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Abstract: Some classes of generalized Schrödinger stationary problems are studied. Under appropriated
conditions is proved the existence of at least 1 +

∑m
i=2 dimVλi pairs of nontrivial solutions if a parameter

involved in the equation is large enough, where Vλi denotes the eigenspace associated to the i-th eigenvalue
λi of laplacian operator with homogeneous Dirichlet boundary condition.
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1 Introduction
Recently, it has been studied in [19] the following class of generalized Schrödinger problems{

−div(ϑ(u)∇u) + 1
2 ϑ

′(u)|∇u|2 = λ|u|q−2u in Ω,
u = 0 on ∂Ω,

(Pλ,q)

where Ω ⊂ IRN , N ≥ 3, is a bounded smooth domain, q, λ are real parameters and ϑ : IR → [1,∞) is an even
C1-function verifying:

(ϑ1) t 7→ ϑ(t) is decreasing in (−∞, 0) and increasing in (0,∞);
(ϑ2) t 7→ ϑ(t)/t2 increasing in (−∞, 0) and decreasing in (0,∞);
(ϑ3) lim|t|→∞ ϑ(t)/t2 = α2/2, for some α > 0.

By considering the ordinary di�erential equation

f ′(s) = 1
ϑ(f (s))1/2

and f (0) = 0, (ODE)

whose unique solution is f (s) = Υ−1(s), with Υ(t) :=
∫ t
0 ϑ(r)

1/2dr, the authors proved that
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Proposition 1.1. The following claims hold:

(i) f is an increasing C2-di�eomorphism, with f ′′(s) = −ϑ′(f (s))/2ϑ(f (s))2;
(ii) 0 < f ′(s) ≤ 1, for all s ∈ IR;
(iii) lims→0 f (s)/s = 1/ϑ(0)1/2;
(iv) |f (s)| ≤ |s|, for all s ∈ IR;
(v) Suppose that (ϑ1) − (ϑ2) hold. Then, |f (s)|/2 ≤ f ′(s)|s| ≤ |f (s)|, for all s ∈ IR, and the map s 7→ |f (s)|/

√
|s| is

nonincreasing in (−∞, 0) and nondecreasing in (0,∞);
(vi) Suppose that (ϑ1) − (ϑ3) hold. Then,

lim
|s|→∞

|f (s)|√
|s|

=
(

8
α2

)1/4
and lim

|s|→∞

f (s)
s = 0,

where α is given in (ϑ3).

Motivated by ideas in [5] and [14], the authors in [19] make use of the following approach: Despite the energy
functional associated to (Pλ,q) is notwell de�ned inH1

0(Ω), Proposition 1.1 allows them to consider the change
of variable v = f (u) in the semilinear problem (Pλ,q) in order to obtain the problem{

−∆v = λg(v) in Ω,
v = 0 on ∂Ω,

(P′λ,q)

where g(s) := f ′(s)|f (s)|q−2f (s), which has the advantage of possessing a well de�ned C1-energy functional
in H1

0(Ω), given by
Iλ,q(v) =

1
2‖v‖

2 − λ
∫
Ω

G(v)dx, (1.1)

where ‖v‖2 :=
∫
Ω |∇v|

2dr and G(s) =
∫ s
0 g(r)dx = (1/q)|f (s)|q. They also prove that critical points of (1.1) in

C1(Ω) are weak solutions of (Pλ,q). In this way, by working with (P′λ,q), among other things, they were able to
prove that:

(a) If q = 2, λ > ϑ(0)λ1 and (ϑ1) − (ϑ2) holds, then (Pλ,q) has a unique positive solution;
(b) If q = 4, λ > (α2/4)λ1 and (ϑ1) − (ϑ3) holds, then (Pλ,q) has at least one positive solution.

Having in mind the previous results, the present paper has as its main goal to improve the results in [19]
when one considers the cases q = 2 or q = 4 in problem (Pλ,q). Indeed, since in these two particular cases we
prove in Lemma 2.1 that g is asymptotically linear at zero and at in�nity, respectively, by using genus theory
combined with arguments involving the Nehari manifold, it is possible to show that the number of solutions
increases with λ. To bemore precise, if dimVλi denotes the dimension of the eigenspace Vλi associated to i-th
eigenvalue λi of laplacian operator under homogeneousDirichlet boundary condition,weprove the following
multiplicity result:

Theorem 1.2. Suppose that (ϑ1) − (ϑ3) hold.

