

# UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE ALTAMIRA FACULDADE DE ENGENHARIA FLORESTAL

## FATOR DE FORMA ARTIFICIAL PARA O HÍBRIDO *Eucalyptus urophylla* vs. *Eucalyptus grandis* NA AMAZÔNIA ORIENTAL

**DIONÍZIA MOURA AMORIM** 

ALTAMIRA - PARÁ 2014

#### **DIONÍZIA MOURA AMORIM**

### Fator de forma artificial para o híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis* na Amazônia Oriental

Trabalho de Conclusão de Curso apresentado à Faculdade de Engenharia Florestal da Universidade Federal do Pará, Campus Universitário de Altamira, como requisito parcial para a obtenção do título de Engenheira Florestal.

Orientador:

Prof. Me. Deivison Venicio Souza

Altamira-Pará 2014

| Dados Internacionais de Catalogação-na-Publicação (CIP) UFPA – Biblioteca do Campus de Altamira                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amorim, Dionízia Moura                                                                                                                                                                        |
| Fator de forma artificial para o híbrido <i>Eucalyptus urophylla</i> vs. <i>Eucalyptus grandis</i> na Amazônia Oriental / Dionízia Moura Amorim; Orientador: Me. Deivison Venicio Souza 2014. |
| Monografia (Graduação) — Universidade Federal do Pará, Campus Universitário de Altamira, Faculdade de Engenharia Florestal, 2014.                                                             |
| 1 Eucalinto – Eator de forma artificial, Pacaiá (PA) 2 Inventário florestal I. Título                                                                                                         |

"Permitida a cópia total ou parcial deste documento desde que citada a fonte - O autor"

CDD: 000.00000000

#### **Dionízia Moura Amorim**

### Fator de forma artificial para o híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis* na Amazônia Oriental

Trabalho de Conclusão de Curso apresentado à Faculdade de Engenharia Florestal da Universidade Federal do Pará, Campus Universitário de Altamira, como requisito parcial para a obtenção do título de Engenheira Florestal.

| Aprovado em | de Dezembro de 2014.                                         |
|-------------|--------------------------------------------------------------|
|             |                                                              |
|             |                                                              |
|             | Prof. Me. Deivison Venicio Souza<br>Orientador – UFPA        |
|             |                                                              |
|             | Prof. Me. Fábio Miranda Leão<br>Examinador – UFPA            |
|             |                                                              |
|             | Prof. Dr. Alisson Rodrigo de Sousa Reis<br>Examinador – UFPA |

#### **DEDICATÓRIA**

Aos meus pais, José dos Reis Amorim e Elzimar Moura de Souza pelo amor incondicional e ao meu grande amigo Luciano Ribeiro Morbach (*in memorian*) pela sincera amizade, dedico.

#### **AGRADECIMENTOS**

À Deus, por conceder-me a vida, como forma de sua sabedoria e inteligência para entendê-la.

Ao Prof. Me. Deivison Venicio Souza, pela excelente orientação, amizade, competência, atenção, paciência e dedicação antes e durante a realização desse trabalho e por todo conhecimento repassado.

À Universidade Federal do Pará (UFPA), por ofertar o curso de Bacharelado em Engenharia Florestal no Campus Universitário de Altamira e concessão de bolsa, proporcionando um aprendizado no âmbito da extensão rural.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão de bolsa de Iniciação ao Extensionismo.

À Faculdade de Engenharia Florestal (Família Florestal) por não medir esforços, buscando proporcionar aos seus discentes um melhor aprendizado e pela oportunidade de aprimoramento técnico-científico por meio deste curso.

À Empresa Ipiaçava Indústria e Comércio de Madeiras LTDA, em nome do Engenheiro Florestal Leonardo De Déa, por ceder à área de estudos e por todo apoio logístico durante a coleta de dados.

Ao Prof. Me. Miquéias Freitas Calvi, pela oportunidade de aprendizado e pela confiança depositada em mim, durante os últimos anos de graduação.

Aos demais professores da Faculdade de Engenharia Florestal pelo conhecimento repassado durante essa etapa de minha vida.

Aos amigos Alex Soares, Cássio Melo e Bruno Pessoa, pelo apoio durante a coleta de dados em campo.

Aos amigos de turma, pela amizade, pelos momentos de aprendizado ao lado de todos.

À minha família, especialmente aos meus pais Elzimar Moura de Souza e José dos Reis Amorim, por todo amor dedicado e por entenderem minha ausência, principalmente em momentos importantes, aos meus irmãos Kenedy, Douglas, Elton e Fernanda pelo apoio incondicional em todos os momentos que necessitei.

Ao amigo Antonio Carlos Oliveira por me acompanhar durante a realização desse sonho.

À minha grande amiga Tatiane Suzuki pelo apoio emocional durante essa etapa de minha vida.

Ao meu amigo Tchecyan Amaral e sua querida mãe Sofia pelo carinho e momentos de risos compartilhados.

A todos que contribuíram para a realização do trabalho, minha gratidão!

"Não existem erros, apenas lições. O crescimento é um processo de tentativa e erro: experimentação. As experiências que não deram certo fazem parte do processo, assim como as bem-sucedidas. As respostas estão dentro de você. Tudo o que tem a fazer é analisar, ouvir e ACREDITAR."

Jorge Bernard Shaw

#### Apresentação

O artigo "Fator de forma artificial para o híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis* na Amazônia Oriental", será submetido ao periódico científico Revista Scientia Forestalis.

#### **RESUMO**

Este trabalho teve como objetivo realizar a modelagem do fator de forma artificial para um povoamento do híbrido  $Eucalyptus\ urophylla\ vs.\ Eucalyptus\ grandis\ com\ oito\ anos\ de\ idade\ em\ condições\ de\ solos\ Amazônicos\ Foram\ cubadas\ 150\ árvores\ através\ do\ método\ de\ Huber\ e\ foram\ testados\ 11\ equações\ de\ fator\ de\ forma\ artificial\ (f_{1,3})\ e\ 15\ modelos\ de\ diâmetros\ relativos\ de\ Hohenadl\ (d_{0,3}\ e\ d_{0,5}).\ A\ equação\ mais\ acurada\ foi\ <math>f_{1,3}=0.1406416+0.6031094*(d_{-0.3}/d_{1,3}^2)+0.3626013*(d_{0,3}*d_{0,5})/d_{1,3}^2+0.2980331*(d_{0,5}/d_{1,3})^2,\ com\ os\ diâmetros\ de\ Hohenadl\ <math>l_n(d_{0,3})=0.1370-0.4708*\ln\ (h/d_{1,3}^2)+0.4331*\ln\ (h)$  e  $l_n(d_{0,5})=0.1459+-0.9489*\ln\ (1/d_{1,3})+0.0992*ln(1/h).$  A tabela do fator de forma artificial do hibrido  $Eucalyptus\ urophylla\ vs.\ Eucalyptus\ grandis\ variou\ entre\ 0.5405\ e\ 0.7658.$  O uso da equação deve ser restringido a povoamentos com características semelhantes ao estudado e sob condições\ edafoclimáticas\ e de regimes\ de\ condução\ similares.

**Palavras-chave:** Modelagem; fator de forma 0,7; estimativa de volume.

#### Sumário

| INTRODUÇÃO                                                                | 12 |
|---------------------------------------------------------------------------|----|
| MATERIAL E MÉTODOS                                                        | 14 |
| Localização e caracterização da área de estudo                            | 14 |
| Procedimento de coleta dos dados                                          | 14 |
| Modelos de fator de forma artificial                                      | 15 |
| Modelos de diâmetros relativos de Hohenadl                                | 16 |
| Critérios estatísticos para a seleção do melhor modelo                    | 17 |
| Estatística F - Snedecor                                                  | 17 |
| Coeficiente de determinação ajustado (R²aj.)                              | 18 |
| Erro Padrão da Estimativa ( $Syx$ ) - recalculado                         | 18 |
| Análise da distribuição gráfica de resíduos                               | 18 |
| Valor ponderado dos escores estatísticos (VP)                             | 19 |
| Validação do modelo de regressão selecionado                              | 19 |
| RESULTADOS E DISCUSSÃO                                                    | 20 |
| Diâmetros Relativos de Hohenadl (d <sub>0,3</sub> ) e (d <sub>0,5</sub> ) | 26 |
| Comparação entre os métodos de estimativa de volume                       | 29 |
| CONCLUSÕES                                                                | 32 |
| REFERÊNCIAS BIBLIOGRÁFICAS                                                | 32 |
| NORMAS DA REVISTA                                                         | 35 |

### Fator de forma artificial para o híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis* na Amazônia Oriental

Dionízia Moura Amorim<sup>1</sup>, Deivison Venicio Souza<sup>2</sup>, Fábio Miranda Leão<sup>2</sup>, Alex Souza Soares<sup>1</sup>, Cássio Melo da Silva<sup>1</sup> e Bruno Oliveira Pessoa<sup>1</sup>

#### **RESUMO**

Este trabalho teve como objetivo realizar a modelagem do fator de forma artificial para um povoamento do híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*, com oito anos de idade, em condições de solos Amazônicos. Foram cubadas 150 árvores através do método de Huber e foram testados 11 equações de fator de forma artificial ( $f_{1,3}$ ) e 15 modelos de diâmetros relativos de Hohenadl ( $d_{0,3}$  e  $d_{0,5}$ ). A equação mais acurada foi  $f_{1,3}=0.1406416+0.6031094*(d_{0,3}/d_{1,3}^2)+0.3626013*(d_{0,3}*d_{0,5})/d_{1,3}^2+0.2980331*(d_{0,5}/d_{1,3})^2$ , com os diâmetros de Hohenadl  $l_n(d_{0,3})=0.1370-0.4708*\ln(h/d_{1,3}^2)+0.4331*\ln(h)$  e  $l_n(d_{0,5})=0.1459+-0.9489*\ln(1/d_{1,3})+0.0992*ln(1/h)$ . A tabela do fator de forma artificial do hibrido *Eucalyptus urophylla* vs. *Eucalyptus grandis* variou entre 0,5405 e 0,7658. O uso da equação deve ser restringido a povoamentos com características semelhantes ao estudado e sob condições edafoclimáticas e de regimes de condução similares.

