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In this work we obtain analytically the transport properties as current and conductance in a toy
model system formed by a quantum dot with a single level connected to a Kitaev chain deposited on
a s-wave superconductor to identify the signature of Majorana zero modes (MZMs) called Majorana
Fermions in solid state. For this, we use the Non-Equilibrium Green’s Functions (NEGF) also named
as Keldysh formalism in the matrix form to obtain the current–voltage (I–V ) and conductance–
voltage (G–V ) curves to which goes to characterize the investigated system. Thus, it’s possible
to verify the presence of the Majorana Fermions in three points: (i) Conductance peak in zero
polarization; (ii) The current difference depends on the asymmetry of �L and �R . We find that only
for �L = �R, the source and drain currents are equal. (iii) The current difference depends on the
asymmetry of �L and �R .

Keywords: Majorana Fermions, Kitaev Chain, Non-Equilibrium Green’s Functions, Electronic
Transport.

1. INTRODUCTION
Approximately eighty years ago, Ettore Majorana pro-
posed, in particle physics, the existence of fermions that
would be his own antiparticles [1]. For several years,
Majorana Fermions seemed an interesting idea, which
might or might not be identified as fundamental particles
in high-energy physics. Even today the neutrinos are evalu-
ated as possible Majorana Fermions but without conclusive
results.

In the last fifteen years, however, research on condensed
matter has found analogues of Majorana fermions, called
Majorana Zero Modes (MZMs) or Majorana Bonded
States (MBSs) [2, 3], which incorporated them into the
emergent form of exotic quasiparticles, exhibiting non-
abelian exchange statistics [4, 5]. The search for the
quasi-particles properties is beyond concern in fundamen-
tal physics, but also due to its properties of braiding that
offer possible applications in quantum computing, such as
a qubit with decoherence-free states under local nonuni-
formity [6, 7].

∗Author to whom correspondence should be addressed.

In the physics of condensed matter, the prototype device
that can host the excitations of quasi-particles that have
exactly the shape of Majorana fermions is the super-
conducting state. This state proved to be the viable
environment of Majorana fermions the type of p-wave
pairing spinless. Thus, a semiconductor-superconducting
hybrid nanostructure has recently become a dominant
experimental setup for the realization of Majorana super-
conductors and fermions [8–11]. These states have
already been observed at the ends of one-dimensional
(1D) superconducting wires [12–14] and in the vortex
nuclei of two-dimensional (2D) topological superconduc-
tors [4–5, 8–10].
Recent works have used several shapes of superconduct-

ing nanowires coupled to quantum dots (QDs) [15–18] and
calculated the transport properties as differential conduc-
tance (dI/dV ). Our work seeks to advance in this field by
corroborating with the calculation of transport properties
such as the electric current measured at the QDs for the
case of several sites in the Kitaev chain.
In this work, we propose a setup of a QDs coupled

to a Kitaev chain, which is deposited on a superconduct-
ing substrate, to study the tunneling transport of Majorana
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Fig. 1. System model: a single-level quantum dot coupled by two
electrodes with their �L and �R couplings, source (emitter) and drain
(receiver), and connected via constant coupling � to a Kitaev chain with
N sites, �A1 and �B1 are the Majorana modes of site 1, and �AN and �BN

are Majorana modes at the N -site. The chain-internal coupling constants
are given by h, hopping, and the Cooper parameter, �, representing the
interaction between the sites of the chain and the substrate (topological
superconductor with p-wave pairing).