(i) If q = 2 and λ > ϑ(0)λm, then problem (Pλ,q) possesses at least 1+
∑m

i=2 dimVλi pairs of nontrivial solutions
ui with Iλ,2(f −1(ui)) > 0;

(ii) If q = 4 and λ > (α2/4)λm, then problem (Pλ,q) has at least 1 +
∑m

i=2 dimVλi pairs of nontrivial solutions ui
with Iλ,4(f −1(ui)) > 0.

By comparing Theorem 1.2 in [19] with Theorem 1.2(i) previously aimed, we can immediately conclude that at
least

∑m
i=2 dimVλi of solutions provided in Theorem 1.2(i) are sign-changing.

To better understand the relevance of Schrödinger equations in di�erent �elds of applied science, we
refer to [1–3, 10–13, 15, 17]. For a brief history about stationary Schrödinger equations (generalized or not),
see [5–9, 14, 16, 20–22, 25].
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The paper is organized in a unique section where we study both cases, q = 2 and q = 4.

2 Multiplicity of solutions
Since, by [19], it does not exist any nontrivial solutionwhen λ ≤ 0, along of this sectionwe are just considering
positive values of λ. Moreover, before proving the main results of this section we need to study the properties
of function g. Such properties play an important role throughout the paper.

Lemma 2.1. Suppose that (ϑ1) − (ϑ3) hold. Then:

(i) Map s 7→ |g(s)| is decreasing in (−∞, 0), increasing in (0,∞), lims→0 g(s)/s = 1/ϑ(0) and lim|s|→∞ |g(s)| =√
2/α, if q = 2;

(ii) Map s 7→ g(s)/s is decreasing in (−∞, 0), increasing in (0,∞), lims→0 g(s)/s = 0 and lim|s|→∞ g(s)/s =
4/α2, if q = 4;

(iii) Map s 7→ (1/2)g(s)s−G(s) is decreasing in (−∞, 0), increasing in (0,∞)and lim|s|→∞
[
(1/2)g(s)s − G(s)

]
=

+∞, if q = 4.

Proof. (i) The monotonicity is a straightforward consequence of Proposition 1.1(ii) and (ϑ2). On the other
hand, by Proposition 1.1(iii)

lim
s→0

g(s)
s = lim

s→0
1

ϑ(f (s))1/2
× f (s)s = 1

ϑ(0) .

Moreover, by (ϑ3)

lim
|s|→∞

|g(s)| = lim
|s|→∞

1
(ϑ(f (s))/f (s)2)1/2

=
√
2
α .

(ii) Since f is odd (because ϑ is even), it is su�cient to prove this item for s > 0. Observe that

g(s)
s = f (s)3

sϑ(f (s))1/2
= t2
Υ(t) ×

t
ϑ(t)1/2

,

where t := f (s) and Υ(t) :=
∫ t
0 ϑ(r)

1/2dr. It follows from (ϑ2) that t/ϑ(t)1/2 (and consequently t2/Υ(t))
is increasing in (0,∞). This proves that g(s)/s is increasing in (0,∞). Moreover, by item (iii) and (vi) of
Proposition 1.1, we have

lim
s→0

g(s)
s = lim

s→0
f (s)2

ϑ(f (s))1/2
× f (s)s = 0

and

lim
s→∞

g(s)
s = lim

s→∞

(
f (s)
s1/2

)2
× f (s)
ϑ(f (s))1/2

=
(

8
α2

)1/2
×
√
2
α = 4

α2 .

(iii) The monotonicity follows immediately from (ii). To prove the second part, note that

1
2 g(s)s − G(s) =

t3

4ϑ(t)1/2
(
2Υ(t) − tϑ(t)1/2

)
.