**Palavras-chave:** Modelagem; fator de forma 0,7; estimativa de volume.

<sup>&</sup>lt;sup>1</sup> Autora para correspondência; Graduanda em Engenharia Florestal pela Universidade Federal do Pará; Rua Coronel José Porfírio, nº 2515, Bairro São Sebastião, CEP: 68372-040, Altamira - Pará, Brasil; dionizia.ma@hotmail.com

<sup>&</sup>lt;sup>2</sup> Prof. Me. em Ciências Florestais; Faculdade de Engenharia Florestal da Universidade Federal do Pará; deivisonys@ufpa.br

<sup>&</sup>lt;sup>2</sup>Prof. Mestre em Ciências Florestais; Faculdade de Engenharia Florestal da Universidade Federal do Pará; fabioleao@ufpa.br

<sup>&</sup>lt;sup>1</sup>Graduando em engenharia Florestal pela Universidade Federal do Pará; alex souza3@hotmail.com

<sup>&</sup>lt;sup>1</sup>Graduando em engenharia Florestal pela Universidade Federal do Pará; meloufpa.eng@hotmail.com

<sup>&</sup>lt;sup>1</sup>Graduando em engenharia Florestal pela Universidade Federal do Pará; bruno\_sp91@hotmail.com

#### INTRODUÇÃO

O eucalipto está dentre as espécies florestais mais promissoras no Brasil, em decorrência de uma silvicultura avançada e eficiente (SEREGHETTI, 2012). No ano de 2012, a área total de plantios florestais no Brasil foi de 7.185.943 hectares, indicando um aumento de cerca de 180.000 hectares comparativamente ao ano de 2011 (IBGE, 2012a). As áreas com povoamentos de eucalipto equivalem a 76,6% do total plantado em 2012 (ABRAF, 2013). De acordo com Sette Junior et al. (2012) essa significativa área visa suprir as demandas das indústrias brasileiras de base florestal, com forte tendência de expansão para o atendimento dos mercados nacional e internacional.

Os atrativos econômicos provenientes da eucaliptocultura têm levado essa atividade a regiões menos tradicionais quanto ao plantio dessas espécies, como é o caso da Amazônia (MATOS et al., 2012). No Estado do Pará, particularmente, Lunz & Azevedo (2011) afirmam que nos últimos anos o plantio de eucalipto foi intensificado por meio de ações conjuntas do setor de mineração e por programas de reflorestamento e recomposição florestal de áreas alteradas e degradadas na Amazônia, estimuladas pelo Governo Federal, ressaltando a necessidade de estudos sobre o potencial produtivo desses povoamentos.

A constante busca de alternativas que possibilitam otimizar a produção de florestas passa pelo aprimoramento de técnicas de biometria, inventário e manejo florestal (THOMAS et al., 2006). Neste contexto, a estimativa de volume comercial é uma das tarefas mais importantes do profissional da área florestal para quantificar o nível de aproveitamento da madeira (SCHRODER et al., 2013).

Dentre as maneiras de quantificar a produção florestal destaca-se a utilização do fator de forma da árvore. O fator de forma é um parâmetro obtido pela razão do volume

real da árvore, por meio de cubagem rigorosa, e o volume de um cilindro. Prodan et al. (1997) classificam dois tipos de fator de forma, tendo como base a altura do ponto de medição do diâmetro de referência: i) fator de forma real ou verdadeiro ( $f_{0,1}$ ), quando o diâmetro for medido a 10 % da altura do fuste; e ii) fator de forma falso ou artificial ( $f_{1,3}$ ), quando o diâmetro for mensurado a 1,30 m do solo.

Drescher et al. (2001) afirmam que a determinação do fator de forma artificial ou falso constitui-se numa importante prática, quando se pretende estimar volume individual de árvores. Figueiredo et al. (2009) recomenda a realização do cálculo do fator de forma por espécie, em decorrência da grande oscilação desse fator entre as espécies e, ainda, Batista et al. (2014) afirmam que o fator de forma é variável mesmo em florestas plantadas homogêneas.

No âmbito do Estado do Pará, porém, as estimativas de volume de árvore em pé para fins de licenciamento ambiental de projetos de desbastes e corte raso não tem considerado as especificidades dos plantios florestais. De modo geral, as estimativas volumétricas têm sido feitas através do uso fator de forma 0,7, sendo uma adequação presunçosa aos povoamentos plantados, tendo em vista originar-se do fator de forma desenvolvido para as espécies florestais nativas Amazônicas (0,712), a partir de levantamentos florestais realizados na Amazônia entre os anos de 1956-1961, pela missão FAO (SUDAM, 1973).

O objetivo deste trabalho foi realizar a modelagem do fator de forma artificial para um povoamento do híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*, com oito anos de idade, em condições de solos Amazônicos.

#### MATERIAL E MÉTODOS

#### Localização e caracterização da área de estudo

O estudo foi realizado em um povoamento plantado do híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis* com oito anos de idade, sob espaçamento de 3 x 3 m, densidade de 1.089 árvores/ha<sup>-1</sup> e com área de efetivo plantio de 11,330 hectares. O povoamento pertence à empresa Ipiaçava Indústria e Comércio de Madeiras LTDA, localizado no município de Pacajá, às margens da BR-230 (Rodovia Transamazônica), na mesorregião do Sudoeste paraense, sob coordenadas Latitude: N -03° 38' 59,20473" e Longitude: E -50° 57' 19,45084"(Datum WGS 84).

A região possui clima tropical úmido do tipo "Af", conforme a classificação de Köppen, com estações quentes e chuvosas, caracterizado por umidade relativa do ar de 85%, temperatura anual variando de 21°C a 32°C e índice pluviométrico anual de 2.300 mm, sendo mais frequente nos meses de fevereiro, março e abril. Em agosto, setembro e outubro as chuvas reduzem, formando o período mais seco (IDESP, 2013). O solo é caracterizado como Argissolo Vermelho-Amarelo Distrófico de textura argilosa/muito argilosa e médio-argilosa (IBGE, 2012b).

#### Procedimento de coleta dos dados

Foram cubadas150 árvores através do método de Huber, tomando-se medidas do diâmetro na metade de cada seção "i" da tora e, ainda, estabeleceu-se um comprimento de seção "l" igual a 2 metros. Assim, o volume de cada seção "i"  $(v_i)$  foi determinado de acordo com a expressão  $v_i = g_{int_i}.l_i$ , onde:  $v_i$  = volume da seção "i", em m³;  $g_{int_i}$  = área seccional intermediária ou interna, em m², de cada seção "i";el = comprimento de cada seção da tora, em metros. O volume da ponta foi determinado pela fórmula  $v_p$  =

 $(g_{\rm int_n}.l_{\rm p})/3$ , em que:  $v_p$  = volume da ponta;  $g_{\rm int_n}$ = área seccional interna da última seção, em m²; e  $l_p$ = comprimento da última seção (MACHADO & FIGUEIREDO FILHO, 2009). Além disso, foram medidos ao longo do fuste de cada indivíduo os diâmetros relativos de Hohenadl, isto é, os diâmetros a 10% ( $d_{0,1}$ ), 30% ( $d_{0,3}$ ), 50% ( $d_{0,5}$ ) e 70% ( $d_{0,7}$ ) da altura do fuste comercial.

#### Modelos de fator de forma artificial

Foram testados 11 (onze) modelos de fator de forma disponíveis na literatura (Tabela 1), com o intuito de obter o mais adequado para um povoamento plantado do híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*. O fator de forma artificial ( $f_{1,3}$ ) foi determinado através da fórmula [ $f_{1,3} = v_{arv.}/v_{cil.}$ ], que é expressa pelarazão do volume real do fuste das árvores ( $v_{arv.}$ ), obtido por cubagem pelo método de Huber, e pelo volume do cilindro ( $V_{cil.}$ ), cujo diâmetro de referencia foi tomado a 1,30 metros do solo e altura equivalente ao fuste comercial das árvores (CAMPOS & LEITE, 2009).

84 85

76

77

78

79

80

81

82

Tabela 1. Modelos matemáticos de fator de forma ajustados.

```
Modelos de fator de forma artificial
1
                                                              l_n(f_{1,3}) = \beta_0 + \beta_1 * l_n(d_{0.5}/d_{1.3}^2) + \beta_2 * l_n(d_{0.1}/d_{1.3}^2)
2
                                           l_n(f_{1,3}) = \beta_0 + \beta_1 * l_n(d_{0,5}/d_{1,3}^2) + \beta_2 * l_n(d_{0,1}/d_{1,3}^2) + \beta_3 * l_n[1/(d_{1,3} * h)]
                                                                                   f_{1,3} = \beta_0 + \beta_1 * (d_{0,5}/d_{1,3}^2)
 3
                                                              f_{1,3} = \beta_0 + \beta_1 * (d_{0,5}/d_{1,3}^2) + \beta_2 * [(d_{0,3} * d_{0,7})/d_{1,3}^2]
 4
                                               f_{1,3} = \beta_0 + \beta_1 * (d_{0,3}/d_{1,3}^2) + \beta_2 * [(d_{0,1} * d_{0,5})/d_{1,3}^2] + \beta_3 * (d_{0,5}/d_{1,3}^2)
5
                                               f_{1,3} = \beta_0 + \beta_1 * (d_{0,3}/d_{1,3}^2) + \beta_2 * (d_{0,3} * d_{0,5})/d_{1,3}^2 + \beta_3 * (d_{0,5}/d_{1,3})^2
6
7
                              f_{1,3} = \beta_0 + \beta_1 * (d_{0,3}/d_{1,3}^2) + \beta_2 * [(d_{0,3} * d_{0,5})/d_{1,3}^2] + \beta_3 * (d_{0,5}/d_{1,3})^2 + \beta_4 * (d_{0,3}/d_{1,3})^2
                        f_{1,3} = \beta_0 + \beta_1 * [1/(d_{1,3}^2 * h)] + \beta_2 * [1/(d_{1,3} * h)] + \beta_3 * (1/d_{1,3}) + \beta_4 * (1/h) + \beta_5 * (1/d_{1,3}^2) + \varepsilon_i
8
                                                         f_{1,3} = \beta_0 + \beta_1 * (1/h) + \beta_2 * (h/d_{1,3}) + \beta_3 * (h/d_{1,3}^2) + \varepsilon_i
9
                                                                 f_{1,3} = \beta_0 + \beta_1 * (d_{0,3}/d_{1,3}^2)^2 + \beta_2 * (h/d_{1,3}^2) + \varepsilon_i
10
```

Em que: In = logaritmo neperiano; log = logaritmo na base 10;  $d_{1,3}$  = diâmetro medido a 1,30 m do solo; $d_{0,1}$ ;  $d_{0,3}$ ;  $d_{0,5}$ ;  $d_{0,7}$  = diâmetros relativos de Hohenadl a 10%, 30%, 50% e 70%, respectivamente, da altura do fuste comercial da árvore; h = altura comercial do fuste;  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$ ;  $\beta_5$  = coeficientes da regressão; e  $\epsilon$  = termo de erro aleatório. Fonte: Modelos 1, 2, 3 e 4 (Drescher et al., 2010); Modelos 5, 6 e 7 (Drescher et al., 2001) e Modelos 8, 9, 10 e 11 (Souza et al., 2008).

