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Abstract—We introduce a novel procedure that extends
the time feasibility for classification of early human actions.
Its major characteristic is to use epoch training data from
a wider time duration before action onset (i.e., within the
intention period) instead of data from localized sliding
windows. This is the case of time-specific and selected fixed
classifiers. Our approach models human actions from EEG
signals and leverages on amplitudes and power frequencies
to construct fifteen groups of action vectors, which were
subjected to a set of classifiers. Regarding early classification
our approach did it earlier than both time-specific and
selected fixed classifiers. Moreover, our results reported an
increase in classification performance.
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I. INTRODUCTION

Classification of early human actions from Electroen-

cephalography (EEG) of brain activity has important ap-

plications in health and safety (e.g. accident prevention

during car driving [1]). One usual approach to performing

this task is the use of trial averaging techniques [2], which

mitigates the problem of inherent noise associated with the

direct decoding of EEG signals. However, trial averaging

needs several examples to infer early classification, what

makes it unsuited to on-line applications. On the other

hand, single trial analysis of EEG activity has started to

be explored [3]. This technique is promising because it

favors on-line decoding.

Single trial techniques require the use of training

strategies capable to handle sliding window classification.

Nowadays, two training strategies are normally used [4].

The first, known as time-specific classifier strategy (TSC)

- uses per-window training data for building per-window

classifiers. This strategy works well for early classifica-

tion, for example, good classification accuracy happens

around 1000ms before action onset, but by construction

TSC is unpractical for on-line applications. The second,

known as the selected fixed classifier strategy (SFC), takes

the best classifier of the TSC and uses it as a single

model. Since the SFC is trained off-line, it can handle

on-line classification. However, a SFC drawback is that

classification of early actions happens closer to the time

window from where the classifier was selected (normally

250ms before action onset) [5]. Another challenge for

classification of early human actions is to determining

the relevant frequency components that encapsulate antic-

ipatory behaviour and improve classification performance.

It has been observed experimentally that discriminant

information for classifying anticipatory behaviour can be

extracted from frequencies below 4Hz [4].

Our approach models human actions from EEG signals

and leverages on epoch [6] training data to build a set of

linear models for classification of early human actions. At

a first stage of classification, EEG raw data was recorded

while subjects drove a virtual car as steering actions

(i.e., left and right turns) were acquired and segmented

into trials. Time and time-frequency analysis were used

to decode human actions at different frequency ranges

and domains. Finally, we extract a set of features from

EEG amplitudes and power frequencies that were used

to construct fifteen groups of action vectors, which were

subjected to a set of classifiers. Although, the traditional

TSC and SFC techniques use just the information of the

current time window for training a classifier, we used

epoch data from the intention period of 1s, 2s and 3s
before action onset. Our results reported an increase in

classification performance. Regarding early classification

our approach did it earlier than both TSC and SFC

techniques.

II. HUMAN ACTION MODELING

A. Action Acquisition

The experiment for data acquisition consisted in con-

trolling a virtual car in a custom circuit where the main

actions correspond to turn the car to either left or right [5].

The data is composed of two actions, namely steering left
(class 1) and steering right (class 2). Steering actions were

performed with an ordinary keyboard. All subjects were

instructed to perform an action with their left or right

hands by using their index finger to control the virtual

car. To turn the car to the left subjects were instructed

to use their left hand to press a predefined letter located

on the left side of the keyboard (letter A in this case).

When turning right a similar action was required on the

right side of the keyboard by pressing letter P. The driving

experiment was performed during four days and EEG

data of five healthy subjects were recorded and sampled

at 128Hz using an Emotiv EPOC neuroheadset with 14

channels: {AF3, F7, F3, FC5, T7, P7, O1, O2, P8,

T8, FC6, F4, F8, AF4}, spatially arranged as shown
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(a) Time window (b) Emotiv Electrode
Positioning

Figure 1: a) Trial timing for actions in temporal and time-frequency domains. The change from idle state to action

intention is triggered by a beep sound occurring around −3s. Negative time means a period before the action onset. b)

Emotiv EPOC electrode positions according to the international 10-20 locations. The electrodes used in this study are

shown in green, which were chosen due to the relation of the locations of these channels to motor actions [7].

in Figure 1b according to the international 10-20 system.

