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Abstract
Kaldi has become a very popular toolkit for automatic speech
recognition, showing considerable improvements through the
combination of hidden Markov models (HMM) and deep neu-
ral networks (DNN). However, in spite of its great performance
for some languages (e.g. English, Italian, Serbian, etc.), the
resources for Brazilian Portuguese (BP) are still quite limited.
This work describes what appears to be the first attempt to cre-
ate Kaldi-based scripts and baseline acoustic models for BP us-
ing Kaldi tools. Experiments were carried out for dictation tasks
and a comparison to CMU Sphinx toolkit in terms of word er-
ror rate (WER) was performed. Results seem promising, since
Kaldi achieved the absolute lowest WER of 4.75% with HMM-
DNN and outperformed CMU Sphinx even when using Gaus-
sian mixture models only.
Index Terms: automatic speech recognition, Brazilian Por-
tuguese, Kaldi

1. Introduction
The attempts to simplify the communication between humans
and machines are not a novelty. Ever since the emergence of
consumer electronic computers, researchers have been doing a
lot of effort in order to design more convenient interfaces for
controlling and interacting with electronic devices. However,
despite the consolidation of keyboards and mice as main input
methods for personal computers, as well as touch screens for
mobile devices, alternative control interfaces such as speech,
body gestures, or even thoughts never ceased to be investigated.

For years, the combination of hidden Markov models
(HMM) and Gaussian mixture models (GMM) has been the
state-of-the-art technique for acoustic modeling in the auto-
matic speech recognition (ASR) field [1, 2]. Concerning
the Brazilian Portuguese language in particular, robust speech
recognition systems based on traditional HMM-GMMs have
already been proposed [3, 4] using both HTK [5] and CMU
Sphinx [6] tools. However, the deep learning approaches that
emerged last decade seem to have outperformed HMM-GMM
models when replacing the Gaussian mixtures by deep neural
networks (DNN) combined with HMMs.

Most works that apply deep learning for speech recognition
make use of Kaldi [7], an open-source software package that
implements the hybrid HMM-DNN combination. To the best of
our knowledge, no previous work has developed a Kaldi recipe
for Brazilian Portuguese (BP) yet. Therefore, towards building
freely available resources [8] for a large vocabulary continu-
ous speech recognition (LVCSR) system in BP using the Kaldi
toolkit, this work presents results for HMM-GMM triphone-
based acoustic models in terms of word error rate (WER). A
preliminar result for DNN-based models is also presented, but
the main development of HMM-DNN hybrid models is still on-
going, given the huge amount of time taken to train them.

2. Related Work
A literature review was conducted on IEEE Xplore and ACM
Digital Library. However, most works from ACM simply men-
tion speech recognition as an application of DNNs. Therefore,
only papers from IEEE Xplore were considered. After filtering
by title and abstract, the most relevant ones were selected and
will be shortly detailed below.

Sahu and Ganesh [9] performed a survey on HTK, CMU
Sphinx and Kaldi toolkits for different languages regarding their
performance in terms of WER. They found that Kaldi achieved
the best WER value of 2.7% using the Wall Street Journal (WSJ)
English corpus. In another work, Becerra et al. [10] presented
a comparative case study for Spanish between the conventional
HMM-GMM architecture and the recent HMM-DNN model us-
ing Kaldi. The audio corpus used includes 1,836 sentences from
87 speakers sampled at 16 kHz, which are a mixture of human
voices and text-to-speech utterances. A 20.71% improvement
was achieved by the HMM-DNN architecture over the HMM-
GMM models: 3.33% against 4.20% of WER, respectively.

Popović et al. [11] used Kaldi to develop an HMM-based
ASR system for the Serbian language. The audio corpora used
in the experiment contains 95 hours of speech sampled at 8 kHz.
They obtained a word recognition accuracy of approximately
98%. For Italian, on the other hand, Cosi [12] adapted Kaldi’s
TIMIT recipe for the FBK ChildIt corpus, which contains ap-
proximately 10 hours of speech of children sampled at 16 kHz.
The results only show that DNN configurations outperforms the
non-DNN ones. Karan et al. [13] also used Kaldi to developed
a speech recognition system, now for Hindi Odia language. The
audio corpus consisted of 2,647 utterances collected from 104
speakers at 8 kHz using mobile phones. The experiment used
the conventional HMM-GMM architecture only, and reports the
best result of 1.74% WER in the triphone model.

