizados para prever as degradações sofridas pelo sinal transmitido. Este trabalho tem o objetivo principal garantir a máxima área de cobertura, dentro da UFPA, tendo 2 e 3 torres para a propagação do sinal. O estudo da propagação leva em consideração tipos diferente de perdas e foi validado por dados coletados em 3 campanhas de medições em para frequências distintas. Os resultados mostram a maior área de cobertura para os cenários testados. O programa desenvolvido permite mudança de parâmetros, como altura, potência, quantidade de torres, podendo assim ser alterado para outros cenários. Todos os resultados obtidos foram comparados com outros modelos de literatura para salientar o melhor comportamento do modelo proposto. 

  • GABRIEL SILVA PINTO
  • Radiation Diagram Control of Graphene Dipoles by Chemical Potential

  • Data: 13/12/2018
  • Mostrar Resumo
  • This works presents a method of controlling the radiation diagram of a graphene dipole by the chemical potential. The dipole analyzed has rectangular geometry with power suplly by voltage source in the center, where each arm of the dipole is maintained to a different chemical potential. The geometry is analyzed by the two-dimensional moments method, with an equivalent surface impedance. Calculations of the main radiative properties of the antenna are presented as a function of the chemical potential. The results show that the greater the different between the chemical potentials, the greater the displacement of the main lobe of the radiation diagram.

  • OTAVIO ANDRE CHASE
  • AUTONOMOUS SENSORY PLATFORM ARCHITECTURE IN THE CONTEXT OF ENVIRONMENTAL TECHNOLOGY FOR IN-SITU MONITORING OF ENVIRONMENTAL PARAMETERS AND THE SOLAR OVERIRRADIANCE

  • Data: 07/12/2018
  • Mostrar Resumo
  • This thesis presents an in-situ sensing platform with architecture in the context of environmental and technology called PLACOT2AM (Convergent Transdisciplinary Platform to Amazonia). The platform is an integrated solution with sensors, data acquisition, processing, and wireless communication, through the technology of internet of things (IoT-Internet of Things). Also, the platform is a low-cost (hardware) and can be used as an alternative to proprietary tools and devices for data acquisition and processing in monitoring (micrometeorological and microscale level) of environmental parameters related to thermal comfort and super irradiance events. The platform has an expert system, which allows the simultaneous analysis of data acquisition of environ-mental variables. This makes it possible to generate knowledge to aid in decision-making in society about the extremes of environmental variability to bring health or productivity. In the first version, for monitoring of thermal comfort by temperature and humidity index (THI), the platform presents the most critical period in terms of high temperature and humidity (low thermal comfort) in a rural environment of Belém-PA occurs between May and October (2012), whose critical time is the 15:00, when humans and livestock production may suffer more with the thermal stress. In the second version, for monitoring of solar irradiance, the platform measures super extreme irradiance 1321 W/m2 in Belém-PA (12/05/2018), a low-latitude (1° S) and low altitude (7 m) above sea level. The architecture offers advantages in size, flexibility, energy autonomy, and cost; the project can be considered of low cost, with total R$ 350,00 (approximately U$$ 75). The results of the measurements and analysis expert present to PLACOT2AM as a good solution based on IoT for expert monitoring of environmental parameters and the events of overirradiance.

  • LUCAS FELIPE AMARAL
  • Comparison between load flow methods to active distribution grids.

  • Data: 04/12/2018
  • Mostrar Resumo
  • This paper provides a performance evaluation of load flows methods to distribution power grids, considering them passives and actives. To that, the methods used were the following: Newton-Raphson, Fast decoupled with axis rotation, Fast decoupled with complex normalization and current summation. The performance evaluation of such methods were made considering the iteration number and the time processing that each method needed to converge, other criterion applied was the accuracy level of each method, through of the comparison of the voltages values taken by the Newton Raphson simulations related to the other 3 methods. Also, it was made in this work, comparisons of the performance of each method related to the iteration number on varying the r/x ratio of the test system feeders of  two buses, furthermore was verified the influence of the bases angles choices in the iteration number of the modified decoupled methods.