The complete frequency range available from the EEG

raw data comprised [0.2 − 45]Hz. Four sessions per day

were recorded for each subject. Each session contained

28 turns (14 for each class), yielding a total of 2240
turns (all subjects). Each steering was segmented into trials

lasting 5s for temporal analysis (amplitude features) and

7s for time-frequency analysis (power features), respec-

tively. These time intervals were used to include the idle

period (no action), action intention period (preparing for

action), the action onset (starting the action) and the action

itself (performing the action), as shown in Figure 1a. As

movement intention is related to motor actions, we used

channels located in the frontal lobe {F3, F4} and fronto-

central lobe that capture activity from pre-motor and motor

cortex {FC5, FC6} [7].

B. Action Parameterization

In this section, we show how actions of subjects per-

forming the same activity over trials can be parameterized

from neural data. Brain activity using EEG are time

series that can be decomposed into different frequency

components, also known as brain rhythms [8]. Classically,

these frequency components are divided as δ (0.2−4 Hz),
θ (4 − 8 Hz), μ (8 − 13 Hz), β (12 − 30 Hz) and γ
(30 − 80 Hz). Due to hardware limitations, we explore

low γ (30− 45 Hz). These frequencies have been related

to several behavioural and cognitive states. For example,

the amplitude of μ and β rhythms change when a subject

performs motor actions [9], [10]. Thereby, we explore

time and frequency domain (i.e., amplitude and power)

to extract discriminant attributes for parameterizing human

actions. An action encoded by the EEG can be represented

as:

xc = [xc
1, x

c
j , ... , xc

N ]. (1)

Where xc ∈ �N is a trial, N denotes the number of

sampled time-points of channel c = {c1, ck, ... , c14}
where {c1 = AF3, ... , c14 = AF4} and xc

j is the jth

attribute of channel c. Then given xc, temporal amplitudes

are obtained by applying temporal filtering techniques on

xc. So, in order to handle border distortions [11], EEG data

lasting 8s before and after action onset were band-pass fil-

tered by a Butterworth zero-phase filter to obtain features

within the five frequency components f ∈ {δ, θ, μ, β, γ}:
xc
af = xc ∗Hf (z), (2)

where xcaf parameterizes an action within a frequency

component f , electrode c and amplitude a, Hf (z) is the

band-pass Butterworth digital filter for the frequency band

f , z is the filter parameters and ∗ is the convolution

operator. In order to avoid the ripple side-effect of pro-

ducing a higher order filter that has a steep roll-off [12],

if the difference between the highest and lowest cutoff

frequencies < 3, a 3rd order filter was used, otherwise a

4th order filter was applied. After the temporal filtering,

trials lasting 5s are cut-off, as shown in Figure 1a.

In time-frequency domain, actions are modeled by a 3-

cycle complex Morlet wavelet [13]:

Ψf (t) = Ae−t2/2s2ei2πft (3)

where A is a frequency band-specific scaling factor defined

as A = 1
(s
√
π)1/2

and s is the standard deviation of

the Gaussian function. More formally, power features are

computed as:

xc
pf =

|xc ∗Ψf (t)|2
mean(xbc

pf )
, (4)

where p indicates power and xbc
pf is the power of the

baseline (i.e., a period with no action that is used to

remove background information) computed from the idle

period (see, Figure 1a) for channel c at frequency f .

Finally, human actions from neural activity encapsulated

by an EEG channel are then modeled as a state vector,

given as:

xc
ζf = [xc

ζf1, x
c
ζfj , ... , xc

ζfN ], (5)

where, ζ = {a, p} as described by Equations 2 and 4.

III. A MODEL FOR EARLY ACTION CLASSIFICATION

A. Epoch-based Datasets

Based on TSC results [5], [14], we noticed that

classification accuracy starts increasing around −1s, so the

idea is to train classification models by using trials from

the action intention period. At a first stage, error trials

related to in-driving action were removed, for example, if

the driver hits the wall within the action intention period,
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(a) Time-frequency domain (b) Time domain

Figure 2: Classification accuracy results using frequency bands described in III-A, action onset is shown as a grey dashed

line. a) Using time-frequency features. b) Using time domain features.

this trial is removed. Then noisy trials are removed based

on visual inspections of the raw EEG data. After removing

noisy data, a total of 1290 trials out of 2240 were selected.