#### Modelos de diâmetros relativos de Hohenadl

Após a indicação do melhor modelo de fator de forma artificial ( $f_{1,3}$ ) foram ajustados 15 (quinze) modelos de diâmetros relativos de Hohenadl, sendo 9 para modelar o diâmetro a 30% da altura da árvore ( $d_{0,3}$ ) e 6 equações para ajustar o diâmetro a 50% da altura da árvore ( $d_{0,5}$ ) (Tabela 2). Posteriormente, as equações selecionadas de  $d_{0,3}$  e  $d_{0,5}$ , foram utilizadas para a elaboração da tabela de fator de forma artificial.

**Tabela 2.** Modelos matemáticos de diâmetros relativos de Hohenadl ( $d_{0,3}$  e  $d_{0,5}$ ) ajustados.

| М   | Diâmetros re                                                                                 | lativos de Hohenadl                                                                      |
|-----|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| IVI | $d_{0,3}$                                                                                    | $d_{0,5}$                                                                                |
| 1   | $l_n(d_{0,3}) = \beta_0 + \beta_1 * d_{1,3} + \beta_2 * (h/d_{1,3}) + \varepsilon_i$         | $l_n(d_{0,5}) = \beta_0 + \beta_1 * d_{1,3} + \beta_2 * (h * d_{1,3}) + \varepsilon_i$   |
| 2   | $l_n(d_{0,3}) = \beta_1 * d_{1,3} + \beta_2 * (h/d) + \varepsilon_i$                         | $l_n(d_{0,5}) = \beta_1 * d_{1,3} + \beta_2 * (h * d) + \varepsilon_i$                   |
| 3   | $l_n(d_{0,3}) = \beta_0 + \beta_1 * \ln (h/d_{1,3}^2) + \varepsilon_i$                       | $l_n(d_{0,5}) = \beta_0 + \beta_1 * ln(1/d_{1,3}) + \varepsilon_i$                       |
| 4   | $l_n(d_{0,3}) = \beta_0 + \beta_1 * \ln (h/d_{1,3}^2) + \beta_2 * \ln (h) + \varepsilon_i$   | $l_n(d_{0,5}) = \beta_1 * ln(1/d_{1,3}) + \beta_2 * ln(1/h * d_{1,3}) + \varepsilon_i$   |
| 5   | $l_n(d_{0,3}) = \beta_0 + \beta_1 * d_{1,3}^2 + \beta_2 * (h * d_{1,3}^2) + \varepsilon_i$   | $l_n(d_{0,5}) = \beta_1 * ln(1/d_{1,3}) + \beta_2 * ln(1/h) + \varepsilon_i$             |
| 6   | $l_n(d_{0,3}) = \beta_1 * d_{1,3}^2 + \beta_2 * (h * d_{1,3}^2) + \varepsilon_i$             | $l_n(d_{0,5}) = \beta_0 + \beta_1 * \ln(1/d_{1,3}) + \beta_2 * \ln(1/h) + \varepsilon_i$ |
| 7   | $l_n(d_{0,3}) = \beta_1 * \ln(1/d_{1,3}^2) + \beta_2 * \ln(1/h * d_{1,3}^2) + \varepsilon_i$ |                                                                                          |
| 8   | $l_n(d_{0,3}) = \beta_1 * \ln(1/d_{1,3}^2) + \beta_2 * \ln(1/h) + \varepsilon_i$             |                                                                                          |
| 9   | $l_n(d_{0,3}) = \beta_0 + \beta_1 * \ln(1/d_{1,3}^2) + \beta_2 * \ln(1/h) + \varepsilon_i$   |                                                                                          |

Em que: M = modelo; ln = logaritmo neperiano;  $d_{1,3}$  = diâmetro medido a 1,30 m do solo; $d_{0,3}$ ;  $d_{0,5}$ = diâmetros relativos de Hohenadl a 30%, 50%, respectivamente, da altura do fuste comercial da árvore; h = altura comercial do fuste;  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ = coeficientes da regressão; e  $\epsilon$ i = termo de erro aleatório. Fonte: Drescher et al., 2010; sendo que os Modelos 1 a 9 para  $d_{0,3}$  foram adaptados.

#### Critérios estatísticos para a seleção do melhor modelo

Para a seleção do (s) modelo (s) de fator de forma artificial e diâmetros relativos de Hohenadl ( $d_{0,3}$  e  $d_{0,5}$ ) mais acurados analisou-se os seguintes critérios estatísticos: i) significância da estatística F da Análise de Variância (ANOVA) da regressão; ii) coeficiente de determinação ajustado ( $R^2$ aj.); iii) erro padrão da estimativa (Syx); iv) erro padrão da estimativa em porcentagem (Syx%); v) desvio médio percentual (DMP%); vi) valor ponderado dos escores estatísticos (VP); e vii) análise gráfica dos resíduos. A análise de resíduos foi realizada plotando-se o erro residual da estimativa do fator de forma artificial em função do diâmetro a 1,30 m do solo ( $d_{1,3}$ ), com fins de detectar possíveis tendenciosidades (DRESCHER et al., 2001; SOUZA et al., 2008; DRESCHER et al., 2010). Além disso, avaliou-se a significância estatística dos coeficientes da regressão através da estatística t-Student ( $\alpha$  = 0,05).

#### Estatística F - Snedecor

A estatística F obtida por meio da análise de variância da regressão tem por objetivo testar a hipótese global da regressão, isto é, de existência ou não da regressão. Assim, de acordo com Valente et al. (2011), quando o valor do teste F (F<sub>calculado</sub>) for maior que o F<sub>tabelado</sub>, rejeita-se a hipótese de não haver regressão (hipótese de nulidade), isto é, o modelo é significativo a determinado nível de significância, e conclui-se que pelo menos uma variável independente esteja relacionada com o valor da variável dependente. Conforme Souza et al. (2008), quanto maior o valor de F calculado melhor o ajuste da equação.

#### Coeficiente de determinação ajustado (R²aj.)

O Coeficiente de determinação ajustado ( $R^2$ aj.) foi obtido através da expressão  $R^2$ aj. =  $R^2$  - [k-1/N-k].(1- $R^2$ ), em que:  $R^2$  = coeficiente de determinação; K = número de coeficientes da equação; N = número de observações. O  $R^2$ aj. foi utilizado para a comparação de equações ajustadas com número de coeficientes diferentes e, quanto mais próximo de 1 (um) o seu valor, melhor foi considerado o ajuste da linha de regressão (SOUZA et al., 2008; THOMAS et al., 2006).

#### Erro Padrão da Estimativa (Syx) - recalculado

Nos modelos logaritmos em que a variável dependente sofreu uma transformação, o erro padrão de estimativa foi corrigido na escala original, para possibilitar a comparação com os modelos aritméticos (MELO et al., 2013). No entanto, para as equações logarítmicas foi determinado, preliminarmente, o Fator de Correção de Meyer (FM), através da fórmula FM =  $e^{(0.5^*(Syx^2)}$ , em que: e = constante de Euler (2,718281828...); e Syx = o erro padrão de estimativa, como fins de minimizar a discrepância logarítmica que, em geral, subestima a variável resposta e, posteriormente, o fator de forma artificial estimado foi multiplicado pelo FM, para recalcular o erro padrão da estimativa, através da fórmula  $Syx_{recalc.} = \sqrt{\Sigma(\gamma_i - \bar{Y}_i)/(n-p)}$ , em que:  $Syx_{recalc.} = erro padrão da estimativa recalculado; yi = valor real de cada observação; <math>\bar{Y}_i$  = valor estimado de cada observação; n = número de dados; p = número de coeficientes de cada equação.

#### Análise da distribuição gráfica de resíduos

A análise da distribuição gráfica dos valores residuais é um critério importante, pois possibilita a verificação do ajuste da equação ao longo da amplitude dos dados, permitindo

detectar se há ou não tendenciosidades na estimativa da variável dependente ao longo da linha de regressão, ou seja, se a dispersão dos pontos ao longo do eixo da variável independente indica de forma clara se o ajuste subestima ou superestima a variável dependente. Sendo determinante na avaliação da qualidade das estimativas, para tomada de decisão quanto à utilização ou não do modelo (RUFINO et al., 2010).

156

157

158

159

160

161

162

163

164

165

166

167

151

152

153

154

155

#### Valor ponderado dos escores estatísticos (VP)

Após a obtenção dos parâmetros estatísticos de seleção foi determinado o valor ponderado dos escores estatísticos (VP) para cada modelo de regressão, conforme descrito por Souza et al. (2008). O cálculo do VP consistiu na ordenação dos modelos de acordo com o maior ou menor valor das medidas de precisão do ajuste, atribuindo-se peso 1 para o modelo mais eficiente, 2 para a segundo e, assim sucessivamente. Portanto, foram atribuídos pesos de 1 a 10para os modelos de fator de forma de acordo com as estatísticas de precisão cada equação, estabelecendo-se para um Posteriormente, o modelo que mostrou o menor somatório dos pesos, aliado a significância dos coeficientes da regressão foi selecionado como o mais adequado para uso.