By (ϑ3) we know that t3/4ϑ(t)1/2 goes to in�nity as t goes to in�nity. On the other hand, by (ϑ2), 2Υ(t)−tϑ(t)1/2

is nonnegative and increasing in (0,∞). Indeed, by de�ning h(t) := 2Υ(t) − tϑ(t)1/2, we have h(0) = 0 and

h′(t) = 2ϑ(t) − tϑ′(t)
2ϑ(t)1/2

> 0, ∀ t > 0.

The result follows.

Fromnowon {ej} stands for aHilbertian basis ofH1
0(Ω) composedby eigenfunctions of the laplacian operator

with homogeneous Dirichlet boundary condition, Vλj is the eigenspace associated to λj, S and Sd(m) are,
respectively, the unit sphere of H1

0(Ω) and the unit sphere ofWm := ⊕mj=1Vλj .
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2.1 Case q = 2

.

Proof of Theorem 1.2(i):

By Lemma 2.1(i) and Sobolev embedding

Iλ,2(v) ≥
1
2‖v‖

2 −
√
2λ
α

∫
Ω

|v|dx ≥ 12‖v‖
2 −
√
2Cλ
α ‖v‖.

Therefore Iλ,2 is coercive. Since Iλ,2 is weakly lower semicontinuous, we conclude that Iλ,2 is bounded from
below. On the other hand, since

Iλ,2(sv)
s2 = 1

2 − λ
∫

[v≠0]

[
G(sv)
(sv)2

]
v2dx,

for all v ∈ d(m). We conclude from Lemma 2.1(i), L’Hospital and Lebesgue Dominated Convergence Theorem
that

lim
s→0

Iλ,2(sv)
s2 = 1

2 −
λ

2ϑ(0)

∫
Ω

v2dx,

for all v ∈ d(m). Since v =
∑d(m)

j=1 vλj ej, where d(m) := 1 +
∑m

i=2 dimVλi , we get

lim
s→0

Iλ,2(sv)
s2 = 1

2 −
λ

2ϑ(0)

d(m)∑
j=1

v2j
∫
Ω

e2j dx +
∑
j≠i
vjvi

∫
Ω

ejeidx

 = 1
2 −

λ
2ϑ(0)

d(m)∑
j=1

(
v2j
λj

)
.

Since v ∈ Sd(m),

lim
s→0

Iλ,2(sv)
s2 = 1

2

d(m)∑
j=1

[
1 − λ

ϑ(0)λj

]
v2j ≤

1
2

(
1 − λ

ϑ(0)λm

)
< 0,

for all v ∈ Sd(m), because λ > ϑ(0)λm. Therefore, there exist ε, δ > 0 such that

Iλ,2(sv) = (Iλ,2(sv)/s2)s2 ≤ −εs2,

for all 0 < s < δ and v ∈ Sd(m). Fixing 0 < s* < δ, we have

sup
w∈s*Sd(m)

Iλ,2(w) < 0.

Since Iλ,2 is coercive, it is standard to prove that it satis�es the (PS)c condition. Finally, as Iλ,2 is an even C1-
functional, it follows from Theorem 9.1 in [18] (see also [4]) that Iλ,2 has at least d(m) pairs of critical points.
�

2.2 Case q = 4

.

Before we are ready to prove Theorem 1.2(ii), we will make a careful study about some topological and
geometrical aspects involving the Nehari Manifold. Let

N =

v ∈ H1
0(Ω)\{0} : ‖v‖2 = λ

∫
Ω

g(v)vdx


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be the Nehari manifold associated to Iλ,4, S the unit sphere in H1
0(Ω) and

F :=

v ∈ H1
0(Ω) : ‖v‖2 <

4λ
α2

∫
Ω

v2dx

 .

Lemma 2.2. If ϑ satis�es (ϑ1) − (ϑ3) and λ > (α2/4)λ1, the following claims hold:

(i) The set F is open and nonempty;
(ii) ∂F = {v ∈ H1

0(Ω) : ‖v‖2 = (4λ/α2)
∫
Ω v

2dx};
(iii) Fc = {v ∈ H1

0(Ω) : ‖v‖2 ≥ (4λ/α2)
∫
Ω v

2dx};
(iv) N ⊂ F;
(v) S ∩ F ≠ ∅.