The next step divides the data for training and testing.

To do so, 90% of the trials were randomly selected for

training a classification model and the rest for model

validation, by maintaining the original class distribution

using stratified split [15]. Training data were extracted

from the [−1s 0] time window, but model validation is

performed over a 5 s time window: [−4s 1s].
We build two main training datasets, one for time

(dataset A) and another for time-frequency (dataset B)

analysis. In both cases, EEG raw data (Equation 1) is

band-pass filtered into the five frequency components

{δ, θ, μ, β, γ} by using Equations 2 and 4, respectively,

and sampled at 128Hz. Differently from the Butterworth

filter, the Wavelet function decomposes the frequency

range into single frequency unities. So, in the case of

dataset B, each of the five brain rhythms is linearly

interpolated at ten different frequencies. For each of these

frequencies, power is calculated using Equation 4 and

then averaged, which gives one frequency band power

per brain rhythm. Lets take the μ rhythm as an exam-

ple, n = 10 different frequency unities are generated:

f = [μ1, μ2, ..., μn], then Equation 4 is applied generating

xc
pμi

for each frequency in f. Finally, xcpμi
are summed and

divided by n: xc
pμ

=
∑n

i=1

xcpμi

n . Overall, intra-frequency

averaging is performed to reduce the dimensionality of the

feature space.

The next step handles epoch extractions. Epochs are

obtained by using time-based epoching technique. This

technique consists in dividing a trial into smaller timing

periods called epochs [6]. So, within this 1s time window

([−1s 0]), we extract epochs of 250ms overlapping every

31.25ms, which gives 25 epochs per trial and 32 sampled

time-points per channel. Datasets A and B have the same

number of epochs: 29025.

B. Action Feature Vectors

In the current study, to build a set of feature vectors that

represent one of the two steering actions, we leverage on

the data of four selected channels {c3, c4, c11, c12} and in

one of the five selected frequency components in time or

time-frequency domains. We used dataset A to build action

feature vectors from the temporal amplitudes of EEG

signals. For dataset B, feature vectors were constructed

from the average band power. For each epoch data, these

four channels are concatenated. An action feature vector

is represented as:

Xζf = [xc3
ζf , xc4

ζf , xc11
ζf , xc12

ζf ]. (6)

As EEG data are sampled at 128Hz and each channel

has 32 attributes, the vector in Equation 6 has N = 128
coefficients.

C. Learning a Classification Model

After building the action feature vectors, they are sub-

jected for learning classification models. For the classi-

fier, we used the Linear Discriminant Analysis (LDA)

technique because it works well in on-line applications

and have proven to be effective in EEG signal classifica-

tion [4], [16]. Due to individual differences in behaviour

and to increase the generalization power of the model,

training data from the five subjects were used to learn LDA

classifiers. To limit the amount of over-fitting and speed

up learning, we used a stratified 10-fold cross-validation

procedure [15], where all the epochs of the training sets

A and B were used for training, and the remaining data

were used to determine classification accuracy (ACC):

ACC =
Acrt

Atot
× 100%, (7)

where Acrt is the number of correct classified actions

and Atot is the total number of actions to be classified

in the test data. After the learning procedure had been

finalized, the 10 trained classifiers were applied to the test

set. By doing so, we can analyze the mean and standard
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deviation accuracies. Regardless of time or power features,

each test trial lasted 5s for both dataset A and B (see,

Figure 1a). Then, by using a single trial classification

approach [4], we classify actions from sliding windows

of 250ms overlapping every 62.5ms, in the period from

4s before the action onset to 1s after. In this study, the

time reported always corresponds to the endpoint of the

sliding window.

IV. RESULTS

A. Overall Classification Performance of Early Actions

We evaluated the overall classification performance of

early actions. To do so, we compared the results of the

classification for the two steering actions studied according

to Equation 6: {Xpδ, Xpθ, Xpμ, Xpβ , Xpγ , Xaδ, Xaθ, Xaμ,
Xaβ , Xaγ} A total of 10 action vectors were analyzed

and compared. We then trained 10 classifiers with epoch

data from the time interval [−1s 0] for each action vector

group. We used this interval because previous works [5],

[14] reported an increase in classification performance

from chance level around −1s. Figures 2a and 2b show

the mean accuracy results from the 10 trained classifiers

applied to the test set (also called evaluation data), for

both power and temporal amplitude features, respectively.