168

169

170

171

172

173

174

#### Validação do modelo de regressão selecionado

A validação mostra como uma equação, ajustada para um determinado grupo de dados, comportam-se na estimativa de dados independentes daqueles usados no ajuste (Kohler et al., 2013). Assim, foi realizado o teste Qui-quadrado ( $\chi^2$ ), ao nível de 5% de probabilidade, com banco de dados independente constituído de 50 árvores, para avaliara precisão das estimativas do fator de forma artificial pelos modelos ajustados com os

respectivos fatores de forma das árvores obtidos  $\operatorname{por}[f_{1,3} = v_{arv.}/v_{cil.}]$ , através da fórmula  $\chi^2 = \sum (y_i - \hat{y}_i)^2/\hat{y}_i$ . Em que:  $y_i$  = fator de forma artificial real das árvores;  $\operatorname{e} \hat{y}_i$  = fator de forma artificial estimado para as árvores pelo modelo de regressão considerado mais acurado. As hipóteses testadas foram: i) *Hipótese de nulidade*: o fator de forma artificial estimado pelo modelo selecionado é, estatisticamente, igual ao fator de forma artificial real; e ii) *Hipótese alternativa*: o fator de forma artificial estimado pelo modelo é diferente, estatisticamente, do fator de forma artificial real.

#### **RESULTADOS E DISCUSSÃO**

Os modelos ajustados para o fator de forma artificial (f<sub>1,3</sub>) mostraram respostas diversificadas para as medidas de precisão do ajustamento e significância dos coeficientes da regressão (Tabela 3 e 4).

**Tabela 3.** Coeficientes da regressão e estatística de significância para os modelos de fator de forma artificial para um povoamento do híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*, Pacajá, Pará.

| -<br>N/I | •                          |                            | Coeficientes               | da regressão                |                |                 |
|----------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------|-----------------|
| M        | βο                         | β <sub>1</sub>             | β <sub>2</sub>             | β3                          | β <sub>4</sub> | β <sub>5</sub>  |
| _        | 0,1537997                  | 1,2885636                  | -1,1643532                 |                             |                |                 |
| 1        | (p = 0.00593)              | (p = 2,476E-20)            | (p = 3,553E-16)            | -                           | <del>-</del>   | <del>-</del>    |
| 2        | 0,352351<br>(p = 6,28E-06) | 1,242631<br>(p = 9,15E-21) | -1,40516<br>(p = 1,56E-18) | 0,179919 ( $p = 0,000299$ ) |                |                 |
| •        | 0,4786342                  | 2,2100206                  |                            |                             |                |                 |
| 3        | (p = 1,184E-54)            | (p = 4,198E-16)            | -                          | -                           | -              | -               |
|          | 0,1596987                  | 0,2110157                  | 0,7502021                  |                             |                |                 |
| 4        | (p = 6.854E-14)            | (p = 0.1621816)            | (p = 3.851E-34)            | -                           | -              | -               |
| _        | -0,1261042                 | 1,8619525                  | 0,932373                   | -1,7921912                  |                |                 |
| 5        | (p = 0.0291657)            | (p = 0,2029988)            | (p = 7,913E-19)            | (p = 0.2957631)             | <del>-</del>   | <del>-</del>    |
| •        | 0,1406416                  | 0,6031094                  | 0,3626013                  | 0,2980331                   |                |                 |
| 6        | (p = 7,908E-05)            | (p = 0,000541)             | (p = 0.0259977)            | (p = 0.0474281)             | -              | <del>-</del>    |
| _        | 0,140185                   | 0,59908                    | 1,0044722                  | -0,0709001                  | -0,277708      |                 |
| 7        | (p = 9,633E-05)            | (p = 0.0007328)            | (p = 0.8224879)            | (p = 0.9780406)             | (p = 0.885923) | <del>-</del>    |
|          | 0,3319719                  | 23,789779                  | -16,844986                 | 1,9224311                   | 3,6017304      | -4,2129061      |
| 8        | (p = 0,2389762)            | (p = 0.9582454)            | (p = 0.8412503)            | (p = 0.7715358)             | (p = 0.385205) | (p = 0.9168742) |
| 9        | 0,39072                    | 2,7521047                  | 0,0445104                  | -0,1705525                  | _              | -               |

|    | (p = 0.0001524) | (p = 0,0003245)  | (p = 0,6094031)  | (p = 0.7463661) |   |   |  |
|----|-----------------|------------------|------------------|-----------------|---|---|--|
| 40 | 0,555500158     | -3,24447E-10     | 0,691592986      |                 |   |   |  |
| 10 | (p = 0.0289858) | (p = 7,1878E-18) | (p = 0.01870384) | <del>-</del>    | - | - |  |
| 44 | 1,1308429       | -0,0522085       | -0,3865305       |                 |   |   |  |
| 11 | (p = 4,007E-36) | (p = 0.4570943)  | (p = 1,723E-05)  | -               | - | - |  |

Em que: M = Modelos;  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  e  $\beta_5$  = coeficientes da regressão; *p-value* = indica o nível de significância do teste t-Student para cada coeficiente da regressão ( $\alpha$  = 0,05).

Os 11 modelos ajustados de f<sub>1,3</sub> mostraram grande variabilidade nos valores da estatística F-Snedecor variando entre 14,23075 a 395,8786. Contudo, todos os modelos reportaram significância ao nível de 1% de probabilidade para a estatística, rejeitando-se a hipótese de não haver regressão concluindo-se, portanto, que pelo menos uma variável independente está relacionada com um valor da variável dependente. Os maiores valores de F-Snedecor foram observados para os modelos 4, 5, 6 e 1, respectivamente.

**Tabela 4.** Parâmetros estatísticos de precisão do ajustamento para um povoamento do híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*, Pacajá, Pará.

| М -   |          |          |                  |                    |          |    |           |
|-------|----------|----------|------------------|--------------------|----------|----|-----------|
| IVI — | F        | R²aj.    | Syx <sub>r</sub> | Syx <sub>r</sub> % | DMP%     | VP | FM        |
| 1     | 122,7085 | 0,710879 | 0,072155         | -14,3568           | -2,22253 | 43 | 1,0026066 |
| 2     | 97,5414  | 0,745255 | 0,067730         | -13,4763           | -1,75928 | 39 | 1,002296  |
| 3     | 95,08482 | 0,487272 | 0,055626         | 9,116766           | -1,04141 | 28 |           |
| 4     | 395,8786 | 0,888608 | 0,025927         | 4,249358           | -0,23248 | 5  |           |
| 5     | 128,1864 | 0,793990 | 0,035259         | 5,778851           | -0,38930 | 12 |           |
| 6     | 125,3699 | 0,790303 | 0,035574         | 5,830333           | -0,38029 | 15 |           |
| 7     | 93,07344 | 0,788142 | 0,035756         | 5,860301           | -0,37985 | 21 |           |
| 8     | 16,97721 | 0,446575 | 0,057791         | 9,471672           | -1,11615 | 43 |           |
| 9     | 27,84222 | 0,448550 | 0,057688         | 9,454758           | -1,12671 | 40 |           |
| 10    | 14,23075 | 0,210913 | 0,069007         | 11,30992           | -1,47899 | 50 |           |
| 11    | 43,8884  | 0,464218 | 0,056862         | 9,319469           | -1,11365 | 34 |           |

Em que: F = valor da estatística F-Snedecor da análise de variância da regressão; R²aj. = coeficiente de determinação ajustado; Syx = erro padrão da estimativa recalculado; Syx% = erro padrão da estimativa recalculado, em percentual; DMP% = desvio médio percentual; FM = Fator de Correção de Meyer.

No que diz respeito ao coeficiente de determinação ajustado (R²aj.) 45,45% dos modelos reportaram valores inferiores a 0,50 (Modelos 10, 8, 9, 11 e 3, em ordem crescente). O modelo 4 demonstrou superioridade em relação aos demais modelos ajustados, com R²aj. = 0,88. Contudo, os modelos 5, 6 e 7, respectivamente, também mostraram-se satisfatórios, tendo as variáveis independentes explicado aproximadamente 80% das variações ocorridas no fator de forma artificial.

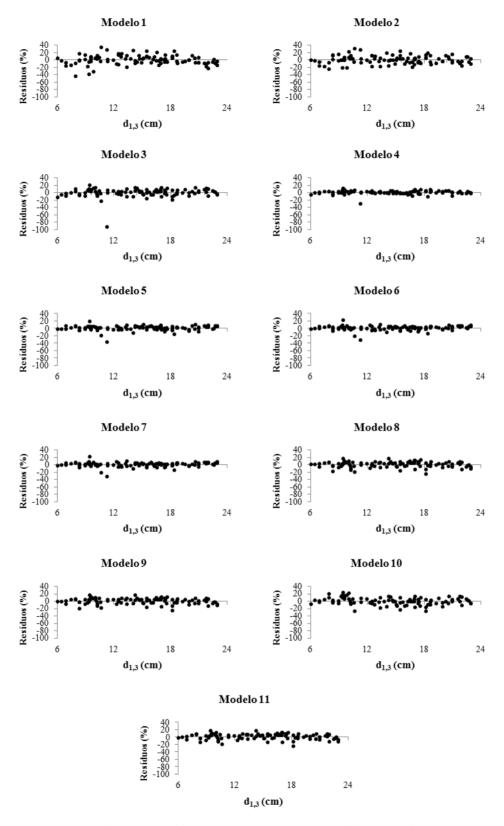
A maior parte dos modelos mostrou valores de erro padrão da estimativa (Syx%) inferiores a 10%, variando entre (–14,36% e 4,25%). Os modelos 1, 2 e 10 respectivamente, reportaram os maiores valores de Syx% e desvio médio percentual (DMP%), mostrando-se insatisfatórios para estimar o fator de forma artificial, devido aos valores superiores a 10% de Syx%. Os modelos 4, 5, 6 e 7tiveram os menores Syx% e DMP% e, ainda, similares entre si. No entanto, o modelo 4 mostrou-se superior para todas as medidas de precisão do ajustamento.

A análise dos valores ponderados dos escores estatísticos (VP) atribuídos para cada medida de precisão do ajustamento reportou menores valores ponderados para os modelos 4, 5, 6 e 7, respectivamente. No entanto, a não significância do coeficiente  $\beta_1$  para o modelo 4, de  $\beta_1$  e  $\beta_3$  para o modelo 5 e  $\beta_2$ ,  $\beta_3$  e  $\beta_4$  para o modelo 7 ( $\alpha$  = 0,05), direcionaram à indicação do modelo 6 como sendo aquele mais adequado para as estimativas do fator de forma artificial para o hibrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*.