fermions. The parameters of the chemical potential �, hop-
ping h and pairing amplitude � induces relatively complex
couplings emphasizing that the topological phase � = 0
and �= h �= 0 will be investigated in the paper.
The nanowire [19] on the superconductor is then cou-

pled to a QD which in turn is connected to two normal
metal leads in order to measure the currents. For our study,
we applied the non-equilibrium Green’s function (NEGF)
method of the Keldysh formalism to obtain the tunnel-
ing Hamiltonian current response [15–23]. In this case,
the “toy” model introduced by Alexei Kitaev establishes
that, for infinitely long chains (where an overlap between
the final modes of Majorana is absent). In this paper, we
consider the case of short chain, in the case 2-site Kitaev
chain (with non-zero overlap between Majorana). Once
discussed by Mourik et al. is experimentally relevant study
finite-length chains.
We investigate numerically the non-equilibrium quan-

tum transport [24, 25], calculating the electric current, con-
tinuously from the boundary of zero bias, to the regime of
high polarizations, and location of the MBS effects due to
asymmetric electrodes through a QD, due to the Majorana
bonded states at the ends of the Kitaev chain (nanowire).
The paper is organized as follows: In Section 2, we intro-
duce our model of the T-shaped system, and your Hamilto-
nian. Then, we present the equations of the NEGF method
and perform calculations to obtain the Green’s function,
current and conductance of the model proposed in the
Figure 1 for a finite quantity of sites (2–6 sites). In Section
3, we present and analyze the results of our calculations
of the electronic transport for 2-site Kitaev chain.

2. METHODOLOGY
We consider a single-level QD, in contact with spinless
leads, coupled to a nanowire of atoms formed by Kitaev

chain above a topological superconductor with p-wave
pairing, illustrated in Figure 1.
The Hamiltonian of the model that describes this struc-

ture is given by:

� = �D +�L+�DE+�DK+�K (1)

The first term is the Hamiltonian of the QD, �D =
�dd

†d, which describes the QD with a tunable level �d.
Since d†�d	 creates (annihilates) an electron at the QD.
The second term is the Hamiltonian of the electrodes (left
and right) given by �E = ∑

k
 �kc
†
k
ck
, with chemical

potential �
. Since c
†
k
�ck
	 are fermionic operators of cre-

ation (annihilation). The third term is the Hamiltonian that
describes the coupling between the QD and the electrodes
(tunneling Hamiltonian) given by:

�DE =
∑
k


Vk
�nc
†
k
d+V ∗

k
�nd
†ck
+Wk
�nc

†
k
d

†+W ∗
k
�ndck


(2)
The Hamiltonian contains in addition to terms correspond-
ing to the electron–electron tunneling, we have terms
corresponding to the anomalous tunneling, that is, the tun-
neling electron–holes. Since Vk
 and Wk
�n respectively
represent the electron–electron and electron–hole tunnel-
ing, between the QD and the electrodes. The coupling
between the QD and the first site of the chain is given by
the fourth term: �DK = ��d†c1+ c†1d	, where � is a cou-
pling parameter. Since c†1�c1	 are creating (annihilation)
operators at the first site of the chain. The Kitaev wire is
represented by:

�K = −�
N∑
j=1

c†j cj −
1
2

N−1∑
j=1

(
hc†j cj+1+hc†j+1cj

+�cjcj+1+�∗c†j+1c
†
j

)
(3)

We investigate the Majorana current from the left/right
electrode to the QD. The current in the electrode 
 is
calculated using NEGF [16]. The current is given by the
charge change rate at the electrodes, and can be calculated
from the definition, I
 =−�e/�	�Ṅ
�, where e > 0 is the
modulus of the electric charge. N
 =∑

k c
†
kck is the total

number operator for the electrode 
 and �· · · � is a thermo-
dynamic average, i.e., the mean in the ensemble relative to
the Hamiltonian of the model. The derivative in the time
of N
 is calculated by the Heisenberg motion equation,
Ṅ
 = �i/�	�� �N

, which results in:

I
 =
2e
�
��

{∑
kn

Vk
�nG
<
n�k
�t� t	−

∑
kn

Wk
�nF
<
n�k
�t� t	

}
(4)

being that G<
n�k
�t� t	 = i�c†k
�t	d�t	� and F <

n�k
�t� t	 =
i�c†k
�t	d†�t	�. From a direct calculation, the expression
for the current can be given by:

I
 = − e

�

∑

′

∫ d�

2�
�� ee



′ ��	�f


e − f 
′

e 	−� eh


��	

× �f 

h − f 


e 	
 (5)
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where � ee


′ ��	 = Tr�Gr��	�e


′ ��	Ga��	�e

��	�,

� eh


��	= Tr�Gr��	�e


��	G
a��	�h


 ��	�, are the electron–
electron and electron–hole transmittances, respectively.
we calculate the current for the case of the QD have a
single tunable level and can be modeled from Eq. (6) as
follows:

I
 = ie

2�

∫ d�

2�
�e�Gr

d��	��


e ��	f



e ��	−�


h �−�	f 

h �−�	


+G<
d ��	��



e ��	−�


h �−�	
� (6)

Since we define the bandwidths of electrons and holes
[16], respectively by �


e = 2�Vk
V
∗
k
�
 and �


h =
2Wk
W

∗
k
�
, with �
 being the density of states (DOS)

of the reservoir 
. f 

e ��	 and f 


h �−�	 are the Fermi-
Dirac distribution functions and the Green functions
Gr

d��	�G
a
d��	 and G<

d ��	 are the retarded, advanced and
lesser Green’s functions for the QD, respectively. These
Green’s functions can be obtained by analytic continu-
ation of the Green’s functions of ordered Gd��� �

′	 =
−i�T cd��	d

†�� ′	�, where T c are orders operators along
the Keldysh contour. Since the motion equation for
Gd��� �

′	 is structurally equivalent to the chronologically
ordered Green’s function Gd�t� t

′	=−i�T cd�t	d
†�t′	�.

In proposed architecture we compute Gd�t� t
′	 by the

motion equation technique for a 2-site Kitaev chain (at the
end we present the Green’s functions for 3, 4, 5, 6 and
generalize to the case of n sites). Taking the derivative in
time with respect to t we obtain:(

i
�

�t
− �d

)
Gr

d�t� t
′	 = ��t− t′	+∑

k


�Vk
�n +Wk
�n	

×Gr
ck

�t� t′	+�Gr

c1
�t� t′	 (7)

and the new Green’s functions are defined as: Gr
k
�t� t

′	=
−i�T cck
�t	d

†�t′	� and Gr
c1
�t� t′	 = −i�T cc1�t	d

†�t′	�.
Calculating the derivative in time of these new Green’s
functions with respect to t we find:(

i
�

�t
− �k

)
Gr

k
�t� t
′	= �Vk
�n +Wk
�n	G

r
d�t� t

′	 (8)

i
�

�t
Gr

c1
�t� t′	= �Gr

d�t� t
′	+hGr

c2
�t� t′	+�Gr

c†2
�t� t′	

(9)

Note that two new Green’s functions appear in Eq. (9),
and we define them as, Gr

c2
�t� t′	=−i�T cc2�t	d

†�t′	� and
Gr

c
†
2
�t� t′	= i�T cc

†
2�t	d

†�t′	�. Realizing the derivative with
respect to t of these two Green’s functions we arrive at:

i
�

�t
Gr

c2d0
�t� t′	= hGr

c1
�t� t′	−�Gr

c†1
�t� t′	 (10)

i
�

�t
Gr

c†2
�t� t′	=−hGr

c†1
�t� t′	+�Gr

c1
�t� t′	 (11)

A further Green’s functions appears in Eqs. (10) and (11),
Gr

c†1
�t� t′	=−i�T cc

†
1�t	d

†�t′	�, whose equation of motion
can be easily calculated,

�

�t
Gr

c†1
�t� t′	=−�Gr

d†�t� t
′	−hGr

c†2
�t� t′	−�Gr

c2
�t� t′	

(12)
It appears in Eq. (12) another Green’s functions,
Gr

d†�t� t
′	=−i�T cd

†
0�t	d

†�t′	�, calculated in:(
i
�

�t
+ �d

)
Gr

d†�t� t
′	 = −∑

k


�V ∗
k
�n +W ∗

k
�n	G
r

c†k

�t� t′	

−�Gr

c†1
�t� t′	 (13)