Proof. (i) Since λ > (α2/4)λ1, any eigenfunction associated to λ1 belongs to F. Moreover, F = Φ−1(−∞, 0)
where Φ : H1

0(Ω) → R is the continuous functional de�ned by Φ(v) = ‖v‖2 − (4λ/α2)
∫
Ω v

2dx. Items (ii) and
(iii) are immediate.

(iv) If v ∈ N then, by Lemma 2.1(ii), we obtain

‖v‖2 = λ
∫

[v≠0]

[
g(v)
v

]
v2dx < 4λ

α2

∫
Ω

v2dx.

(v) It is su�cient to choose a normalized (in H1
0(Ω)) eigenfunction associated to λ1.

By previous Lemma, the set SF := S ∩ F is open in S. Moreover, ∂SF = {v ∈ S : 1 = (4λ/α2)
∫
Ω v

2dx} and
ScF = {v ∈ S : 1 ≥ (4λ/α2)

∫
Ω v

2dx} are nonempty because any normalized eigenfunction associated to λj
such that λ ≤ (α2/4)λj, belongs to ScF. Thus, SF is a noncomplete C1-submanifold of H1

0(Ω).

Lemma 2.3. Suppose that ϑ veri�es (ϑ1) − (ϑ3) and let hv : [0,∞)→ IR be de�ned by hv(s) = Iλ,4(sv).

(i) For each v ∈ F, there exists a unique sv > 0 such that h′v(s) > 0 in (0, sv), h′v(sv) = 0 and h′v(s) < 0 in
(sv , ∞). Moreover, sv ∈ N if, and only if, s = sv;

(ii) For each v ∈ Fc\{0}, h′v(s) > 0 for all s ∈ (0,∞).

Proof. (i) Observe that hv(0) = 0. Moreover, for each v ∈ F, we have

hv(s)
s2 = 1

2‖v‖
2 − λ

∫
[v≠0]

[
G(sv)
(sv)2

]
v2dx. (2.1)

Thus, in view of Lemma 2.1(ii), L’Hôspital rule and Lebesgue’s dominated convergence theorem, it follows
that

lim
s→∞

hv(s)
s2 = 1

2

‖v‖2 − (4λ/α2)∫
Ω

v2dx

 < 0.

Showing that lims→∞ hv(s) = −∞. Moreover, hv(s) is positive for s small enough. Indeed, reasoning as in the
previous limit, we get

lim
s→0+

hv(s)
s2 = 1

2‖v‖
2 − λ

∫
[v≠0]

[
G(sv)
(sv)2

]
v2dx = 1

2‖v‖
2 > 0.

Hence, there exists a global maximum point sv > 0 of hv which, by Lemma 2.1(ii), is the unique critical point
of hv.
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(ii) If v ∈ Fc\{0}, then ‖v‖2 ≥ (4λ/α2)
∫
Ω v

2dx. Thus, by Lemma 2.1(ii), it follows that

h′v(s)
s = ‖v‖2 − λ

∫
[v≠0]

g(sv)
sv v2dx ≥ λ

∫
[v≠0]

[
4
α2 −

g(sv)
sv

]
v2dx > 0, ∀ s > 0.

Consequently, h′v(s) > 0 for all s ∈ (0,∞).

Lemma 2.4. If ϑ veri�es (ϑ1) − (ϑ3), the following claims hold:

(A1) There exists τ > 0 such that sv ≥ τ, for all v ∈ SF;
(A2) For each compact setW ⊂ SF there exists CW > 0 such that sv ≤ CW, for all v ∈W;
(A3) The map m̂ : F → N given by m̂(v) = svv is continuous and m := m̂|SF

is a homeomorphism between SF

andN. Moreover, m−1(v) = v/‖v‖.

Proof. (A1) Suppose that there exists {vn} ⊂ SF with sn := svn → 0. In this case, we get v ∈ H1
0(Ω) with

vn ⇀ v in H1
0(Ω). It follows from Lemma 2.1(ii) that

1 = λ
∫
Ω

g(snvn)vndx ≤ (4/α2)λsn
∫
Ω

v2ndx. (2.2)

By passing to the limit as n →∞ in the last inequality, we get a contradiction.