Drescher et al. (2010) reportaram para povoamentos jovens de *Tectona grandis* L., no estado do Mato Grosso, resultados semelhante a este estudo para os modelos 1 (R²aj. = 0,720 e Syx% = 9,63%) e 3 (R²aj. = 0,727 e Syx% = 9,6%), ao afirmarem que estas equações destacaram-se entre as menos precisas e, ainda, para o modelo 4 quando

231 destacaram-no como um dos melhores para a estimativa do fator de forma artificial da 232 Teca.

O modelo  $ln(f_{1,3})=0.774+0.697*(d_{0,5}/d^2)-0.647*ln$   $(d_{0,1}/d^2)+0.199*ln[1/(h*d)]$  foi destacado por Drescher et al. (2010) como aquele mais acurado para estimar o  $f_{1,3}$ . Porém, este mesmo modelo reportou resultados insatisfatórios para o povoamento do hibrido de Eucalyptus, sobretudo, devido ao elevado valor do erro padrão de estimativa (Syx% = -13.4763%).


Drescher et al. (2001) ao ajustarem os modelos 5, 6 e 7 para um povoamento de *Pinus elliottii* Engelm na região da serra do sudoeste do estado do Rio Grande do Sul, reportaram para estes os melhores indicadores de precisão e ajuste em relação ao coeficiente de determinação ajustado e erro padrão de estimativa. Não obstante, de modo semelhante a este estudo os autores selecionaram o modelo 6 (R²aj. = 0,8866 e CV = 3,59%), preferencialmente ao modelo 7, por apresentar um coeficiente a menos.

Souza et al. (2008) modelaram as equações 8, 9, 10 e 11 para um povoamento de *Pinus taeda* L. na região do centro-oeste paranaense, os quais apresentaram os maiores R²aj. e menores Syx e Syx%, sendo selecionado o modelo 8 por apresentar o menor valor ponderado. Todavia, este trabalho obteve resultados insatisfatórios para o modelo8, destacando-se dentre os menos acurados para o híbrido estudado.

O teste Qui-quadrado ( $\chi^2$ ) realizado para validar os modelos selecionados revelou que os fatores de forma artificiais calculados com base na relação [ $f_{1,3}=v_{arv.}/v_{cil.}$ ] não diferiram, do ponto de vista estatístico, dos respectivos valores individuais estimados pelo modelo  $f_{1,3}=0.1406416+0.6031094*\left(\frac{d_{0,3}}{d_{1,3}^2}\right)+0.3626013*\frac{(d_{0,3}*d_{0,5})}{d_{1,3}^2}+0.2980331*\left(\frac{d_{0,5}}{d_{1,3}}\right)^2$  ( $\chi^2_{calc.}=0.09; \chi^2_{tab.}=67.50; ~\alpha=0.05$ ), indicando que o modelo proposto pode ser seguramente recomendado para as estimativas dos fatores de forma artificial para o

povoamento do hibrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*. No entanto, a sua aplicabilidade deve-se restringir-se a povoamentos com características e condições edafoclimáticas semelhantes.

De modo geral, os gráficos de resíduos dos 11 modelos ajustados (Figura 1) reportaram distribuições uniformes, não tendenciosas e aleatórias em torno da média zero. Os modelos 4, 5, 6 e 7 mostraram uma amplitude de dispersão dos resíduos variando entre -37% e 21%.



**Figura 1.** Distribuição dos resíduos da estimativa do fator de forma para um povoamento de *Eucalyptus urophylla* vs. *Eucalyptus grandis*, em função do diâmetro a 1,30 m do solo, Pacajá, Pará.

#### Diâmetros Relativos de Hohenadl $(d_{0,3})$ e $(d_{0,5})$

Os 15 modelos testados de ( $d_{0,3}$ e  $d_{0,5}$ ) tiveram desempenho estatístico satisfatório, em termos das medidas de precisão do ajustamento (Tabelas 5 e 6). A estatística F-Snedecor foi altamente significativa ( $\alpha$  = 0,01) para todos os modelos. Os valores de R²aj. mostraram-se superiores a 90% para a maioria dos modelos, exceto para o modelo 3 do diâmetro relativo de Hohenadl ( $d_{0,3}$ ) (R²aj.=0,878), indicando o elevado grau de explicação do diâmetro relativo de Hohenadl ( $d_{0,3}$ ), pelas variáveis independentes.

**Tabela 5.** Coeficientes da regressão, estatística de significância e parâmetros estatísticos de precisão do ajustamento do diâmetro relativo de Hohenadl ( $d_{0,3}$ ).

|   |                       | Parâmetros Estatísticos |                      |          |             |                   |       |         |    |        |  |  |
|---|-----------------------|-------------------------|----------------------|----------|-------------|-------------------|-------|---------|----|--------|--|--|
| M | β0                    | β1                      | β2                   | F        | R²aj.       | Syx <sub>r.</sub> | Syx%  | DMP     | VP | FM     |  |  |
| 1 | 1,4485                | 0,0678                  | 0,0599               | 822,0703 | 0,943       | 0,076             | 3,00  | -0,133  | 28 | 1,0029 |  |  |
| ' | (p= 3,42E-33)         | (p= 1,30E-53)           | (p= 0,2247)          | 022,0703 | 0,943       | 0,076             | 3,00  | -0,133  | 20 | 1,0029 |  |  |
| 2 | -                     | 0,0999                  | 0,9087               | 12707,48 | 0,986       | 0,159             | 6,30  | 0,6550  | 27 | 1,0127 |  |  |
|   |                       | (p= 1,695E-63)          | (p = 3,4E-48)        | 12707,40 | 0,900       | 0,139             | 0,30  | 0,0330  | 21 | 1,0127 |  |  |
| 3 | 0,93265               | -0,6263613              |                      | 716,4339 | 0,878       | 0,111             | 4,39  | -0,2333 | 33 | 1,0061 |  |  |
| 3 | (p= 4,36E-28)         | (p= 7,42E-47)           | -                    | 710,4339 | 0,076       | 0,111             | 4,39  | -0,2333 | 33 | 1,0001 |  |  |
| 4 | 0,1370                | -0,4708                 | 0,4331               | 1609,841 | 0,970       | 0,055             | 2,17  | -0,0546 | 13 | 1,0015 |  |  |
| _ | (p= 0,01386)          | (p= 1,61E-53)           | (p= 1,5E-31)         | 1009,041 | 0,570 0,000 |                   | 2,17  | -0,0340 | 13 | 1,0013 |  |  |
| 5 | 1,5737                | 0,0587                  | 0,0003               | 826,8996 | 0,943       | 0,075             | 2,99  | -0,1321 | 24 | 1,0029 |  |  |
| , | (p= 1,8E-67)          | (p= 4,24E-18)           | ( <i>p</i> = 0,1565) | 020,0330 | 0,343       | 0,073             | 2,55  | -0,1321 | 24 | 1,0029 |  |  |
| 6 | _                     | 0,2740                  | -0,0063              | 2476,132 | 0,970       | 0,357             | 14,18 | 4,1169  | 33 | 1,0658 |  |  |
| U | _                     | (p= 2,94E-37)           | (p= 1,4E-13)         | 2470,132 | 0,970       | 0,337             | 14,10 | 4,1169  | 55 | 1,0000 |  |  |
| 7 | _                     | -0,9175                 | -0,0178              | 101422,8 | 0,989       | 0,056             | 2,23  | 0,0601  | 12 | 1,0016 |  |  |
|   | -                     | (p= 2,57E-28)           | ( <i>p</i> = 0,5391) | 101422,0 | 0,909       | 0,030             | 2,23  | 0,0001  | 12 | 1,0010 |  |  |
| 8 | _                     | -0,9353                 | -0,0178              | 101422,8 | 0,989       | 0,056             | 2,23  | 0,0601  | 12 | 1,0016 |  |  |
| Ü | _                     | (p= 1,01E-52)           | ( <i>p</i> = 0,5391) | 101422,0 | 0,909       | 0,030             | 2,23  | 0,0001  | 12 | 1,0010 |  |  |
| 9 | 0,1370                | -0,9416                 | 0,0377               | 1609,841 | 0,970       | 0,055             | 2,17  | -0,0546 | 13 | 1,0015 |  |  |
| 9 | ( <i>p</i> = 0,01386) | (p= 1,61E-53)           | ( <i>p</i> = 0,2946) | 1003,041 | 0,970       | 0,055             | ۷,۱۱  | -0,0540 | 13 | 1,0013 |  |  |

Em que: M = Modelos;  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  e  $\beta_5$  = coeficientes da regressão; *p-value* = indica o nível de significância do teste t-Student para cada coeficiente da regressão ( $\alpha$  = 0,05).F = valor da estatística F-Snedecor da análise de variância da regressão;  $R^2aj$ . = coeficiente de determinação ajustado;  $Syx_r$ . = erro padrão da estimativa recalculado; Syx% = erro padrão da estimativa, em percentual; DMP% = desvio médio percentual; VP = Valor ponderado; FM = Fator de Correção de Meyer.