Ali et al. [14] presented a complete Kaldi recipe for build-
ing Arabic speech recognition systems. The corpus used was
the GALE Arabic Broadcast News data set, which consisted
of 100,000 speech segments of nine different TV channels, a
total of 203 hours of speech data recorded at 16 kHz. In the
experiment, the DNN-based system achieved the best results
with an overall WER of 26.95%, which is nearly a 10% rela-
tive improvement to the HMM-GMM model. Kipyatkova and
Karpov [15], on the other hand, built an HMM-DNN acous-
tic model using Kaldi for Russian language. For training and
testing, they used their own speech recorded at 44.1 kHz with
16 bits per sample. The data set was composed by 55 speakers
and 16,850 utterances. Two different kinds of neuron activation
functions were implemented on the neural network: tanh and
p-norm. The results showed that the p-norm function obtained
the best WER value of 20.30%.

Another search was performed on the previous
IberSPEECH proceedings of 2014 and 2016, where two
works stood out. On the first one, Guiroy et al. [16] im-
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Figure 1: Training stages of a hybrid HMM-DNN, triphone-based acoustic model on Kaldi.

plemented an HMM-DNN ASR system in Kaldi and also
conducted a comparative study between HMM-based models
in both Kaldi and HTK. The Castillian Spanish SpeechDat(II)
FDB-4000 audio corpus was used, which contains 43 hours
of recordings from 4,000 speakers. The results indicated a
34.02% decrease in WER when comparing the most accurate
DNN-based and HMM-based models from Kaldi. A decrease
of 53.79% for the HMM-based model in Kaldi could also be
observed over their most accurate model from HTK.

On the second work, Zorrilla et al. [17] carried out sev-
eral experiments using Kaldi in order to evaluate different
deep-learning approaches for acoustic modeling on well-known
Spanish data sets, namely Albayzin, Dihana, CORLEC-EHU
and TC-STAR. In addition, the El País text corpus was used
for language modeling. The authors found through experi-
ments that all HMM-DNN hybrid acoustic models have out-
performed the HMM-GMM ones and work well even with non
task-specific language models.

During the research, we also found two works that tackle
the ASR problem for BP using deep neural networks. Quin-
tanilha et al. [18] presented an open-source, character-based,
end-to-end bidirectional long short-term memory (BLSTM)
neural network for LVCSR. Several experiments were con-
ducted over a data set of approximately 14 hours of recorded
audio and the best performance evaluated in terms of label er-
ror rate was 31.53% without the use of any language model.
Bonilla et al. [19], on the other hand, proposed an end-to-end
deep-learning system for recognizing digits, which is compared
to a simple multilayer perceptron (MLP) network. It is not clear,
however, if the system classifies characters, words or phonemes.
The best result is reported as 97.5% of accuracy rate, against
82.8% achieved by the MLP.

According to the literature review, it appears no previous
work has developed ASR resources with Kaldi for Brazilian
Portuguese yet. Therefore, we believe this is the first attempt
to build acoustic models for BP using the toolkit’s deep learn-
ing approaches.

3. Tools and Resources for BP using Kaldi
In order to build a speech recognition system, one must be pro-
vided with a language model (LM), a phonetic dictionary and
an acoustic model (AM). The resources and tools used to build
each one of the three aforementioned components with Kaldi
will be detailed below. It is worth mentioning that the LM and
the dictionary are the very same used in CMU Sphinx as well.
The steps to train the AMs in particular are similar for both
toolkits, but some differences will be pointed out along the text.
For further information about acoustic model training for BP
using CMU Sphinx tools, the reader is referred to [4].

3.1. Audio Corpora

Speech recognition is a data-driven technology, which means it
requires a relatively large amount of labeled data (transcribed
audio) to work properly. The corpora used to train the acoustic
models with Kaldi are composed by seven data sets, as summa-
rized in Table 1. The data sets contain audio files in an uncom-
pressed, linear, signed PCM (namely, WAVE) format, and are
sampled at 16 kHz with 16 bits per sample. It is important to
note that the actual number of speakers in West Point was rather
reduced due to abundance of foreign words amidst the corpus.
Besides, Constitution and Consumer Protection Code corpora
share the same speaker.