(A2) Let {vn} ⊂W be a sequence such that sn := svn →∞. SinceW is compact, up to a subsequence, we
get v ∈W such that vn → v in H1

0(Ω). Hence, passing to the lower limit as n →∞ in

1 = ‖vn‖2 ≥ λ
∫

[v≠0]

g(snvn)
snvn

v2nχ[vn≠0]dx,

it follows from Lemma 2.1(ii) that
‖v‖2 = 1 ≥ (4λ/α2)

∫
Ω

v2dx,

showing that v ∈ Fc. Since v ∈W ⊂ F, we have a contradiction.

(A3) We are going to prove that m̂ is continuous. Let {vn} ⊂ F and v ∈ F be such that vn → v in H1
0(Ω).

Since m̂(sw) = m̂(w) for all w ∈ F and s > 0, we can assume that {vn} ⊂ SF. Hence,

sn = sn‖vn‖2 = λ
∫
Ω

g(snvn)vndx, (2.3)

where sn := svn . By (A1) and (A2), it follows that, passing to a subsequence, sn → s > 0. Thence, passing to
the limit as n →∞ in (2.3), we have

s = s‖v‖2 = λ
∫
Ω

g(sv)vdx,

showing that m̂(vn) = snvn → sv = m̂(v). The second part of (A3) is immediate.

Lemma 2.5. Suppose that ϑ satis�es (ϑ1) − (ϑ3). Then Iλ,4 is bounded from below inN.

Proof. By Lemma 2.1(iii), we get

Iλ,4(v) = λ
∫
Ω

[
1
2 g(v)v − G(v)

]
dx ≥ 0, ∀ v ∈ N. (2.4)

Therefore Iλ,4 is bounded from below inN.
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Now we are going to set the maps Ψ̂λ,4 : F → R and Ψλ,4 : SF → R, by

Ψ̂λ,4(u) = Iλ,4(m̂(u)) and Ψλ,4 := (Ψ̂λ,4)|SF
.

Previous functions have important properties which will be stated in the next lemma. The proof is a direct
consequence of Lemmas 2.3 and 2.4, see [24].

Lemma 2.6. Suppose that ϑ veri�es (ϑ1) − (ϑ3). Then,

(i) Ψ̂λ,4 ∈ C1(F,R) and

Ψ̂ ′
λ,4(u)v =

‖m̂(u)‖
‖u‖ I′λ,4(m̂(u))v, ∀u ∈ F and ∀v ∈ H1

0(Ω).

(ii) Ψλ,4 ∈ C1(SF ,R) and
Ψ ′
λ,4(u)v = ‖m(u)‖I

′
λ,4(m(u))v, ∀v ∈ TuSF .

(iii) If {un} is a (PS)c sequence for Ψλ,4 then {m(un)} is a (PS)c sequence for Iλ,4. If {un} ⊂ N is a bounded
(PS)c sequence for Iλ,4 then {m−1(un)} is a (PS)c sequence for Ψλ,4.

(iv) u is a critical point of Ψλ,4 if, and only if, m(u) is a nontrivial critical point of Iλ,4. Moreover, the
corresponding critical values coincide and

inf
SF

Ψλ,4 = inf
N
Iλ,4.

Proposition 2.7. Suppose that (ϑ1) − (ϑ3) hold. If {vn} ⊂ SF is such that dist(vn , ∂SF)→ 0, then there exists
v ∈ H1

0(Ω)\{0} such that vn ⇀ v in H1
0(Ω), svn →∞ and

Ψλ,4(vn)→∞. (2.5)

Proof. Since {vn} ⊂ SF is bounded, up to a subsequence, there exists v ∈ H1
0(Ω) with vn ⇀ v in H1

0(Ω). Since
dist(vn , ∂SF)→ 0, there exists {wn} ⊂ ∂SF such that ‖vn − wn‖ → 0 as n →∞. Thus,∣∣∣∣∣∣(4λ/α2)

∫
Ω

v2ndx − 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣(4λ/α2)
∫
Ω

(v2n − w2
n)dx

∣∣∣∣∣∣
≤ (4λ/α2)|vn + wn|2|vn − wn|2
≤ (8λ/α2λ1)‖vn − wn‖.