**Tabela 6.** Coeficientes da regressão, estatística de significância e parâmetros estatísticos de precisão do ajustamento do diâmetro relativo de Hohenadl (d<sub>0.5</sub>).

|   | Parâmetros Estatísticos |                |                |          |       |                   |        |         |    |         |  |  |
|---|-------------------------|----------------|----------------|----------|-------|-------------------|--------|---------|----|---------|--|--|
| M | $\beta_0$               | β1             | β2             | F        | R²aj. | Syx <sub>r.</sub> | Syx%   | DMP     | VP | FM      |  |  |
| 1 | 1,4307                  | 0,0651         | -0,0001        | 582,66   | 0,922 | 0,086             | 3,6346 | -0,1826 | 21 | 1,00374 |  |  |
| • | (p=2,5E-58)             | (p = 2,08E-17) | (p = 0.79726)  | 302,00   | 0,922 | 0,000             | 3,0340 | -0,1626 | 21 | 1,00374 |  |  |
| 2 |                         | 0,2609         | -0,0061        | 2607,39  | 0,971 | 0,329             | 13,833 | 3,9823  | 18 | 1,05551 |  |  |
| 2 | -                       | (p = 2,02E-38) | (p = 2,05E-14) | 2007,39  | 0,971 | 0,329             | 10,000 |         |    | 1,00001 |  |  |
| 3 | 0,0522                  | -0,8811        | _              | 1940,20  | 0,951 | 0.068             | 2,8603 | -0,0911 | 15 | 1,00231 |  |  |
| 3 | (p = 0.329)             | (p = 2,15E-66) | -              | 1940,20  | 0,551 | 0,000             | 2,0000 | 0,0011  | 10 | 1,00231 |  |  |
| 4 | _                       | -0,9822        | 0,0401         | 62312,23 | 0,989 | 0.068             | 2 8550 | 0 0387  | 7  | 1,0023  |  |  |
| 7 | -                       | (p = 7,68E-25) | (p = 0,25184)  | 02312,23 | 0,969 | 0,068             | 2,8550 | 0,0387  | ′  | 1,0023  |  |  |
| 5 | _                       | -0,9421        | 0,0401         | 62312,23 | 0,989 | 89 0,068          | 2,8550 | 0,0387  | 7  | 1,0023  |  |  |
|   | -                       | (p = 6,49E-46) | (p = 0,25184)  | 02312,23 | 0,909 |                   | 2,0330 | 0,0307  | ,  | 1,0023  |  |  |
| 6 | 0,1459                  | -0,9489        | 0,0992         | 1014,463 | 0,953 | 0,067             | 2 2007 | 0.0010  | 11 | 1,00222 |  |  |
| U | (p = 0.0301)            | (p = 1,73E-46) | (p = 0.02453)  | 1014,463 | 0,933 | 0,007             | 2,8007 | -0,0910 | 11 | 1,00222 |  |  |

Em que: M = Modelos;  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  e  $\beta_5$  = coeficientes da regressão; *p-value* = indica o nível de significância do teste t-Student para cada coeficiente da regressão ( $\alpha$  = 0,05).F = valor da estatística F-Snedecor da análise de variância da regressão;  $R^2aj$ . = coeficiente de determinação ajustado; Syx = erro padrão da estimativa recalculado; Syx% = erro padrão da estimativa, em percentual; DMP% = desvio médio percentual; VP = Valor ponderado; FM = Fator de Correção de Meyer.

Os modelos apresentaram baixos valores para  $Syx_r$ . variando entre 0,055 e 0,357.A maioria dos modelos de  $d_{0,3}$ e  $d_{0,5}$  tiveram precisões similares com  $Syx \le 3\%$  (modelos 1, 4, 5, 7, 8 e 9, para  $d_{0,3}$ ) e (modelos 3, 4, 5 e 6,para  $d_{0,5}$ ). O parâmetro DMP (%) mostrou-se baixo para a maioria dos modelos, com destaque para os modelos 4, 7, 8 e 9 ( $d_{0,3}$ ) e 3, 4, 5 e 6 ( $d_{0,5}$ ).

Os valores ponderados dos escores estatísticos (VP) atribuídos para cada medida de precisão do ajustamento reportou menores valores ponderados para os modelos 7, 8, 9 e 4 ( $d_{0,3}$ ), respectivamente. Não obstante, os modelos 7, 8 e 9 tiveram o coeficiente  $\beta_2$  ( $\alpha$  = 0,05) não significativo, não sendo recomendados. Portanto, o modelo  $ln(d_{0,3}) = 0,1370-0,4708*ln(h/d²)+0,4331*ln(h) (<math>\chi^2_{calc.} = 0,03; \chi^2_{tab.} = 67,50; \alpha = 0,05)$  foi indicado como mais adequado.

Os modelos diâmetro relativo de Hohenadl ( $d_{0,5}$ ) tiveram os menores valores ponderados para as equações 4 e 5. Contudo, a não significância de  $\beta_2$  ( $\alpha$  = 0,05) conduziu a não aceitação dos modelos 4 e 5 e, a indicação da equação  $\ln(d_{0,5}) = 0,1459-0,9489*\ln(1/d_{1,3})+0,0992*\ln(1/h)$  ( $\chi^2_{calc.} = 0,07;\chi^2_{tab.} = 67,50;$   $\alpha$  = 0,05). Os modelos selecionados para  $d_{0,3}$  e  $d_{0,5}$ , mostram uma uniformidade da distribuição dos resíduos em função do  $d_{1,3}$ , evidenciando a não tendenciosidade dos dados (Figura 2).



**Figura 2:** Distribuição gráfica dos resíduos dos modelos selecionados para  $d_{0,3}$  e  $d_{0,5}$  em função do  $d_{1,3}$ .

De posse do modelo 6 (fator de forma artificial) e das equações 4 ( $d_{0,3}$ ) e 6 ( $d_{0,5}$ ) indicados como mais acurados para estimar as variáveis dependentes foi elaborada a tabela de fator de forma artificial para o hibrido *Eucalyptus urophylla* vs. *Eucalyptus grandis* (Tabela 7).

De modo geral, as árvores com  $d_{1,3} \le 9$ cm e  $h \le 15$ m tiveram  $f_{1,3} > 0,7$ . Por outro lado, com o aumento do diâmetro a 1,30m do solo e da altura da árvore os valores de  $f_{1,3}$  tenderam diminuir e permanecer pouco variável em torno de 0,5. Resultados semelhantes para povoamentos de Pinus elliottii (DRESCHER et al., 2001) e Tectona grandis (DRESCHER et al., 2010).

**Tabela 7.** Tabela de fator de forma artificial para *Eucalyptus urophylla* vs. *Eucalyptus grandis*.

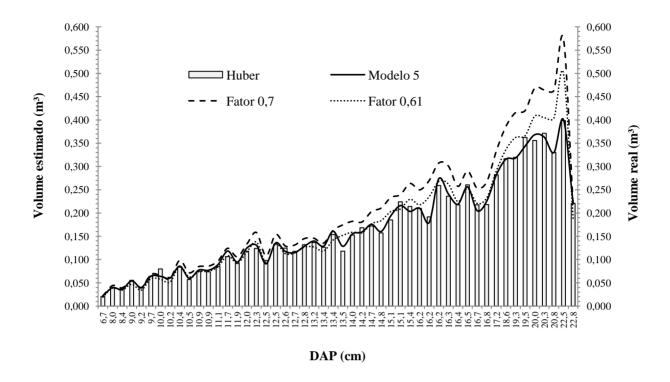
| d <sub>1,3</sub> (cm) |            |            |            |            |            |            |            | Δ          | ltura (n   | 1)         |            |            |            |            |            |            |            |
|-----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| ફ                     | 7          | 8          | 9          | 10         | 11         | 12         | 13         | 14         | 15         | 16         | 17         | 18         | 19         | 20         | 21         | 22         | 23         |
| 6                     | 0,765<br>8 | 0,753<br>9 | 0,743<br>7 | 0,734<br>7 | 0,726<br>6 | 0,719<br>4 | 0,712<br>9 | 0,706<br>9 | 0,701<br>4 | 0,696<br>3 | 0,691<br>5 | 0,687<br>1 | 0,683<br>0 | 0,679<br>1 | 0,675<br>4 | 0,671<br>9 | 0,668<br>6 |
| 7                     | 0,742<br>7 | 0,731<br>1 | 0,721<br>0 | 0,712<br>2 | 0,704<br>4 | 0,697<br>3 | 0,690<br>9 | 0,685<br>1 | 0,679<br>7 | 0,674<br>7 | 0,670<br>0 | 0,665<br>7 | 0,661<br>7 | 0,657<br>8 | 0,654<br>2 | 0,650<br>8 | 0,647<br>6 |
| 8                     | 0,724      | 0,713<br>1 | 0,703      | 0,694<br>6 | 0,686      | 0,680      | 0,673<br>7 | 0,668<br>0 | 0,662<br>7 | 0,657<br>8 | 0,653<br>2 | 0,649<br>0 | 0,645<br>0 | 0,641<br>3 | 0,637<br>7 | 0,634<br>4 | 0,631<br>2 |
| 9                     | 0,709      | 0,698<br>6 | 0,688<br>9 | 0,680      | 0,672<br>8 | 0,666      | 0,659<br>8 | 0,654<br>1 | 0,648<br>9 | 0,644<br>1 | 0,639<br>6 | 0,635<br>5 | 0,631<br>5 | 0,627<br>9 | 0,624<br>4 | 0,621<br>1 | 0,618<br>0 |
| 10                    | 0,697<br>5 | 0,686<br>5 | 0,676<br>9 | 0,668<br>5 | 0,661<br>0 | 0,654      | 0,648      | 0,642      | 0,637      | 0,632<br>8 | 0,628<br>3 | 0,624<br>2 | 0,620<br>4 | 0,616<br>7 | 0,613<br>3 | 0,610<br>1 | 0,607<br>0 |
| 11                    | 0,687      | 0,676<br>2 | 0,666      | 0,658      | 0,651<br>0 | 0,644<br>4 | 0,638<br>4 | 0,632<br>9 | 0,627<br>8 | 0,623      | 0,618<br>8 | 0,614<br>7 | 0,610<br>9 | 0,607<br>3 | 0,603<br>9 | 0,600<br>7 | 0,597<br>7 |
| 12                    | 0,678      | 0,667<br>2 | 0,657<br>9 | 0,649<br>7 | 0,642      | 0,635<br>8 | 0,629<br>9 | 0,624      | 0,619      | 0,614      | 0,610<br>5 | 0,606      | 0,602<br>7 | 0,599<br>1 | 0,595<br>8 | 0,592<br>6 | 0,589<br>6 |
| 13                    | 0,670      | 0,659<br>4 | 0,650<br>2 | 0,642      | 0,634<br>8 | 0,628      | 0,622      | 0,617      | 0,612      | 0,607<br>5 | 0,603      | 0,599      | 0,595<br>5 | 0,592      | 0,588<br>7 | 0,585<br>6 | 0,582<br>6 |
| 14                    | 0,663      | 0,652<br>5 | 0,643<br>3 | 0,635<br>3 | 0,628      | 0,621<br>7 | 0,615<br>8 | 0,610<br>5 | 0,605      | 0,601      | 0,596<br>8 | 0,592<br>9 | 0,589      | 0,585<br>7 | 0,582<br>4 | 0,579<br>3 | 0,576<br>4 |
| 15                    | 0,656<br>8 | 0,646<br>3 | 0,637<br>2 | 0,629<br>2 | 0,622<br>1 | 0,615<br>7 | 0,609<br>9 | 0,604<br>6 | 0,599<br>8 | 0,595<br>3 | 0,591<br>1 | 0,587<br>2 | 0,583<br>5 | 0,580<br>0 | 0,576<br>8 | 0,573<br>7 | 0,570<br>8 |
| 16                    | 0,651<br>1 | 0,640<br>7 | 0,631<br>6 | 0,623<br>7 | 0,616<br>7 | 0,610<br>3 | 0,604<br>6 | 0,599<br>3 | 0,594<br>5 | 0,590<br>0 | 0,585<br>9 | 0,582<br>0 | 0,578<br>4 | 0,574<br>9 | 0,571<br>7 | 0,568<br>7 | 0,565<br>8 |
| 17                    | 0,645<br>9 | 0,635<br>6 | 0,626<br>6 | 0,618<br>7 | 0,611<br>7 | 0,605<br>5 | 0,599<br>8 | 0,594<br>5 | 0,589<br>7 | 0,585<br>3 | 0,581<br>2 | 0,577<br>3 | 0,573<br>7 | 0,570<br>3 | 0,567<br>1 | 0,564<br>1 | 0,561<br>2 |
| 18                    | 0,641<br>2 | 0,630<br>9 | 0,622<br>0 | 0,614<br>2 | 0,607<br>2 | 0,601<br>0 | 0,595<br>3 | 0,590<br>1 | 0,585<br>4 | 0,581<br>0 | 0,576<br>9 | 0,573<br>0 | 0,569<br>5 | 0,566<br>1 | 0,562<br>9 | 0,559<br>9 | 0,557<br>0 |
| 19                    | 0,636<br>8 | 0,626<br>6 | 0,617<br>7 | 0,610<br>0 | 0,603<br>1 | 0,596<br>9 | 0,591<br>2 | 0,586<br>1 | 0,581<br>4 | 0,577<br>0 | 0,572<br>9 | 0,569<br>1 | 0,565<br>6 | 0,562<br>2 | 0,559<br>0 | 0,556<br>1 | 0,553<br>2 |
| 20                    | 0,632<br>7 | 0,622<br>6 | 0,613<br>8 | 0,606<br>1 | 0,599<br>2 | 0,593<br>1 | 0,587<br>5 | 0,582<br>4 | 0,577<br>7 | 0,573<br>3 | 0,569<br>3 | 0,565<br>5 | 0,561<br>9 | 0,558<br>6 | 0,555<br>5 | 0,552<br>5 | 0,549<br>7 |
| 21                    | 0,629<br>0 | 0,618<br>9 | 0,610<br>1 | 0,602<br>5 | 0,595<br>7 | 0,589<br>5 | 0,584<br>0 | 0,578<br>9 | 0,574<br>2 | 0,569<br>9 | 0,565<br>9 | 0,562<br>1 | 0,558<br>6 | 0,555<br>3 | 0,552<br>1 | 0,549<br>2 | 0,546<br>4 |
| 22                    | 0,625<br>5 | 0,615<br>4 | 0,606<br>7 | 0,599<br>1 | 0,592<br>3 | 0,586<br>2 | 0,580<br>7 | 0,575<br>6 | 0,571<br>0 | 0,566<br>7 | 0,562<br>7 | 0,559<br>0 | 0,555<br>5 | 0,552      | 0,549<br>1 | 0,546<br>1 | 0,543<br>3 |
| 23                    | 0,622      | 0,612<br>2 | 0,603<br>5 | 0,595<br>9 | 0,589<br>2 | 0,583<br>1 | 0,577<br>6 | 0,572<br>6 | 0,568<br>0 | 0,563<br>7 | 0,559<br>7 | 0,556<br>0 | 0,552<br>5 | 0,549      | 0,546<br>2 | 0,543<br>2 | 0,540<br>5 |