Independently of the frequency range, both power and

amplitude (Figure 2a) have not shown patterns to be

discriminated during early human action classification.

Before action onset, the classification accuracy for all

frequency ranges were close to chance level. That is

approximately 50% matching the random accuracy defined

as: 1
m × 100%, m is the number of classes. On the

other hand, we observed an increase in classification

performance in δ band before action onset for ampli-

tude vectors, Xaδ (first line of Figure 2b). So, δ band

(0.2 − 4 Hz) seems to provide information that may

allow earlier classification of human actions, by using our

classification model (Section III), when compared to the

other frequency components. This earlier action classifica-

tion was previously observed for narrower bands extracted

from δ component [5], [4], but as stated before, the TSC

and SFC classification strategies had some drawbacks.

B. Optimum Classification Performance of Early Actions

We evaluated our model for classification of early hu-

man actions on the temporal amplitudes of action vectors

extracted from very narrow frequency components. So,

to optimally classify early actions, we decomposed the

δ band into 10 frequency components: δ1 = (0.2− 1 Hz),
δ2 = (0.2− 2 Hz), δ3 = (0.5− 1 Hz), δ4 = (0.5− 2 Hz),
δ5 = (1 − 2 Hz), δ6 = (1 − 3 Hz), δ7 = (1 − 4 Hz),
δ8 = (2− 3 Hz), δ9 = (2− 4 Hz) and δ10 = (3− 4 Hz).
For comparison reasons, we maintained the same training

and testing configuration described in section IV-A.

Figure 3 shows the classification performance results

for the 10 bands. We observed earlier action classification

for signals filtered in the δ band below 1Hz (low cut

frequency). One can note a correlation, as the filtered

signal increases from 1Hz to 4Hz (high cut frequency)

the later action classification occurs. Moreover, optimum

classification performance of early actions seems to be

in the narrow frequencies: δ1 and δ3. Another important

finding is that, we observed an interesting result regarding

the δ2 band, for this component the classification duration

remained wider, almost 500ms after action onset. This

classification behavior had been previously observed only

for the TSC [5], [4]. Finally, we noticed that for filtered

signals above 2Hz anticipatory patterns seems to disap-

pear, as observed on the δ8, δ9 and δ10 bands.

Figure 3: Classification performance results of early ac-

tions. Optimum classification performance of early actions

was determined for bands δ1 and δ3. The dashed line

represents the action onset at t = 0.

C. Epoch-based Datasets for Extended Durations

In order to extend the time feasibility of early action

classification, we evaluated the performance of the 10
classifiers trained with epoch data from three time intervals

within the intention period: 1s, 2s and 3s prior to action

onset. We used the action vectors from δ1 and δ3 bands,

for reasons described in Section IV-B. The training data

were obtained using the same approach described in Sec-

tion III-A. For time window [−2s 0], 57 epochs per trial

were extracted resulting in a total of 66177 epochs, and for

time window [−3s 0], 89 epochs per trial were extracted

resulting in a total of 103329 epochs. For comparison

reasons the training test was the same.

The detailed view of classification accuracies of all time

windows and for each frequency component is summa-

rized in Figures 5a and 5b. As seem from Figure 5a,

average accuracy and the classification curve kept almost

the same value across the time intervals. For the 2s
and 3s time intervals, the action classification occurred

188ms earlier when compared to the 1s time interval.

From Figure 5b, we can see that for the 2s and 3s time

intervals, a peak in classification accuracy occurred exactly

250ms earlier than 5a (δ1). Regarding early classification,

that is, the time when accuracy exceeds chance level (we

considered an exceed when accuracy is > 60%), for 2s
and 3s classifiers, accuracy exceeded the chance level
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earlier than the 1s classifiers (around 1500ms vs. 1000ms,

respectively).