Therefore,
(4λ/α2)

∫
Ω

v2ndx → 1.

By using compact embedding from H1
0(Ω) into L2(Ω), it follows that

1 = (4λ/α2)
∫
Ω

v2dx. (2.6)

Thus v ≠ 0. Suppose by contradiction that, for some subsequence, {svn} is bounded. In this case, passing
again to a subsequence, there exists s0 > 0 (see Lemma 2.4(A1)) such that

svn → s0. (2.7)

It follows from (2.7) and
svn = λ

∫
Ω

g(svn vn)vndx,
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that
s0 = λ

∫
Ω

g(s0v)vdx.

Combining last equality and Lemma 2.1(ii), we obtain

1 < (4λ/α2)
∫
Ω

v2dx.

But this contradicts (2.6). Showing that svn → ∞. Finally, from svn → ∞, Lemma 2.1(iii) and Fatou Lemma,
we get

lim inf
n→∞

Ψλ,4(vn) = λ lim inf
n→∞

∫
Ω

[
1
2 g(svn vn)svn vn − G(svn vn)

]
dx ≥ ∞.

Proposition 2.8. Suppose that (ϑ1) − (ϑ3) hold and λ > (α2/4)λ1. Then Ψλ,4 satis�es the (PS)c condition.

Proof. By Lemmas 2.4(A3) and 2.6(iii), it is su�cient to show that Iλ,4 satis�es the (PS)c condition. For this,
let {wn} ⊂ N be a (PS)c sequence for Iλ,4. We are going to prove that {wn} is bounded in H1

0(Ω). Indeed,
otherwise, up to a subsequence, we have ‖wn‖ → ∞. De�ne vn := wn/‖wn‖ = m−1(wn) ∈ SF. Thus {vn} is
bounded in H1

0(Ω) and
Ψλ,4(vn)→ c. (2.8)

Consequently, there exists v ∈ H1
0(Ω) such that

vn ⇀ v in H1
0(Ω). (2.9)

Suppose by contradiction that v = 0. Since {Ψλ,4(vn)} is bounded, it follows that there exists C > 0 such
that

C > Ψλ,4(vn) = Iλ,4(svn vn) ≥ Iλ,4(svn) =

12 − λ
∫

[vn≠0]

G(svn)
(svn)2

v2ndx

 s2, ∀ s > 0. (2.10)

By Lemma 2.1(ii), L’Hôspital rule and compact embedding, passing to the limit as n →∞ in (2.10), we get

C ≥ (1/2)s2, ∀ s > 0,

a clear contradiction. Thereby, we conclude that v ≠ 0.
Since {wn} ⊂ N is a (PS)c sequence for functional Iλ,4, we get

on(1) +
∫
Ω

∇wn∇wdx = λ
∫
Ω

g(wn)wdx, ∀ w ∈ H1
0(Ω).

Dividing last equality by ‖wn‖, we have

on(1) +
∫
Ω

∇vn∇wdx = λ
∫

[vn ≠0]

[
g(‖wn‖vn)
‖wn‖vn

]
vnwdx.

Passing to the limit as n →∞, it follows from Lemma 2.1(ii) that∫
Ω

∇v∇wdx = (4λ/α2)
∫
Ω

vwdx, ∀ w ∈ H1
0(Ω). (2.11)

Now we are going to consider two cases:

(i) If (4λ/α2) ≠ λj, whatever j > 1, it follows from (2.11) that v = 0. But this is a contradiction. Therefore
{wn} is bounded in H1

0(Ω).
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(ii) If (4λ/α2) = λj, for some j > 1, then (2.11) implies that v is an eigenfunction associated to λj. From
(2.11), it follows also that ‖v‖2 = (4λ/α2)

∫
Ω v

2dx, i.e., v ∈ ∂F. On the other hand,

(4λ/α2)
∫
Ω

v2dx = ‖v‖2 ≤ lim inf
n→∞

‖vn‖2 = 1.