#### Comparação entre os métodos de estimativa de volume

Posteriormente a indicação do modelo 6 para obtenção de estimativas acuradas do fator de forma artificial ( $f_{1,3}$ ) individual das árvores do hibrido de *Eucalyptus urophylla* vs. *Eucalyptus grandis*, foi realizada uma comparação do volume real (método de cubagem de Huber) e a volumetria individual estimada por 3 métodos (Tabela 8 e Figura 3): i) volume estimado com o uso do  $f_{1,3} = 0,7$  (utilizado para cálculo do volume das espécies nativas da Amazônia e, arbitrado para os povoamentos plantados da região); ii) volume estimado com o uso do  $f_{1,3} = 0,61$ , determinado pela relação  $f_{1,3} = v_{arv.}/v_{cil.}$ ; e iii) volume estimado através do uso do  $f_{1,3}$  estimado pelo Modelo 6.

**Tabela 8.** Estatística descritiva da variável volume para o povoamento híbrido *Eucalyptus urophylla* vs. *Eucalyptus grandis*, Pacajá, Pará.

| Métodos    | N  | Média (m³) | Sd (m³)  | CV%   | Mínimo (m³) | Máximo (m³) | Total (m³)* |
|------------|----|------------|----------|-------|-------------|-------------|-------------|
| Huber      | 50 | 0,167925   | 0,099081 | 59,00 | 0,020777    | 0,398639    | 8,396264    |
| Modelo 6   | 50 | 0,167976   | 0,098486 | 58,63 | 0,022063    | 0,400116    | 8,398823    |
| Fator 0,61 | 50 | 0,175701   | 0,115154 | 65,54 | 0,019141    | 0,499634    | 8,785034    |
| Fator 0,7  | 50 | 0,201624   | 0,132144 | 65,54 | 0,021965    | 0,573350    | 10,081186   |


Em que: Sd = desvio padrão; CV (%) = coeficiente de variação. \*refere-se à volumetria total das 50 árvores do banco de dados independente.

O teste Qui-quadrado ( $\chi^2$ ) reportou não significância estatística ao nível de probabilidade de 95% entre as estimativas individuais dos volumes das árvores com uso do f<sub>1,3</sub> e o volume pelo método de Huber (Huber vs. Modelo 6 ( $\chi^2_{calc.} = 0,015$ ); Huber vs. Fator 0,61 ( $\chi^2_{calc.} = 0,105$ ); Huber vs. Fator 0,7 ( $\chi^2_{calc.} = 0,358$ );  $\chi^2_{tab.} = 67,50$ ).

O volume médio das 50 árvores usando-se da estimativa do  $f_{1,3}$  dada pelo modelo 6 mostrou respostas mais aproximadas com a cubagem rigorosa. Por outro lado, o uso do fator de forma 0,61 e 0,7 proporcionaram um acréscimo na volumetria média e total de aproximadamente 4,60% e 20,0%, respectivamente.

Os resultados proporcionados pelos  $f_{1,3}$  médios é preocupante, tendo em vista a superestimativa em relação aos volumes observados, sendo um indicativo da imprescindível necessidade da determinação de fatores de formas em nível de espécies.

Tendo como base a cubagem rigorosa (Huber), notoriamente à medida que o diâmetro aumenta maior é a tendência de superestimativa do volume por uso do fator de forma 0,61, e 0,7. Como visto anteriormente na tabela de fator de forma, com o aumento do diâmetro o fator de forma tende a ser menor. Desta forma, o modelo 5 se mostra similar a cubagem rigorosa, visto que foi modelado para o povoamento em questão.



**Figura 3.** Comparação da volumetria estimada (Fator 0,7; Fator 0,61 e Modelo 5) e volume real (Huber) das 50 árvores do banco de dados independente para um povoamento de *Eucalyptus urophylla* vs. *Eucalyptus grandis* com oito anos de idade, em função do diâmetro a 1,30 m do solo, Pacajá, Pará.

Tonini et al. (2005) analisaram o fator de forma para quatro espécies florestais nativas (andiroba, castanha do Pará, ipê-roxo e jatobá), encontrando fatores de forma distintos (0,49, 0,50, 0,46 e 0,38, respectivamente), ratificando que a utilização de um fator de forma médio para todas as espécies deve ser evitado, no intuito de minimizar os erros nas estimativas do volume.

Miguel et al. (2010) afirmaram que o fator de forma é imprescindível para obtenção de estimativas rápidas de volume, mas deve-se fazer ponderações e ater cuidado quanto a sua utilização, uma vez que apresenta estimativa de precisão inferior as equações de volume. No entanto, esses autores utilizaram apenas o fator de forma médio, obtido

através da média do volume real pela média do volume do cilindro, induzindo a um erro de
 estimativa maior que o de costume.

#### CONCLUSÕES

383

390

395

410

O modelo mais acurado indicado para estimar o fator de forma artificial foi  $f_{1,3}$  =

385 0,1406416 + 0,6031094 \* 
$$\left(\frac{d_{0,3}}{d_{1,3}^2}\right)$$
 + 0,3626013 \*  $\frac{(d_{0,3}*d_{0,5})}{d_{1,3}^2}$  + 0,2980331 \*  $\left(\frac{d_{0,5}}{d_{1,3}}\right)^2$ . Contudo, O

- 386 uso da equação deve ser restringido a povoamentos com características semelhantes ao
- 387 estudado e sob condições edafoclimáticas e de regimes de condução similares. A tabela
- do fator de forma artificial do hibrido Eucalyptus urophylla vs. Eucalyptus grandis mostrou
- 389 variação entre 0,5405 e 0,7658.

#### REFERÊNCIAS BIBLIOGRÁFICAS

- 391 ABRAF. Anuário estatístico ABRAF 2013/ano base 2012 / Brasília: 2013. 142 p.
- 392 393 BATISTA, J. L.F.; COUTO, H. T. Z.; FILHO, D. F. S. **Quantificação de recursos**
- 394 florestais: árvores, arvoredos e florestas. 1 ed. São Paulo: Oficina de Textos, 2014.
- 396 CAMPOS, J. C. C.; LEITE, H. G. **Mensuração Florestal: perguntas e respostas.** 3. ed. 397 atualiz. ampl. Vicosa, MG, Editora UFV, 2009.
- 398
   399 DRESCHER, R.; PELISSARI, A. L.; GAVA, F. H. Fator de forma artificial para
   400 povoamentos jovens de Tectona grandis em Mato Grosso. Pesquisa Florestal Brasileira,
   401 Colombo, v. 30, n. 63, p. 191 197, ago./out. 2010.
- 402
   403 DRESCHER, R.; SCHNEIDER, P. R.; FINGER, C. A. G.; QUEIROZ, F. L. C. Fator de
   404 forma artificial de Pinus elliottii Engelm para a região da serra do sudeste do estado do Rio
   405 Grande do Sul. Ciência Rural, Santa Maria, v. 31, n.1, p. 37 42, 2001.
- 406
  407 FIGUEIREDO, E. O.; SCHRODER, R.; PAPA, D. A. Fatores de forma para 20 espécies
  408 florestais comerciais da Amazônia. Rio Branco, Embrapa Acre, 1ª ed., 2009. 4 p.
- 409 (Comunicado Técnico 173), ISSN 0100 8668, Rio Branco, Acre, dez. 2009.
- IDESP. **Estatística Municipal: Pacajá**. Governo do Estado do Pará, Diretoria de Estatística, Tecnologia e Gestão da Informação, Belém, PA, 2012.