  • ULISSES CARVALHO PAIXÃO JUNIOR
  • Comparison of Computational Techniques of Linear Regression, Artificial Neural Networks and Decision Tree to Identify Harmonic Distortion in Electrical Distribution Grid

  • Data: 19/11/2018
  • Mostrar Resumo
  • In recent years, the socioeconomic development of the population, the growth of the commercial and industrial sectors, as well as the growing installation of new loads, have generated a great evolution in the demand of electric power consumption. In turn, to obtain more efficient systems, the equipment manufacturers have been producing products increasingly fast and energetically more efficient for residential, commercial and industrial use. However, these loads, due to their non-linearity, have contributed significantly to the increase the levels of harmonic distortion of voltage and current. In the present work, emphasis is placed on the common coupling point (CCP) of two large consumers, that have different consumption and load characteristics, with the purpose of evaluating the harmonic impacts in their grid through computational techniques, in addition to comparing the level of reliability of the techniques by mean absolute error (MAE). The analyzes are based on real measurements in a university and an industrial pole, carried out with a minimum sample period of seven days through analyzers of eletric power quality, according to national quality procedures. The proposed methodology uses the techniques of Linear Regression, Artificial Neural Networks and Decision Tree to evaluate the harmonic contribution of each feeder at the point of interest of the chosen electric grids. As a result of the electric power quality, it was verified how much each feeder impacts the distortion of voltage and current in the CCP, besides classifying the feeders in relation to their respective impact in the studied electrical grid. Also, as a result, the study allowed the comparison of the three techniques among themselves, with different time intervals (weekly, daily and per load level), allowing to classify the behavior and reliability of each technique in each period. As a conclusion of the work, the proposed methods and analyzes presented allow managers to perform a more efficient mitigation action of the harmonic impacts caused in the electrical grid and, also, to identify the differences between the techniques and their degree of reliability, in accordance with the time intervals studied.

  • FLORINDO ANTONIO DE CARVALHO AYRES JUNIOR
  • RESEARCH OF ORDER CONTROL STRATEGIES FRACTIONS APPLIED TO ELECTRICAL AND INDUSTRIAL SYSTEMS

  • Data: 14/11/2018
  • Mostrar Resumo
  • The use of control techniques are of a great matter to keep competitive performances, for electrical and industrials systems, having in mind as close as possible behavior setpoint tracking to a desired operation setpoint, aiming a reduced deviation and oscillation. In this work, are investigated fractional order automatic control techniques to improve the performance of industrial systems. Two fractional-order control techniques are studied, The Fractional Order Lead-Lag (FOLL) based on the frequency response method and applied to the improvement of power system stabilizers (PSS). Control laws are implemented in the form of digital control in an embedded system, based on DSPIC. The compensator’s performance is evaluated by performing several experimental tests on a 10 kVA reduced scale power system located at the UFPA Electrical Engineering Laboratory. Pulse in the generator voltage reference variation tests at are carried out at various power operation points of the microgenerator system, in addition to the robustness analysis of the system using a robust plot tool from the Bode diagram known as RBode. Second, there an investigation of a fractional pole placement technique (FOPP) that takes into account temporal response criteria of three terms fractional order systems, which in the case of this work are the overshoot and settling time, applied in a coupled tanks system, and a DC/DC Buck converter, where the FOPP technique is compared with two other techniques, the classical pole placement technique (IOPP), and a technique tuning of FOPID controllers based on Gain Margins and Phase Margins (GMPM). The results are corroborated for the two systems performing simulations in Matlab/Simulink Environment. The results show a reduction of at least approximately 15% in the ITAE and ISE indexes related to the dynamic performances of the systems addressed in this study, related to the controlled variable, with the insertion of the fractional controllers based on both the FOLL topology and the FOPP and GMPM techniques, compared to the values obtained from these controller indices tuned by conventional whole order techniques.