Suppose that
‖v‖2 = (4λ/α2)

∫
Ω

v2dx < 1. (2.12)

In this case, since
‖wn‖ = ‖svn vn‖ = svn , (2.13)

passing to the limit as n →∞ in

Ψλ,4(vn) = ‖wn‖2
1
2 − λ

∫
Ω

[
G(‖wn‖vn)
(‖wn‖vn)2

]
v2ndx


and using Lemma 2.1(ii), L’Hôspital rule and (2.12), we conclude that Ψλ,4(vn) → ∞, a contradiction with
(2.8). Consequently,

‖v‖2 = (4λ/α2)
∫
Ω

v2dx = 1, (2.14)

showing that v = ej and
‖vn‖ → ‖v‖. (2.15)

By using (2.9) and (2.15), we derive vn → v in H1
0(Ω) with v ∈ ∂SF (see (2.14)). Invoking Proposition 2.7, we

conclude that
Ψλ,4(vn)→∞. (2.16)

Since (2.16) cannot occurs, we conclude that {vn} is bounded.

Hence, there exists v ∈ H1
0(Ω) such that vn ⇀ v in H1

0(Ω) up to a subsequence. Since vn ⇀ v, to �nish
the proof we just have to prove that ‖vn‖ → ‖v‖. To this end, it is su�cient to note that since {vn} is a (PS)c
sequence, we have

on(1) +
∫
Ω

∇vn∇vdx = λ
∫
Ω

g(vn)vdx.

Passing to the limit as n →∞ in the previous equality, we get

‖v‖2 = λ
∫
Ω

g(v)vdx. (2.17)

Then (2.17) and Lebesgue’s convergence theorem imply that

‖vn‖2 = λ
∫
Ω

g(vn)vndx = λ
∫
Ω

g(v)vdx + on(1) = ‖v‖2 + on(1).

The main result of this section will be proved through Krasnoselski’s genus theory. For this, we start de�ning
some preliminaries notations:

γj :=
{
B ∈ E : B ⊂ SF and γ(B) ≥ j

}
,

where
E = {B ⊂ H1

0(Ω)\{0} : B is closed and B = −B}
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and γ : E→ Z ∪ {∞} is the Krasnoselski’s genus function, which is de�ned by

γ(B) =


n := min{m ∈ IN : there exists an odd map φ ∈ C(B, IRm\{0})},
∞, if there exists no map φ ∈ C(B, IRm\{0}),
0, if B = ∅.

(2.18)

It is important to note that, since SF = −SF, γj is well de�ned.
Below we state some standard properties of the genus which can be found, for instance, in [18].

Lemma 2.9. Let B and C be sets in E.

(i) If x ≠ 0, then γ({x} ∪ {−x}) = 1;
(ii) If there exists an odd map φ ∈ C(B, C), then γ(B) ≤ γ(C). In particular, if B ⊂ C then γ(B) ≤ γ(C).
(iii) If there exists an odd homeomorphism φ : B → C, then γ(B) = γ(C). In particular, if B is homeomorphic to

the unit sphere in IRn, then γ(B) = n.
(iv) If B is a compact set, then there exists a neighborhood K ∈ E of B such that γ(B) = γ(K).
(v) If γ(C) < ∞, then γ(B\C) ≥ γ(B) − γ(C).
(vi) If γ(A) ≥ 2, then A has in�nitely many points.

Remember that, we have denoted by d(m) the sum of the dimensions of all eigenspaces Vλj associated to
eigenvalues λj, where 1 ≤ j ≤ m.

Lemma 2.10. Suppose that (ϑ1) − (ϑ3) hold and λ > (α2/4)λm. Then,

(i) γd(m) ≠ ∅;
(ii) γ1 ⊃ γ2 ⊃ . . . ⊃ γd(m);
(iii) If φ ∈ C(SF , SF) and is odd, then φ(γj) ⊂ γj, for all 1 ≤ j ≤ d(m);
(iv) If B ∈ γj and C ∈ E with γ(C) ≤ s < j ≤ d(m), then B\C ∈ γj−s.