- 413 INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. Arquivo Shapefile
- 414 de dados de pedologia da Amazônia Brasileira. 2012. Disponível em:
- 415 <ftp://geoftp.ibge.gov.br/
- 416 mapeamento\_sistematico/banco\_dados\_georeferenciado\_recursos\_naturais/amazonia\_le
- 417 gal/pedologia/pedologia.zip>. Acesso em: 20 Nov. 2014. (b)

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. **Produção da** extração vegetal e da silvicultura. Rio de Janeiro: IBGE, v. 27, 2012. (a)

421

422 KOHLER, S. V.; KOEHLER, H. S.; FIGUEIREDO FILHO, A. Modelos de Afilamento para 423 Pinus taeda por Classes de Idade. **Floresta e Ambiente**, v.20, n. 4, 470-479, 2013.

424

- 425 LUNZ, A. M.; AZEVEDO, R. Caracterização da Ocorrência do Besouro-amarelo,
- 426 Costalimaita ferruginea (Fabricius) (Coleoptera: Chrysomelidae), em Plantios de Eucalipto
- 427 no Pará. Belém, Embrapa Amazônia Oriental, 1ª ed., 2011. 4 p. (Comunicado Técnico
- 428 229), ISSN 0 1983-0505, Belém Pará, 2011.

429

430 MACHADO, S. A.; FIGUEIREDO FILHO, A. **Dendrometria**. 2ª ed., 1ª reimpressão -

431 Guarapuava: Unicentro, 2009. 316 p.

432

- 433 MATOS, G. S. B.; SILVA, G. R.; GAMA, M. A. P.; VALE, R. S.; ROCHA, J. E. C.
- Desenvolvimento inicial e estado nutricional de clones de eucalipto no nordeste do Pará.
- 435 **Acta Amazônica**, v. 42, n. 4, 491 500, 2012.

436

- 437 MELO, L. C.; BARRETO, P. A. B.; OLIVEIRA, F. G. R. B.; NOVAES, A. B. Estimativas
- 438 volumétricas em povoamento de *Pinus caribaea* var. hondurensis no sudoeste da Bahia.
- 439 **Pesquisa Florestal Brasileira**, Colombo, v. 33, n. 76, p. 379-386, 2013.

440

- 441 MIGUEL, E. P.; CANZI, L. F.; RUFINO, R. F.; SANTOS, G. A. Ajuste de modelo
- volumétrico e desenvolvimento de fator de forma para plantios de Eucalyptus grandis
- 443 localizados no município de Rio Verde GO. **Enciclopédia Biosfera**, Centro Científico
- 444 Conhecer Goiânia, vol. 6, n.11, 2010.

445

PRODAN, M.; PETERS, R.; COX, F.; REAL, P. **Mensura Florestal**. San José, Costa Rica: IICA, 1997. 586 p.

448

- RUFINO, R.F.; MIGUEL, E.P.; SANTOS, G.A.; SANTOS, T.E.B.; SOUZA, F. Ajuste de
- 450 modelos hipsométricos para um povoamento de eucaliptos conduzido sobre o sistema de
- rebrota. **Enciclopédia Biosfera**, Centro Científico Conhecer, Goiânia, vol. 6, n.10, P. 1-10, 2010.

453

- 454 SCHRODER, T.; HOFIÇO, N. A. S.; ZIMMERMANN, A. P. L.; PEREIRA, L. D.; ROCHA
- 455 JR, D. S.; MEYER, E.A.; FLEIG, F.D. Métodos de estimativa de volume comercial para
- 456 Eucalyptus grandis: especificidades e recomendações. Pesquisa Florestal Brasileira, v.
- 457 33, n. 73, 01-07, 2013.

SEREGHETTI, G. C. Biomassa inicial do híbrido Eucalyptus urophylla vs. Eucalyptus grandis em diferentes espaçamentos. 2012. Dissertação (Mestrado), Botucatu, SP: Faculdade de Ciências Agronômicas da UNESP – Campus de Botucatu; 2012. SETTE JUNIOR, C.R.; OLIVEIRA, I. R.; TOMAZELLO FILHO, M.; YAMAJI, F. M.; LACLAU, J. P. Efeito da idade e posição de amostragem na densidade e características anatômicas da madeira de Eucalyptus grandis. Revista Árvore, v. 36, n.6, 1183-1190. 2012. SOUZA, C. A. M.; SARTORI, D. B.; ROCHA, A. S.; SCHNEIDER, P. R. Fator de forma artificial de Pinus taeda I. na região do centro-oeste paranaense. Revista Científica Eletrônica de Engenharia Florestal, Ano VII, número 12, 2008. SUPERINTENDENCIA DE DESENVOLVIMENTO DA AMAZÔNIA – SUDAM. Levantamentos florestais realizados pela missão FAO na Amazônia (1956-1961). Belém. v. 2, 401 – 705, 1973. THOMAS, C.; ANDRADE, C.M.; SCHNEIDER P.R.; FINGER, C.A. Comparação de equações volumétricas ajustadas com dados de cubagem e análise de tronco. Ciência Florestal, Santa Maria, v. 16, n. 3. p. 319-327, 2006. TONINI, H.; ARCO-VERDE, M. F.; SÁ, S. P. P. Dendrometria de espécies nativas em plantios homogêneos no Estado de Roraima - Andiroba (Carapa quianensis Aubl.), Castanha-do-Brasil (Bertholletia excelsa Bonpl.), Ipê-roxo (Tabebuia avellanedae Lorentz ex Griseb) e Jatobá (Hymenaea courbaril L.), Acta Amazônica, v. 35. n. 3. 353 – 362. 2005. VALENTE, M. D. R.; QUEIROZ, W.T.; PINHEIRO, J. G.; MONTEIRO, L. A. S. Modelo de predição para o volume total de quaruba (Vochysia inundata Ducke) via análise de fatores e regressão. Revista Árvore, Viçosa-MG, v.35, n.2, p.307-317, 2011. 

#### 500 NORMAS DA REVISTA

501

- 502 Diretrizes para Autores
- 503 A revista Scientia Forestalis publica artigos científicos originais e inéditos relacionados
- 504 com aspectos biológicos, ecológicos, econômicos e sociais do manejo, produção e uso de
- 505 florestas e seus recursos naturais.
- Os manuscritos submetidos devem apresentar mérito científico, ou seja, contribuir para o
- 507 avanço do conhecimento científico, e não podem ter sido publicados ou encaminhados
- 508 simultaneamente para outros periódicos.
- 509 O conteúdo e as opiniões apresentadas nos trabalhos publicados não são de
- 510 responsabilidade desta revista e não representam necessariamente as opiniões do
- Instituto de Pesquisas e Estudos Florestais (IPEF), sendo o conteúdo de responsabilidade
- 512 do autor.
- 513 Serão aceitos manuscritos em Português, Inglês e Espanhol. Textos em Inglês e
- 514 espanhol passarão por avaliação do revisor de idioma, e estará sujeito à recusa ou
- 515 devolução para readequação gramatical. Caso seja de interesse do autor, a revista poderá
- 516 indicar revisores de idioma.
- 517 As submissões devem ser realizadas através do Sistema Eletrônico de Revista IPEF,
- 518 disponível no endereço http://editora.ipef.br/ojs

519

#### 520 Forma de apresentação.

- 522 1. Serão aceitos textos apenas em formatos compatíveis ao Microsoft Word;
- 523 2. O texto deve conter no máximo 25 páginas numeradas, escritas em espaço duplo lauda
- em papel tamanho carta, utilizando a fonte Arial tamanho 12 pontos;
- 3. Abreviações devem ser usadas em apenas uma forma. Uma vez que uma abreviação é
- 526 usada no texto, ela deve seguir o mesmo padrão para todo a manuscrito e também nas
- 527 figuras e tabelas;
- 4. As figuras e tabelas devem ser apresentadas no final do texto, com as legendas em
- 529 português e inglês e a sua localização aproximada deve ser indicada no texto com uma
- chamada entre dois parágrafos. Exemplo: Entra a Figura 2; Entra a Tabela 4;
- 531 5. As fotos devem ser enviadas em formato JPEG com, no mínimo 300 dpi de resolução e
- 532 no máximo 20 cm de largura;

- 533 6. Os gráficos devem ser enviados no Microsoft Excel ou no formato de fotos, conforme
- 534 comentado no item anterior;
- 7. As tabelas devem estar digitadas e não serão aceitas em formato de imagem
- 8. A primeira página deve conter: título em português e inglês
- 9. As referências bibliográficas e citações devem estar de acordo com as normas da ABNT
- 538 NBR 6023: 2002 e NBR 10520: 2002
- 539 10. Não são aceitas notas de rodapé

#### 541 Sequência de apresentação:

- 542 1. Título em português e inglês;
- 2. Resumo em português e inglês: o resumo deve conter os objetivos, a metodologia, os
- resultados e as conclusões;
- 545 3. Palavras-chave em português e inglês;
- 4. Introdução, incluindo a revisão de literatura;
- 547 5. Material e métodos;
- 548 6. Resultados e discussão;
- 549 7. Conclusão
- 550 8. Referências bibliográficas

551

552

#### Condições para submissão

- 553 Como parte do processo de submissão, os autores são obrigados a verificar a
- 554 conformidade da submissão em relação a todos os itens listados a seguir. As submissões
- 555 que não estiverem de acordo com as normas serão devolvidas aos autores.
- 556 A contribuição é original e inédita, e não está sendo avaliada para publicação por outra
- revista; caso contrário, deve-se justificar em "Comentários ao editor";
- 558 O arquivo da submissão está em formato Microsoft Word, ou RTF;
- O texto segue os padrões de estilo e requisitos bibliográficos descritos em Diretrizes para
- 560 Autores, na página Sobre a Revista;