Overall, early classification of δ1 and δ3 classifiers

happened at similar time for the 2s and 3s time intervals,

and all classifiers achieved basically the same accuracy

performance.

D. Comparison to Previous Work

To compare with the results of the time-specific and

selected fixed classifiers, we trained 10 classifiers for each

sliding window of 250ms using the epoch data of that

window and used amplitude feature vectors from δ1 band

(TSC). We also used the best trained classifier before

action onset (SFC). Figure 4 shows the results for the

TSC and SFC. Regarding early action classification when

they exceeded chance level, time-specific classifiers did

it earlier than selected fixed classifiers (aroud 750ms vs.

350ms, respectively). Similarly, Lew et al. [4] reported

earlier classification of TSC. On the contrary, our results

outperforms both TSC and SFC regarding earlier classi-

fication, as depicted in Figure 5a. In our approach, early

action classification from chance level happened 1000ms
before action onset.

Figure 4: Comparison results of classification accuracies

for time-specific classifier (TSC) and selected fixed classi-

fier (SFC) for all subjects. Grey dashed lines shows where

the best accuracies and classification time of both models

occurred.

E. Evaluating the Effect of Frequency Combination

In some situations it may be of interest to encapsulate

information regarding early and post activity, for example,

to know if a driver will change his car direction and for

how long he continued acting. In order to investigate this

behaviour, we combined the feature vectors of the best

bands δ1 and δ3 with δ2 band, and analyzed its encapsula-

tion capabilities in acquiring early and post action patterns

together. The feature vectors were concatenated as:

Xζ = [Xζf1 ,Xζf2 ], (8)

where f1 = {δ1, δ3} and f2 = δ2.

We can observe in Figure 5c that the classification

accuracies of the concatenated vector δ1,2 are similar

of the action vectors δ1 (Figure 5a) for all three time

intervals, but early action for peak classification happened

188ms later. On the other hand, for the concatenated

vector δ3,2, early action for peak classification happened

−1007.8ms for the classifiers trained with epoch data

from the ([−2s 0]) time interval, increasing in 187.5ms
early action classification compared to δ3 alone. One side

effect of the concatenation was the lost of post activity

classification of the δ2 band.

V. DISCUSSIONS AND FUTURE DIRECTIONS

We have presented a new approach for classification of

early human actions. Our approach uses epoch training

data from several sliding windows within the intention

period of 1s, 2s and 3s before action onset instead of fixed

epochs, which is used for training time-specific and se-

lected fixed classifiers. We demonstrated the performance

of our approach by classifying early actions encapsulated

into a set of fifteen feature vectors from EEG amplitudes

and power frequencies and by comparing our results

against the time-specific and fixed selected classifiers.

Our approach provided higher classification accuracies

than TSC and SFC, by using amplitude features extracted

from very narrow frequency bands of [0.2 − 1 Hz] and

[0.5− 1 Hz]. Moreover, regarding early classification our

approach did it earlier than both TSC and SFC techniques.

Regarding the combination of narrow frequency com-

ponents, one side effect was the loss of post activity

classification encapsulated into the δ2 band. However, the

concatenation of δ3,2 bands increased the early action

classification time when compared to δ3 band alone from

−820ms to −1007.8ms.

By analyzing data in different domains, time intervals

and frequency ranges, we were able to increase early

action classification around 500ms if considering the

highest accuracy shown in Figure 5a, and in about 930ms
if considering the best anticipation interval depicted in

Figure 5d. We also increased the overall classification

accuracy performance in about 10.30% compared to TSC

and SFC. In addition, this study shows that in case of

anticipatory motor action classification, the best features

to be analyzed are EEG amplitudes from the frequency

ranges: [0.2− 1 Hz], [0.5− 1 Hz] and [0.2− 2 Hz].
Although our approach is suitable for early action clas-

sification, it is unsuited for on-line applications, because

of the filtering technique we used. Extending it to handle

on-line applications is the next step of our research.

REFERENCES

[1] G. M. Duma, G. Mento, T. Manari, M. Martinelli, and
P. Tressoldi, “Driving with intuition: A preregistered study
about the EEG anticipation of simulated random car acci-
dents,” PLoS ONE, vol. 12, no. 1, pp. 1–15, 2017.