3.2. Phonetic Dictionary and Language Model

The phonetic dictionary maps every grapheme in the lexicon
(orthographic representation) to one or more phonetic transcrip-
tions. The software described in [24] was used to include the
pronunciation mapping of each of the 14,518 words into the
dictionary. The trigram language model used in this work is de-
scribed in [3]. It was trained with the SRILM [25] toolkit with
1.6 million phrases from the CETENFolha [26] corpus, yielding
a perplexity value of 170. The LM is available in ARPA format,
but in order to be used on the Kaldi environment, it was con-
verted to the FST format using the provided arpa2fst script.
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Table 1: Audio corpora used to train acoustic models.

Data set Ref. Hours Words Speakers

LapsStory [3] 5h:18m 8,257 5
LapsBenchmark [3] 0h:54m 2,731 35

Constitution [20] 8h:58m 5,330 1
Consumer

Protection Code [20] 1h:25m 2,003 1

Spoltech LDC [21] 4h:19m 1,145 475
West Point LDC [22] 5h:22m 484 70

CETUC [23] 144h:39m 3,528 101

Total 170h:51m 14,518 687

3.3. Acoustic Model

The scripts used on the Brazilian Portuguese audio corpora were
based on Kaldi’s recipe available for the WSJ corpus [27]. For
the sake of comparison, HMM-GMM acoustic models were
trained with both Kaldi and CMU Sphinx as well. On Kaldi, the
deep learning approach actually uses the HMM-GMM training
as a pre-processing stage. Figure 1 shows the steps followed to
train HMM-DNN acoustic models on Kaldi based on HMM-
GMM triphones. The audio signals are windowed at every
25 ms with 10 ms of overlap in the front-end, being encoded as
a 39-dimension vector: 12 Mel frequency cepstral coefficients
(MFCCs) [28] using C0 as the energy component, plus 13 delta
(∆, first derivative) and 13 acceleration (∆∆, second derivative)
coefficients are extracted from each window.

The AMs are iteratively refined. The flat-start approach
models 39 phonemes (38 monophones plus one silence model)
as context-independent HMMs. The standard 3-state left-to-
right HMM topology with self-loops was used. At the flat-
start, a single Gaussian mixture models each individual HMM
with the global mean and variance of the entire training data.
The transition matrices are also initialized with equal probabil-
ities. The parameters used for extracting MFCCs and training
the monophones are the same for both CMU Sphinx and Kaldi.

Nevertheless, Kaldi uses the Viterbi training algorithm [29]
to re-estimate the models at each training step, rather than the
Baum-Welch algorithm [30] used by CMU Sphinx. Further-
more, Viterbi alignment is applied after each training step in
order to allow training algorithms to improve the model pa-
rameters, a feature that is not present on CMU Sphinx by de-
fault. Subsequently, the context-dependent HMMs are trained
for each triphone, first with the delta and after with the accel-
eration coefficients. Each triphone is represented by a leaf on
a decision tree, which is automatically created by both toolkits
using statistical methods. Eventually, leaves with similar pho-
netic characteristics are then tied/clustered together.

The last two steps for training a HMM-GMM acous-
tic model with Kaldi are the linear discriminant analysis
(LDA) [31] combined with the maximum likelihood linear
transform (MLLT) [32], followed by the speaker adaptive train-
ing (SAT) [33]. Both are included in most tutorials for AM
training with Kaldi. The latter, however, was not taken into
account during our simulations in order to save time, so only
LDA+MLLT was adopted. Moreover, these two steps are not
enabled by default on CMU Sphinx and, since they were not
used in [4] either, we decided not to include them in order to try
to reproduce the results and to save time as well.

Table 2: Kaldi DNN tools and parameters used for training.

Tool or Parameter Value

DNN codebase nnet2 (“Dan’s DNN”)
Script train_pnorm_fast.sh

Hidden layers 2
Activation function p_norm

pnorm_output_dim 3,000
pnorm_input_dim 300

num_epochs 8
num_epochs_extra 5

Minibatch size 512
Learning rate 0.02 down to 0.004

The LDA technique takes the feature vectors and splice
them across several frames, building HMM states with a re-
duced feature space. Then, a unique transformation for each
speaker is obtained by a diagonalizing MLLT transform. On top
of the LDA+MLLT features, the fMLLR alignment algorithm,
which is a speaker normalization that uses feature-space maxi-
mum likelihood linear regression (fMLLR), is applied [34].