Proof. (i) Let Sd(m) be the unit sphere of V1 ⊕ V2 ⊕ . . . ⊕ Vm. Since λ > (α2/4)λm, it is clear that Sd(m) ⊂ SF.
Moreover, by Lemma 2.9(iii), we have γ(Sd(m)) = d(m). Showing that Sd(m) ∈ γd(m). (ii) It is immediate. (iii) It
follows directly from Lemma 2.9(ii). (iv) It is a consequence of Lemma 2.9(v).

Now, for each 1 ≤ j ≤ d(m), we de�ne the following minimax levels

cj = inf
B∈γj

sup
u∈B

Ψλ,4(u). (2.19)

Lemma 2.11. Suppose (ϑ1) − (ϑ3) hold. Then,

0 ≤ c1 ≤ c2 ≤ . . . ≤ cd(m) < ∞.

Proof. First inequality follows from Lemma 2.5. On the other hand, the monotonicity of the levels cj is a
consequence of Lemma 2.10(ii).

Next proposition is crucial to ensure the existence of multiple solutions.

Proposition 2.12. Suppose that ϑ satis�es (ϑ1) − (ϑ3) and λ > (α2/4)λm. If cj = . . . = cj+p ≡ c, j + p ≤ d(m),
then γ(Kc) ≥ p + 1, where Kc := {v ∈ SF : Ψλ,4(v) = c and Ψ ′

λ,4(v) = 0}.

Proof. Suppose that γ(Kc) ≤ p. By Proposition 2.8 and Lemma 2.11, Kc is a compact set. Thus, by Lemma
2.9(iv), there exists a compact neighborhood K (in H1

0(Ω)) of Kc such that γ(K) ≤ p. De�ningM := K ∩ SF, we
derive from Lemma 2.9(ii) that γ(M) ≤ p. Despite the noncompleteness of SF we can still use Theorem 3.11 in
[23] (see also Remark 3.12 in [23]) to ensure the existence of an odd homeomorphisms family η(., t) of SF such
that, for each u ∈ SF, the map

t 7→ Ψλ,4(η(u, t)) is non-increasing. (2.20)
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Observe that, although SF is non-complete, from Proposition 2.7 and (2.20), for all u ∈ SF, maps t 7→ η(u, t)
are well de�ned in t ∈ [0,∞). Consequently, it makes sense the third claim of Theorem 3.11 in [23], namely,

η((Ψλ,4)c+ε\M, 1) ⊂ (Ψλ,4)c−ε . (2.21)

Let us choose B ∈ γj+p such that supB Ψλ,4 ≤ c + ε. From Lemma 2.10(iv), B\M ∈ γj. It follows again from
Lemma 2.10(iii) that η(B\M, 1) ∈ γj. Therefore, from (2.21) and the de�nition of c, we have

c ≤ sup
η(B\M,1)

Ψλ,4 ≤ c − ε,

that is a contradiction. Then γ(Kc) ≥ p + 1.

We are now ready to prove the following multiplicity result:

Proof of Theorem 1.2(ii):

Note that 0 ≤ cj < ∞ are critical levels of Ψλ,4. In fact, suppose by contradiction that cj is regular
for some j. Invoking Theorem 3.11 in [23], with β = cj, ε = 1, N = ∅, there exist ε > 0 and a family
of odd homeomorphisms η(., t) satisfying the properties of referred theorem. Choosing B ∈ γj such that
supB ψ < cj + ε and arguing as in the proof of Proposition 2.12 we get a contradiction.

Finally, if the levels cj, 1 ≤ j ≤ d(m), are di�erent from each other, by Proposition 2.6(iv) the result is
proved. On the other hand, if cj = cj+1 ≡ c for some 1 ≤ j ≤ d(m), it follows from Proposition 2.12 that
γ(Kc) ≥ 2. Combining last inequality with Lemma 2.9(vi) and Proposition 2.6(iv), we conclude that (Pλ,q) has
in�nitely many pairs of nontrivial solutions.�
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