Finally, there remains a Green function given by:
Gr

c†k

�t� t′	=−i�T cc

†
k
�t	d

†�t′	�, which results in :(
i
�

�t
+ �k

)
Gr

c†k

�t� t′	=−�V ∗

k
�n +W ∗
k
�n	G

r
d† �t� t

′	 (14)

The Eqs. (7)–(14) constitute a complete set of eight differ-
ential equations. In order to reduce to only six equations,
we write Eqs. (8) and (14) in their integral forms:

Gr
ck

�t� t′	= �Vk
�n +Wk
�n	

∫
dt1gk
�t� t1	Gd�t1� t

′	 (15)

Gr

c†k

�t� t′	=−�V ∗

k
�n +W ∗
k
�n	

∫
dt1g

′
k
�t� t1	Gd†�t1� t

′	

(16)

and replacing Eqs. (15) and (16), respectively, in Eqs. (7)
and (13). This gives:(

i
�

�t
−�d

)
Gr

d0
�t�t′	 = ��t−t′	+

∫
dt1
∑

�t�t1	G
r
d�t�t

′	

+�Gr
c1
�t�t′	 (17)(

i
�

�t
+�d

)
Gr

d†
0
�t�t′	 = −

∫
dt1

′∑
�t�t1	G

r
d†�t�t

′	

−�Gr

c†1
�t�t′	 (18)

Since we define the self-energy functions of the elec-
trodes as:∑

�t�t1	=
∑
k


�Vk
�ngk
�t�t1	V
∗
k
�n+Wk
�ngk
�t�t1	W

∗
k
�n


(19)
′∑
�t�t1	=

∑
k


�Vk
�nḡk
�t�t1	V
∗
k
�n+Wk
�nḡk
�t�t1	W

∗
k
�n


(20)

The Eqs. (10)–(13) and (17)–(18) constitute our new set
of six integral-differential equations, which can be written
in compact matrix form as:

�G�t�t′	=g�t�t′	�u+
∫ ∫

dt2dt1g�t�t2	
′′∑
�t2�t1	G�t1�t

′	

(21)
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where the matrix g�t�t′	 is given by:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
�

�t
−�d 0 0 0 0 0

0 i
�

�t
+�d 0 0 0 0

0 0 i
�

�t
+�1 0 0 0

0 0 0 i
�

�t
+�1 0 0

0 0 0 0 i
�

�t
+�2 0

0 0 0 0 0 i
�

�t
+�2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×g�t�t′	=��t−t′	I (22)

with I being the matrix is a 6×6 identity matrix, and:

�̃�t2�t1	 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 0 0 0 0 0

0 �′ 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+��t1−t2	

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 +� 0 0 0

0 0 0 −� 0 0

+� 0 0 0 +h +�

0 +� 0 0 −� −h

0 0 +h −� 0 0

0 0 +� −h 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

The self-energy matrix retarded:

�r��	=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 0 +� 0 0 0

0 �′ 0 −� 0 0

+� 0 0 0 +h +�

0 +� 0 0 −� −h

0 0 +h −� 0 0

0 0 +� −h 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

The vectors �G�t�t′	 and �u are defined as:

�G�t�t′	=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gr
d�t�t

′	

Gr
d†�t�t

′	

Gr
c1
�t�t′	

Gr

c†1
�t�t′	

Gr
c2
�t�t′	

Gr

c†2
�t�t′	

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� �u=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

Iterating Eq. (21), we can show that:

�G�t�t′	=G�t�t′	�u (26)

And we have the Dyson equation:

G�t�t′	=g�t�t′	+
∫ ∫

dt2dt1g�t�t1	�̃�t1�t2	G�t2�t
′	

(27)

Writing a similar equation in the Keldysh contour [26–28],

G���� ′	=g���� ′	+
∫ ∫

d�2d�1g����1	�̃��1��2	G��2��
′	

(28)
applying the rules of Langreth’s analytical continuation,
we have for the retarded Green’s function, already in the
energy domain:

Gr ��	=gr ��	+gr ��	�̃r ��	Gr ��	 (29)

and for the lesser Green’s function:

G<��	=Gr ��	�̃<��	Ga��	 (30)

The components of retarded and lesser auto-energy can be
expressed as:

�r��	=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 0 +� 0 0 0

0 �′ 0 −� 0 0

+� 0 0 0 +h +�

0 +� 0 0 −� −h

0 0 +h −� 0 0

0 0 +� −h 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

And the matrix �̃<��	 has only two nonzero elements:

�̃<
11��	 = i��L��	fL��	+�R��	fR��	+�L�−�	fL�−�	

+�R�−�	fR�−�	
 (32)

�̃<
22��	 = i��L�−�	fL�−�	+�R�−�	fR�−�	

+�L��	fL��	+�R��	fR��	
 (33)

With the other elements of �̃<��	 equal to zero. To obtain
Gr

d��	 and Ga
d��	 we must find Gr ��	 in Eq. (29). We

get, after using matrices properties:

�Gr ��	�−1= �gr ��	
−1−�̃r��	 (34)

Therefore:

�Gr ��	�−1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G0 0 −� 0 0 0

0 G0 0 +� 0 0

−� 0 G1 0 −h −�

0 +� 0 G1 +� +h

0 0 −h +� G2 0

0 0 −� +h 0 G2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(35)
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In order to facilitate the generalization to n sites, we will
consider Eq. (35) in the form of a block matrix:

�Gr ��	�−1=

⎛
⎜⎜⎝
G0 � 0

� G1 A

0 B G2

⎞
⎟⎟⎠ (36)

Where the submatrices are given by:

G0=
(
G0 0

0 G0

)
� �=

(−� 0

0 +�

)
� A=

(−h −�

+� +h

)
�

B=
(−h +�

−� +h

)
� 0=

(
0 0

0 0

)
� G1=

(
G1 0

0 G1

)
�

G2=
(
G2 0

0 G2

)
�

Thus, the matrix of the Green’s function of the system for
3 sites will be given by:

�Gr ��	�−1=

⎛
⎜⎜⎜⎜⎜⎝

G0 � 0 0

� G1 A 0

0 B G2 A

0 0 B G3

⎞
⎟⎟⎟⎟⎟⎠ (37)

com

G3=
(
G3 0
0 G3

)
And for 4, 5 and 6 sites, respectively, we have:

�Gr ��	�−1=

⎛
⎜⎜⎜⎜⎜⎜⎝

G0 � 0 0 0

� G1 A 0 0

0 B G2 A 0

0 0 B G3 A

0 0 0 B G4

⎞
⎟⎟⎟⎟⎟⎟⎠

(38)

�Gr ��	�−1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G0 � 0 0 0 0

� G1 A 0 0 0

0 B G2 B 0 0

0 0 A G3 A 0

0 0 0 B G4 A

0 0 0 0 B G5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

�Gr ��	�−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G0 � 0 0 0 0 0

� G1 A 0 0 0 0

0 B G2 A 0 0 0

0 0 B G3 A 0 0

0 0 0 B G4 A 0

0 0 0 0 B G5 A

0 0 0 0 0 B G6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40)

And, therefore, generalizing for n sites, we have:

�Gr ��	�−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G0 � 0 0 0 0 0 0 0 0

� G1 0 0 0 � 0 0 0 0

0 B G2 A 0 ··· 0 0 0 0 0

0 0 B G3 A 0 0 0 0 0

0 0 0 B G4 0 0 0 0 0

���
� � �

���

0 0 0 0 0 Gn−4 A 0 0 0

0 0 0 0 0 B Gn−3 A 0 0

0 0 0 0 0 ··· 0 B Gn−2 A 0

0 0 0 0 0 0 0 B Gn−1 A

0 0 0 0 0 0 0 0 B Gn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(41)

Where:

Gn=
(
Gn 0

0 Gn

)

Using the Eqs. (25) and (26) in the frequency domain, we
obtain:

�G��	=Gr ��	�u
Or yet, in the case of 2 sites in the Kitaev chain:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gr
d��	

Gr
d†��	

Gr
c1
��	

Gr

c†1
��	

Gr
c2
��	

Gr

c†2
��	

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=G��	

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(42)

And using the property, we have the advanced Green’s
function:

Ga
d��	= �Gr

d��	

∗ (43)

We will get the advanced Green function of the quantum
dot. With these equations we can calculate the transport
properties described below.