Finally, the HMM-DNN acoustic model is obtained by us-
ing the neural network to model the state likelihood distribu-
tions as well as to input those likelihoods into the decision tree
leaf nodes [16]. In short terms, the network input are groups
of feature vectors and the output is given by the aligned state
of the HMM-GMM system for the respective features of the in-
put. The number of HMM states in the system also defines the
DNN’s output dimension [15].

Table 2 shows the most important Kaldi tools and pa-
rameters set used to train the deep neural network. Kaldi
provides two distinct implementations for DNN training:
nnet1 [35], which is primarily maintained by Katel Veselý;
and nnet2 [36], by Daniel Povey. The former was chosen be-
cause it supports CPU training while the nnet1 enables GPU
training only, a resource that was not available for us. Regard-
ing the activation functions of the DNN, we chose the p_norm
nonlinearity because it presents a superior performance over the
tanh in the literature review [15, 16, 17]. The remaining param-
eters of the DNN were set based in the Kaldi’s documentation as
well as in the related works. Since there is actually no parameter
to define the number of neurons in the hidden layers for p-norm
networks, pnorm_output_dim and pnorm_input_dim
parameters must be set instead, being the latter an integer mul-
tiple of the former usually with a ratio of 5 or 10 [37]. The
number of epochs is given by the sum of the num_epochs
and num_epochs_extra parameters. The first one was sup-
posed to be 15, but it is recommended to reduce it when the
computational environment is not very high powered [37], so
we choose 13 (8+5) to be the total number of epochs. The
learning rate was set to vary from 0.02 down to 0.004 during
the default number of epochs; and to stay constant at 0.004 for
the next extra epochs [15].

4. Experimental Tests and Results
Tests were executed on an HP EliteDesk 800 G1 desktop com-
puter equipped with a Intel® Core™ i5-4570 3.20 GHz CPU,
8 GB of RAM and 1 TB of hard disk storage. During the ex-
periments, the LapsBenchmark corpus was held exclusively for
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Table 3: WER (%) achieved by CMU Sphinx and Kaldi toolkits.

Number of tied-states or senones

Toolkit # Gauss. 500 1,000 2,000 4,000 6,000 8,000

CMU Sphinx
(standard)

2 21.70 18.60 17.30 16.20 15.40 15.10
4 17.50 15.50 14.60 13.10 13.10 12.70
8 15.50 13.40 12.80 11.90 11.80 12.20
16 14.20 12.80 11.90 11.10 11.20 11.30

Kaldi
(tri-∆)

2 26.54 21.31 18.25 15.69 14.32 14.04
4 21.61 18.07 15.81 13.46 12.47 11.91
8 19.91 15.80 13.67 11.66 10.85 10.31
16 17.25 14.10 12.09 10.64 9.68 9.31

Kaldi
(tri-∆+∆∆)

2 25.47 20.63 17.28 15.18 13.64 13.42
4 21.13 17.79 14.65 13.10 11.93 11.39
8 18.72 15.26 13.02 11.15 11.03 10.20
16 17.17 13.61 12.06 10.47 9.31 9.23

Kaldi
(tri-LDA-MLLT)

2 19.91 15.36 12.12 9.99 9.60 9.13
4 16.84 13.43 11.15 9.12 8.65 8.04
8 14.42 11.93 9.63 8.15 7.58 6.99
16 12.96 10.75 8.85 7.60 6.79 6.50

testing and the six other corpora were used for training. Unfor-
tunately, no clusters or graphic cards could be used for training
the models. Therefore, due to the computational burden and
the lack of hardware resources, it was not possible to develop
DNN-based AMs for all combinations of HMM-GMM acous-
tic models with Kaldi.

Table 3 shows the results obtained with both CMU Sphinx
and Kaldi. For Kaldi, by the way, the WER was evaluated
across all triphone training steps in order to perform a more
complete comparison to CMU Sphinx results, since neither the
LDA+MLLT stage or the fMLLR alignment were included for
this toolkit. For Sphinx, as expected, the WER decreases as
we increase both the number of Gaussians and the number of
tied-states of the model. However, the values seem to converge
after 4,000 senones and 8 Gaussians. The lowest WER value
achieved was approximately 11.1% with 4,000 senones and 16
Gaussian densities.