  • DIEGO KASUO NAKATA DA SILVA
  • PROPAGATION MODEL FOR MIXED PATHS USING DYADIC GREEN’S FUNCTIONS: A CASE STUDY FOR CITY-RIVER-FOREST PATH

  • Data: 09/11/2018
  • Mostrar Resumo
  • This study provides a model using Dyadic Green's Functions for predicting the electric field in mixed paths for UHF. A new approach is used considering propagation in vertical layers to obtain new equations. The development of the model was accomplished in a mixed City-River-Forest path located in the Amazon Region. A measurement campaign was developed in Belém-Pará over Guajará Bay to obtain data in the proposed scenario. Measurement data were collected from a digital TV broadcasting transmitter. A comparative analysis was carried out among the proposed model, ITU-R P.1546-5, measurement data and ITU-R P.1546-5 using Millington’s curve-fitting. The measurement data and the model using Dyadic Green's Function are in a good agreement and have low RMS error values. The results confirm the efficiency and applicability of the proposed model.

  • PAULA RENATHA NUNES DA SILVA
  • INCIPIENT FAULT DIAGNOSIS IN TRANSMISSION LINES

  • Data: 26/10/2018
  • Mostrar Resumo
  • Currently, the transmission system operation is overwhelmed by the large amount of information coming from the most different monitoring systems, which must analyzing this information to keep the system in acceptable operating conditions, according with Brazilian rules for power sector. In this sense, this present thesis proposes an on-line system for the diagnosis of faults in transmission lines. Such a method is predicated on the monitoring and analysis of the transmission line’s leakage current. More specifically, the system is composed of modules capable of self-adapting to scheduled improvements. The developed methodology specifically addresses the diagnostic module, which the characteristics of the faulty harmonic spectrum of the leakage current are extracted, and thereafter identifies the most prominent fault in a multi-event scenario. To extract leakage current signals characteristics, the analytical redundancy was used, which, from laboratory and field data, to determine the normal behavior of the LT, to elaborate the LT model in normal operation and with the anomalies. With normal and faulty leakage current is accomplished the feature extraction, which uses suitable algorithms based on features obtained from state of art and data from laboratory. After choosing the extraction algorithm that has the best performance for multiple faults, are proposed classifiers to determine the most prominent fault in the transmission line. The classifier design took into account that the system needs to adapt to the changes occurred in the transmission line, emboding the knowledge about the system, since this is very dynamic.

  • JUAN CARLOS HUAQUISACA PAYE
  • Calculation of Technical and Non-Technical Losses In Power Distribution Networks using the Equivalent Opeerational Impedance  Definition

  • Data: 17/10/2018
  • Mostrar Resumo
  • This work presents a new concept called Operational Equivalent Impedance (OEI), which is characterized by being a practical and economical method that allows calculating technical and non-technical losses in electricity distribution networks with good accuracy, for which it uses the data that any electric utility has, such as the user's electricity bills, the grid's electrical parameters and the measurements of power and currents at the substation coupling point. To show the application of this method, this document covers the data processing and description of the software used to simulate the operation in the test systems  IEEE  13 and 37 buses networks, considering that they present technical and non-technical losses. In addition, these systems are evaluated with different operational conditions, including the incorporation of a photovoltaic plant. The cases evaluated in this work show that the method can be used to plan and monitor the electricity distribution networks, considering the separation of technical and non-technical losses, so that in future  reduction actions concerning these losses can be managed, since of unmanaged electricity losses is  translated into considerable economic losses for both the utility and customers and indirectly for the country. The results presented in this dissertation, regarding the application of the Equivalent Operational Impedance to the calculation of technical and non-technical losses, have demonstrated the effectiveness of the proposed methodology, so that it is foreseen a great potential for the application of the proposed procedure in the electrical sector mainly in the distribution utilities.

  • ANTONIO THIAGO MADEIRA BEIRAO
  • Majorana bound states in quantum dot device coupled with superconductor zigzag chain.

  • Data: 11/10/2018
  • Mostrar Resumo
  • The research in condensed matter physics with insulators and superconductors topological has contributed greatly to the characterization of the surface properties and modes zero in nanowires. We investigate theoretically, through the recursive Green’s function approach, the electron transport through the T-shaped quantum dot (PQ) with a single level and spinless, connected to a zigue zague chain and coupled to a p-wave superconductor. This model is an extension of the Kitaev chain for a network triangular of finite-size with for three, four, and five sites. We find that the Majorana zero modes can be tuned through the coupling parameters of the device and the linear conductance show both the Majorana Bound States (MBS) in topological phase and in the general topological phase maximally robust. This more realistic model allows the detection of MBS through of the control of the parameters governing the electronic tunneling and can be helpful for relevant experiments.