3. NUMERICAL RESULTS
According to the Keldysh formalism developed in the pre-
vious section, we performed the numerical calculation to
investigate the transport properties of electrons and holes
in the T-shaped system of QD and a 1D topological super-
conductor with Majorana fermions at the ends of a Kitaev
chain with 2 sites. We consider the most studied and
completely soluble case for the Kitaev chain, �=0 and
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�= t �=0. We can verify the presence of the fermions
of Majorana from three points: (i) Conductance peak
in zero polarization; (ii) The current difference depends
on the asymmetry of �L and �R. In particular, we find
that only for �L=�R, the source and drain currents are
equals. (iii) The current difference depends on the asym-
metry of �L and �R. In particular, we find that (only) for
�L=�R the source and drain currents are equal to each
other.
MBS Signature-In the following numerical calculations,

we investigate the single-level case �d=0. In Figure 2(a),
we have the case of �=0�coupled dot−chain	, that is, the
Kitaev chain is decoupled. We have only the QD coupled
to the electrodes. The differential conductance (dI/dV )
curve exhibits a peak at the zero-bias point, typical sign
of common fermions (electrons). In Figure 2(b), we incor-
porate the coupling between QD and �A�1, in this case, of
� �=0. However, we have not yet connected the supercon-
ducting substrate, i.e., �=h=0. The conductance exhibits
two peaks at the points of Vb=±2�3 V at the point Vb=0
becomes zero.
In Figure 2(c), we display � �=0 and �=h �=0. The con-

ductance still exhibits two peaks at the points of Vb=
±2�3 V, but at the point Vb=0 shows a peak which is of

Fig. 2. dI/dV curves for �=0 the behaves as (a) single-level QD, (b) flat for the regular fermion situation and (c) In the presence of a MBS.

the same intensity as the half of the electron-relative peak.
Then, when the coupling between QD and �A�1 is incorpo-
rated, we can clearly see that the conductance peak. The
interesting thing is that, in the presence of non-zero �,
the conductance at the point of zero polarization shows a
peak. By further observation, we know that the conduc-
tance value at the zero point of the energy is exactly equal
to e2/2h. With the increase of such coupling, this conduc-
tance peak is enlarged, leaving its peak height unchanged.
A zero-bias DC current conductance peak appears in our
configuration, which means the existence of Majorana
fermion and is in accordance with previous experimen-
tal results on the InSb nanowire. Recent experimental
and theoretical investigations for signal signatures simi-
lar to Majorana modes (Andreev zero modes and Kondo
resonance) in semiconductor nanowires with proximity
effect involve conductance spectroscopy, where the evi-
dence sought is a robust zero polarization peak, which
determines the convincing signature of MZMs [29, 30]. As
a result, in general the characteristic I–V curve show in
the linear response regime (bias→0 V) a finite slope as
the bias increases. The dI/dV curve shows the presence
of three peak with one Majorana mode pinned at 0.5 V
for 0 V.

6 J. Comput. Theor. Nanosci. 17, 1–9, 2020
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Fig. 3. (a) I–V curve (b) dI/dV –V curve as function of bias voltage for several chemical potential �. For left electrode, �L=0�5, �L=0�5 (black
line); �L=0�6, �L=0�4 (red line); �L=0�7, �L=0�3 (blue line) and for right electrode �R=0�5 (black line); �R=0�6, �R=0�4 (green line); �R=0�7,
�R=0�3 (lilac line).