For Kaldi, however, we found that the previous convergence
shown on CMU Sphinx results does not occur. As we increase
the number of senones and the number of Gaussians, the WER
values linearly drop. Besides, it can be seen that the lowest
WER values for the first two triphone training steps (tri-∆ and
tri-∆∆) are already lower than the best one achieved by CMU
Sphinx: 9.31% and 9.23%, respectively. The global, lowest
WER value obtained with Kaldi was 6.5% with 8,000 tied-states
and 16 Gaussians at the tri-LDA-MLLT step, which is equiva-
lent to 128,000 leaves on the decision tree, according to Kaldi’s
parameter settings (which is basically the result of the product
8,000 × 16).

As proof of concept, we trained a DNN-based acoustic
model on the best HMM-GMM model produced with Kaldi.
The WER value dropped from 6.5% to 4.75%, an improve-
ment of 26.92%. When compared to the lowest WER value
obtained with CMU Sphinx, the improvement increases to
57.21%, which is a huge difference for dictation tasks.

5. Conclusions and Future Works
This paper addressed the first attempt to develop a speech recog-
nition system for large vocabulary (LVCSR) in Brazilian Por-
tuguese using the Kaldi toolkit. Triphone-based, HMM-GMM
acoustic models with different values of Gaussians and tied-
states were trained with Kaldi and CMU Sphinx tools in order to
establish a comparison in terms of word error rate (WER). The
evaluation results showed that the systems perform better as we
increase the number of Gaussian densities per mixture and the
number of tied-states. For CMU Sphinx, the results obtained
are in accordance to [4], in spite of the current WER achieved
being lower, possibly due the larger corpora used for training
the models.

Results also showed that Kaldi definitely outperformed
CMU Sphinx even without the use of its deep learning tools. An
explanation might be the use of Viterbi algorithm for training
(rather than Baum-Welch), as well as the use of Viterbi align-
ments in between each training stage, which is said to improve
or refine the parameters of the model [38]. With the use of
DNNs, Kaldi presents an improvement of 57.21% over the best
HMM-GMM-based acoustic model built with CMU Sphinx.

As future work, we plan to finish training the HMM-DNN
triphone-based AMs with Kaldi and consequently make them
publicly available (together with the recipe) [8] to the commu-
nity. We also expect to test with 32 and 64 densities per mix-
ture, now evaluating the decoding time too in terms of the real-
time factor (xRT) as the WER possibly decreases. Furthermore
HTK’s latest release also has an implementation of deep learn-
ing algorithms, which may join the next comparisons.
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V. Delić, “Deep neural network based continuous speech recogni-
tion for serbian using the kaldi toolkit,” in Speech and Computer.
Cham: Springer International Publishing, 2015, pp. 186–192.

[12] P. Cosi, “A kaldi-dnn-based asr system for italian,” in 2015 In-
ternational Joint Conference on Neural Networks (IJCNN), July
2015, pp. 1–5.

[13] B. Karan, J. Sahoo, and P. K. Sahu, “Automatic speech recogni-
tion based odia system,” in 2015 International Conference on Mi-
crowave, Optical and Communication Engineering (ICMOCE),
Dec 2015, pp. 353–356.

[14] A. Ali, Y. Zhang, P. Cardinal, N. Dahak, S. Vogel, and J. Glass,
“A complete kaldi recipe for building arabic speech recognition
systems,” in 2014 IEEE Spoken Language Technology Workshop
(SLT), Dec 2014, pp. 525–529.

[15] I. Kipyatkova and A. Karpov, “Dnn-based acoustic modeling for
russian speech recognition using kaldi,” in Speech and Computer.
Cham: Springer International Publishing, 2016, pp. 246–253.

[16] S. Guiroy, R. de Cordoba, and A. Villegas, “Application of the
kaldi toolkit for continuous speech recognition using hidden-
markov models and deep neural networks,” in Advances in Speech
and Language Technologies for Iberian Languages. IberSPEECH
2016, ser. LNCS, vol. 10077. Springer, November 2016.