  • JANILSON LEAO DE SOUZA
  • Broadband Dipole-Loop Plasmonic Optical Nanoantenna

  • Data: 11/10/2018
  • Mostrar Resumo
  • this work a new model of plasmonic optical nanoantenna is analyzed. The nanoantenna denominated dipole-loop is obtained by a combination of a cylindrical dipole antenna and a cylindrical parasitic loop. This new antenna model is investigated and applied in plasmonic optical nanocircuit and wireless optical nanolink. The modeling of the antenna and of their applications are done by the linear Method of Moments (MoM). For the nanoantenna, the input impedance, reflection coefficient, bandwidth, radiation efficiency, gain, electric near-field, radiation pattern, and the effect of a silicon dioxide substrate on the resonant properties of the antenna are investigated. However, the principal focus is bandwidth. For the nanocircuit, the impedance matching is investigated, applying the concept of impedance matching in analogy with the radiofrequency theory, by varying the parameters of the emitting antenna. For the nanolink, the power received in the load is analyzed as a function of frequency and distance between transmitter and receiver. In addition, a comparison is made of the loss with the distance of the link with a bifilar OTL. The results show that the dipole-loop antenna presents an evident characteristic of wide bandwidth, with values up to 45.4 % and, in general, this bandwidth was between 36.7 and 45.4 %. This antenna applied an nanocircuit can improved the impedance matching degree (minimum reflection coefficient of −25 dB) in relation to the dipole antennas. In addition, when used in wireless optical nanolink the operating bandwidth in the range of 179.1 to 202.5 THz can be increased compared with conventional nanolink based only on dipole antennas. In addition, when used in wireless optical link it can be increased the operational bandwidth in the range of 179.1 to 202.5 THz compared with conventional nanolink based only on dipole antennas. In addition, wireless nanolinks, based on dipole or dipole-loop antennas, are more suitable than wired nanolink for distances above approximately 22 μm.

  • CHARLLENE DE SOUSA GUERREIRO
  • MAERNI - EVALUATION MODULE FOR EXPOSURE TO NON-IONIZING RADIATION FROM DIGITAL TV AND FM RADIO TRANSMISSION ANTENNAS FOR A 3D VIRTUAL ENVIRONMENTAL TOOL

  • Data: 09/10/2018
  • Mostrar Resumo
  • In recent years given the technological advancement of the communication media, and the increasing of users demand who wants a high quality of these services offered to them, the companies have increased the number of Radio Base Stations in cities, where many of these are located in environments with high housing density. Considering that each antenna or set of antennas present in these stations have an electromagnetic field of radiofrequency and transmit radiation, the concern with the population living in the adjacency of the transmitting antenna is the studies object of systems than regulate the companies that offer radiofrequency services, as well as, is the object of studies that aim not only to discover the effects of the contact with the ionizing and non-ionizing radiation present in these fields, but also to find out if the standard established for the regulation of services is being fulfilled. In this work presents the stages of development of a module, which consists of an extension added to the simulator for planning mobile communication networks (SIMPLARCOM). The module proposed allows, through the Virtual Reality environment (VR), to build and configure different scenarios, as well as the parameters of the transmission antenna, to provide an environment for non-invasive tests to evaluate non-ionizing radiation exposure; and identify potential insecure areas for housing, providing information for aid in decision-making regarding the relocation of transmitter antennas and aiming to decrease the ERP (effectively radiated Power) radiated by these Antennas. The module considers the guidelines present in resolution Nº. 303, published by the National Telecommunications Agency (ANATEL). In the results obtained is possible, navigate through the constructed scenario and check the value of the received power, the field intensity, the operation frequency, the antenna being analyzed and whether a certain point in the scenario is or is not receiving radiation at according to the threshold permitted by ANATEL.

  • CARLOS RAFAEL MARQUES DOS SANTOS
  • Faraday and Kerr effects in periodic metal structures: Graphene in THz range and Gold-Dielectric-Bi: YIG in infrared range.