[2] J. J. Vidal, “Toward direct brain-computer communication,”
Annual review of Biophysics and Bioengineering, vol. 2,
no. 1, pp. 157–180, 1973.

[3] G. Garipelli, R. Chavarriaga, and J. D. R. Millán, “Single
trial analysis of slow cortical potentials: a study on antic-
ipation related potentials,” Journal of Neural Engineering,
vol. 10, no. 3, p. 036014, 2013.

244



(a) Frequency band δ1 = (0.2− 1 Hz) (b) Frequency band δ3 = (0.5− 1 Hz)

(c) Frequency bands δ1,2 = ((0.2− 1 Hz), (0.2− 2 Hz)) (d) Frequency bands δ3,2 = ((0.5− 1 Hz), (0.2− 2 Hz))

Figure 5: Comparison results of classification mean accuracy and standard deviation for training data from 1s, 2s and

3s prior to action onset. Grey dashed lines show where the best accuracies of all 3 models occurred, the exactly time

and accuracy are also annotated. a) Frequency band (0.2 − 1 Hz). b) Frequency band (0.5 − 1 Hz). c) Concatenated

frequency bands ((0.2− 1 Hz), (0.2− 2 Hz)). d) Using concatenated frequency bands ((0.5− 1 Hz), (0.2− 2 Hz)).

[4] E. Y. L. Lew, R. Chavarriaga, S. Silvoni, and J. D. R.
Millán, “Single trial prediction of self-paced reaching direc-
tions from EEG signals.” Frontiers in neuroscience, vol. 8,
pp. 1–13, Jan. 2014.

[5] A. Gomes, I. Filho, F. Santos, W. Lira, B. Gomes, and
S. R. Carvalho, “Anticipatory eeg signals for detecting and
classifying game interaction onset,” in Proceedings of the
2015 XVII Symposium on Virtual and Augmented Reality,
ser. SVR ’15. Washington, DC, USA: IEEE Computer
Society, 2015, pp. 31–32.

[6] S. J. Luck, “An introduction to the event-related potential
technique,” 2014.

[7] J. Wolpaw and C. Boulay, “Brain signals for brain-
computer interfaces,” in Brain-Computer Interfaces, ser.
The Frontiers Collection, B. Graimann, G. Pfurtscheller,
and B. Allison, Eds. Springer Berlin Heidelberg, 2010,
pp. 29–46.

[8] E. Niedermeyer and F. L. da Silva, Electroencephalogra-
phy: Basic Principles, Clinical Applications, and Related
Fields, 5th ed. Lippincott Williams & Wilkins, Nov. 2004.

[9] G. Pfurtscheller and C. Neuper, “Motor imagery and direct
brain-computer communication,” Proceedings of the IEEE,
vol. 89, no. 7, pp. 1123–1134, Jul. 2001.

[10] J. J. Vidal, “Toward direct Brain-Computer communica-
tion,” Annual Review of Biophysics and Bioengineering,
vol. 2, no. 1, pp. 157–180, 1973.

[11] E. R. Pacola, V. I. Quandt, F. K. Schneider, and M. A.
Sovierzoski, “The Wavelet Transform Border Effect in EEG
Spike Signals,” IFMBE Proceedings, vol. 39 IFMBE, pp.
593–596, 2013.

[12] S. W. Smith, The Scientist and Engineer’s Guide to Digital
Signal Processing. San Diego, CA, USA: California
Technical Publishing, 1997.

[13] M. X. Cohen, Analyzing Neural Time Series Data: Theory
and Practice, 1st ed. The MIT Press, 2014.

[14] Z. Khaliliardali, R. Chavarriaga, L. Gheorghe, and J. del
Millan, “Detection of anticipatory brain potentials during
car driving,” in Engineering in Medicine and Biology
Society (EMBC), 2012 Annual International Conference of
the IEEE, Aug 2012, pp. 3829–3832.

[15] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,”
in Encyclopedia of database systems. Springer, 2009, pp.
532–538.

[16] A. Bashashati, M. Fatourechi, R. K. Ward, and G. E.
Birch, “A survey of signal processing algorithms in brain-
computer interfaces based on electrical brain signals.”
Journal of neural engineering, vol. 4, pp. R32–R57, 2007.

245