[17] A. L. Zorrilla, N. Dugan, M. I. Torres, C. Glackin, G. Chollet, and
N. Cannings, “Some asr experiments using deep neural networks
on spanish databases,” in Advances in Speech and Language Tech-
nologies for Iberian Languages. IberSPEECH 2016, ser. LNCS,
vol. 10077. Springer, November 2016.

[18] I. M. Quintanilha, L. W. P. Biscainho, and S. L.
Netto, “Towards an end-to-end speech recognizer for por-
tuguese using deep neural networks,” in XXXV Simpó-
sio Brasileiro de Telecomunicações e Processamento de Sinais,
September 2017, pp. 709–714. [Online]. Available: http:
//www.sbrt.org.br/sbrt2017/anais/1570360756.pdf

[19] D. A. Bonilla, N. Nedjah, and L. de Macedo Mourelle, “Recon-
hecimento automático de fala em português usando redes neurais
artificiais profundas,” in Anais do 12 Congresso Brasileiro de In-
teligência Computacional, C. J. A. Bastos Filho, A. R. Pozo, and
H. S. Lopes, Eds. Curitiba, PR: ABRICOM, 2015, pp. 1–6.

[20] PCD Legal. (2018) PCD legal: Acessível para todos. [Online].
Available: http://www.pcdlegal.com.br/

[21] LDC. (2018) Cslu: Spoltech brazilian portuguese version 1.0.
[Online]. Available: https://catalog.ldc.upenn.edu/LDC2006S16

[22] LDC. (2018) West point brazilian portuguese speech. [Online].
Available: https://catalog.ldc.upenn.edu/LDC2008S04

[23] PUC-Rio. (2018) Centro de estudos em telecomunicações
(CETUC). [Online]. Available: http://www.cetuc.puc-rio.br/

[24] A. Siravenha, N. Neto, V. Macedo, and A. Klautau, “Uso de regras
fonológicas com determinação de vogal tônica para conversão
grafema-fone em Português Brasileiro,” 7th International Infor-
mation and Telecommunication Technologies Symposium, 2008.

[25] A. Stolcke, “SRILM - an extensible language modeling toolkit,”
International Conference on Spoken Language Processing, 2002.
[Online]. Available: http://www.speech.sri.com/projects/srilm/

[26] Linguateca. (2018) Corpus de extractos de textos electrónicos
nilc/folha de s. paulo (CETENFolha). [Online]. Available:
https://www.linguateca.pt/cetenfolha/

[27] GitHub. (2018) Kaldi speech recognition toolkit. [Online].
Available: https://github.com/kaldi-asr/kaldi

[28] S. Davis and P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spo-
ken sentences,” IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, vol. 28, no. 4, pp. 357–366, Aug 1980.

[29] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Transactions on In-
formation Theory, vol. 13, no. 2, pp. 260–269, April 1967.

[30] L. R. Welch, “Hidden markov models and the baum-welch algo-
rithm,” in IEEE Information Theory Society Newsletter, vol. 53,
2003, pp. 10–12.

[31] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
2nd ed. Wiley Interscience, 2000.

[32] R. A. Gopinath, “Maximum likelihood modeling with gaussian
distributions for classification,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP, vol. 2, May
1998, pp. 661–664 vol.2.

[33] S. Matsoukas, R. Schwartz, H. Jin, and L. Nguyen, “Practical
implementations of speaker-adaptive training,” in DARPA Speech
Recognition Workshop, 1997.

[34] M. J. F. Gales, “Maximum likelihood linear transformations
for hmm-based speech recognition,” Computer Speech and
Language, vol. 12, no. 2, pp. 75–98, April 1998. [Online].
Available: https://doi.org/10.1006/csla.1998.0043

[35] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in INTER-
SPEECH 2013, 2013, pp. 2345–2349.

[36] D. Povey, X. Zhang, and S. Khudanpur, “Parallel train-
ing of dnns with natural gradient and parameter averaging,”
http://arxiv.org/pdf/1410.7455v8, Tech. Rep., 2014.

[37] Kaldi. (2018) Dan’s dnn implementation. [Online]. Available:
http://kaldi-asr.org/doc/dnn2.html

[38] E. Chodroff. (2018) Kaldi tutorial: Training overview. [On-
line]. Available: https://www.eleanorchodroff.com/tutorial/kaldi/
training-overview.html

81