  • Data: 05/10/2018
  • Mostrar Resumo
  • The photonics is a research field whose purpose lies in the use of light (photons), rather than electrons (electronics) in the realization certain functions such as storage, transfer and processing of signals. In this context, it opens the possibility of development and production of devices whose storage capacity surpasses those of electronic devices. To do this, it is necessary to control the photons similarly, to what is done in electronics with the electrons. The control of radiation, in the context of photonics, can be realized through magneto-optical effects, such as the Faraday and Kerr effects. The Faraday effect is used as the basis of operation of devices such as optical isolators, current sensors and others. In turn, the Kerr effect is the basis of the operation of data storage devices (optical magnetic memory). In the present work are studied magneto-optical effects of Faraday and Kerr, as well as the transmission of electromagnetic radiation in the regions of terahertz and infrared. In the frequency range that corresponds to the THz is analyzed the Faraday effect, the Kerr effect and the radiation transmittance in periodic structures of graphene with different geometries. The structures analyzed in this work can present RF, for weak magnetic fields  (1T, for example), greater than 3° depending on the choice of geometry that can be circles, squares, squares with small cuts in the corners and ribbons. Faraday rotation in these systems can be explained by a simple circuit model where the introduction of periodicity in the graphene promotes the increase of the system impedance and consequently changes the magneto-optical properties of the system, improving the rotation of Faraday at high frequencies (larger 7 THz) still with magnetic field values taken as weak. This characteristic can not be obtained in a uniform sheet of graphene, since, for this, it is possible to obtain a strong rotation of Faraday at high frequencies with strong magnetic fields (10T, for example). Additionally, for the three periodic structures it was calculated the rotation of Kerr that can reach the value 2.6° depending on the geometry chosen. For all cases, the maximum frequency of Faraday and Kerr rotation occur for frequencies greater than 7 THz. These results are better if compared to the results already published. In the infrared region are studies the effects of Faraday, Kerr, as well as extraordinary optical transmission in a plasmonic hybrid structure composed of four layers. For this, the Faraday rotation is of 7.9° and 0.25 of transmittance for wavelength 945 nm. Additionally, the Kerr effect can reach 23°. These results are better if compared to the results already   published. In the proposed structure, the improvement of Faraday’s rotation is due to the increase of the Q factor of the resonances in the magneto-optical material layer.

  • ANDRE FELIPE SOUZA DA CRUZ
  • Analysis of Plasmonic Sensor in Coupled Emission Configuration by 3D Green`s Function

  • Data: 28/09/2018
  • Mostrar Resumo
  • In the present work, the theoretical study on a plasmon resonance sensor in the Surface Plasmon Coupled Emission (SPCE) configuration is presented. Coupled to the sensor structure is a microfluidic channel containing suspended target particles (gold nanoparticles functionalized to attract fluorescent molecules), which when excited and immobilized upon the sensor structure can be efficiently modeled as a planar array of induced dipoles. The electromagnetic modeling of the device was performed through the magnetic potential, defined through the Periodic Green Function (PGF) 3D. The electromagnetic fields are presented in terms of the discrete spectral representation through the complex double Fourier series, and to reduce the number of terms in the series, it’s proposed to use the Euler identity. Parametric field results are presented in the sensor structure, and in a second analysis, the spectral analysis of the potential field is performed, in this it’s verified the arising of the SPP and SW poles in the spectral domain. For the validation of the method, the limit case was analyzed, in which the particles are distant from each other, and compared with published works. Finally, results and discussions about the convergence of series in the cosine PGF are presented. The results show good agreement, showing that the theoretical method of PGF 3D is efficient, and can be used as an auxiliary tool in the design of this sensing device.

  • MAURO GOMES DA SILVA
  • PROJETO DE CONTROLADOR PREDITIVO: ABORDAGEM POLINOMIAL E NO ESPAÇO DE ESTADOS

  • Data: 28/09/2018
  • Mostrar Resumo
  • PROJETO DE CONTROLADOR PREDITIVO: ABORDAGEM POLINOMIAL E NO ESPAÇO DE ESTADOS

  • ANTONIO RONIEL MARQUES DE SOUSA
  • Multi-physical Analysis via Finite Element Method for Predictive Maintenance Assistance in Power Transformers.

  • Data: 21/09/2018