We then investigate the response of the system under
study for the characteristics I–V and dI/dV –V curves
applied at the two electrodes of the QD, defining the polar-
ization in these by V =��L−�R	/e. Varying the chemical
potentials of the right and left electrodes. The results show
the emergence of the Majorana modes with the presence of
the superconducting substrate a new load carrier channel
appears, in the case of holes. Therefore we have the trans-
port of electrons and holes carriers, Majorana transport.
This result certainly leads to a variation in the transport
of ordinary electron tunneling [16]. In this case, in gen-
eral, when we vary the values of the chemical potentials,

Fig. 4. (Color online) Left lead current (IL) and right lead current (IR)
against the bias voltage. For ��=0 (MBS), for two asymmetry factors
y=0�5 and y=0�8 and symmetric factor y=1 (green line). The current–
voltage curve is not conserve (IL �= IR). For voltages V>2.0, currents IL
and IR reach different plateaus. In this case, we have the current 	IL	>
	GO	 for asymmetry of electrodes y=0�5 and 	IL	> 	GO	 for asymmetry
of the electrodes y=0�8.

we verify the non-conservation of the current of the elec-
trodes, i.e., IL �=−IR. When the hole transmission factor,
M



eh vanish, the conservation of the current is recovered,
IL=−IR, i.e., when �L=�R.
Therefore, the non-conservation of current is a unique

characteristic that marks the Majorana transport. So, we
have another way that characterizes a Majorana mode. In
general, we can define the Majorana current as �IL−IR	/2.
When we turn off the superconductor we recover the ordi-
nary case.
We have argued that it is necessary to investigate the

case of the asymmetrical coupling of quantum electrodes.
We found that when �L �=�R, the currents on the two
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Fig. 5. (Color online) Differential conductance dI/dV for left lead �L

and right lead �R against the bias voltage. For ��=0 (MBS), for two
asymmetry factors y=0�5 and y=0�8 and symmetric factor y=1 (green
line). The differential conductance dIL/dV and dIR/dV clearly show the
symmetric case, where both conductance are at 0.5.
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normal electrodes are different, because of Andreev’s
reflections due to the two MBS. Here we define an asym-
metry coefficient y=�R/�L. In Figures 4 and 5, we vary
the parameter y and determine the I–V and dI/dV –V
curves. We find that, in the absence of MBS, the magni-
tudes of the I–V curve are equals in both electrodes, i.e.,
when y=1, (�L=�R), the asymmetry becomes accentu-
ated when we decrease y, when the MBS is introduced,
the current results on the two electrodes become different
from each other.
To decrease and weaken Andreev’s reflection on the R

electrode, but strengthens this in the electrode L, leading
to different currents and conductance in the two termi-
nals. Despite the difference in current and conductance, the
presence of MBS-induced conductance peak can still be
observed in the case of the asymmetric coupling quantum-
point electrodes. So far, we know that in this structure, the
detection of MBS is independent of the way of coupling
quantum dot-electrodes.

4. CONCLUSION
In this paper, we use the formalism of Keldysh to calculate
the functions of Green [31] smaller and larger Green of the
chain of Kitaev for the calculation of the current. A zero
bias current conductance peak appears in our differential
conductance graphs, which implies the existence of the
Majorana fermion and is consistent with previous exper-
iments on the nanowire [12, 13]. We find that, like the
fermion of Majorana that is its own antiparticle, there is a
channel of transmission of holes that makes the currents of
the electrodes not conserved. This non-conservation of the
current can be used as a criterion for detecting Majorana
fermion. Our results are consistent with previous studies
in the literature that calculate electronic transport using
the theory of nonlinear response. Our I–V curves show a
characteristic slope given by I=�G0/2	V , with half the
ballistic conductance G0=e2/h, as predicted [29–30]. We
also calculate the differential conductance obtained from
the right and left currents. The coupled in Figure 1 param-
eters, are based in the type of geometry studied for to allow
realise more realistic experiment in the case: (i) an optical
grid, feasible through use of the cold atoms technique and
(ii) partnered with another technique, such as Mechanical
Break Junction (MBJ) [32–33] due to the dot-chain inter-
face in the T-shaped geometry [34].
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