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Abstract—In this paper, we propose a new approach for the
classification of reaching targets before movement onset, during
visually-guided reaching in 3D space. Our approach combines the
discriminant power of two-dimensional Electroencephalography
(EEG) signals (i.e., EEG images) built from short epochs, with the
feature extraction and classification capabilities of deep learning
(DL) techniques, such as the Convolutional Neural Networks
(CNN). In this work, reaching motions are performed into four
directions: left, right, up and down. To allow more natural
reaching movements, we explore the use of Virtual Reality (VR)
to build an experimental setup that allows the subject to perform
self-paced reaching in 3D space while standing. Our results
reported an increase both in classification performance and early
detection in the majority of our experiments. To our knowledge
this is the first time that EEG images and CNN are combined
for the classification of reaching targets before movement onset.

I. INTRODUCTION

In the last ten years, research combining Virtual Reality

(VR) and Brain-Computer Interfaces (BCI) from Electroen-

cephalography (EEG) of brain activity has increased [1]–[3].

One reason is that, VR provides a safe and controlled test

environment for the development of BCI-VR applications. For

example, the classification of reaching targets from (EEG) sig-

nals before movement onset, which has important applications

in the area of neuro-prostheses control [4].

Research in BCI for reaching can be broadly divided into

two groups 1) classification of reaching targets as quickly and

accurately as possible 2) reconstruction of arm trajectories. In

this work, we propose a solution for the former problem, that

handles visually-guided reaching in three-dimensional (3D)

space. In visually-guided reaching in 3D space, it is believed

that the brain converts visual signals into a motor plan to

drive the arm towards the target [5]. This type self-paced

reaching is challenge to decode because the subject decides

when and how he/she will produce the movement towards the

target. Moreover, the classification of reaching targets from

EEG signals is still harder, because of the non-stationary

characteristics of these these signals - that can be decomposed

and analyzed in different frequency bands or components -

its high variability across target selections and its low signal

to noisy ratio. All of these issues together contribute to low

classification performances.

It is well known that EEG frequency bands can correlate

with the cognitive task being performed [6], [7]. For instance,

the execution and intention of motor actions modulates μ and δ
rhythms, respectively [4], [8]. These two frequency ranges are

classically defined as (8−13)Hz and (0−4)Hz, respectively. It

has been reported that EEG amplitudes (in μV ) extracted from

uni-dimensional (1D) sub-ranges of the δ band, encapsulates

anticipatory patterns that can be used to classify reaching

direction before movement onset [4]. In order to increase the

pattern space of feasible targets, we explore the use of bi-

dimensional (2D) patterns (i.e., images) drawn up from one-

dimensional (1D) EEG, to classify reaching targets in 3D space

before the movement is initiated. To handle EEG images we

explore the use of deep learning (DL) techniques.

Deep learning is a classification method that handles the

type of data encapsulated within EEG images. The non-

stationary characteristics of EEG recordings present a wide

variation in time, space and across subjects. Such complex

and multilevel variations are prone to be analyzed with a

multilevel hierarchically organized classifiers. Despite just

a few studies using DL for EEG pattern classification are

available, there is clearly an increased tendency of using such

techniques to achieve better results using deep neural networks

(DNN) architectures when compared to other classifiers such

as support vector machines (SVMs).

In [9] a CNN architecture whose topology consisted of two

convolution layers was used to classify the presence of the

P300 in the EEG, while subjects were required to identify a

character contained in a 6 × 6 matrix. Their result showed a

high classification accuracy with 8 out of 64 channels. In [10]

was evaluated a deep architecture for motor imagery classifi-

cation where the hidden layers were explicitly represented by

combining pre-trained hidden layers with a later use of Ada-

Boost algorithm. In this approach the authors were able to

show a better classification result compared to SVM classifiers

despite a strong variability across subjects. In [11] motor

imagery classification was investigated with three variations

of a deep architecture. Best accuracy results and less inter
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subject variation was accomplished using a combination of

CNNs with stacked auto encoders.

In this study, we propose a new approach for classification

of reaching targets before movement onset. Our approach com-

bines the discriminant power of EEG images built from short

epochs of 250ms, with the feature extraction capabilities of a

deep learning technique called Convolutional Neural Network

(CNN), which is suitable to learn patterns directly from image

data and flexible enough to overcome local distortions. We

then use a sliding window technique to continuously classify

the intended target during the intention period (intention is

considered as the cognitive state that leads to specific actions

before the movement initiates). This allow us to visualize the

temporal classification evolution of visually-guided reaching in

3D space before movement onset. Overall, we aim to use a DL

approach to investigate the feasibility of classifying reaching

targets before movement onset in a VR environment. To our

knowledge this is the first time DL is used for this purpose.

We demonstrate the performance of our approach in several

situations, as described in Section III.

II. MATERIALS AND METHODS

A. Data Recording Setup

Motion capture (Mocap) and EEG data were recorded from

a healthy right-handed male subject. The task consisted in per-

forming a full-body goal-directed reaching with his dominant

arm towards one of seven targets within a 3-dimensional (3D)

virtual reality (VR) environment as shown in Figure 1. In our

VR self-paced protocol, the subject decided the time to start

the movement and the target to reach.

The virtual scene consisted of a room measuring

(3m× 3m× 2.7m). A virtual tennis ball was used as a target.

The rationale here was that by showing a familiar object the

subject comprehends better the scale and dimensions of the

virtual scene. After every reach the subject had to return his

hand to a resting position represented by a blue sphere placed

at the right side of the virtual body waist (Figure 1b). In

order to provide a collision feedback to the subject, the resting

position and target spheres changed color whenever the subject

touched them to indicate a task accomplishment. Finally, a

virtual mirror was placed in front of the subject to reinforce

the self awareness of the virtual body and compensate for the

limited field of view (FoV) the Oculus DK2 offers (around 90

degrees in practice). To account for size variability between

the subject and the virtual human bodies a calibration step

was performed based on a standard T-posture. The calibration

allows the virtual body to follow the subject’s movements. An

in-house analytic inverse kinematics (IK) solution was used

to animate the virtual body [12]. The virtual environment

and the IK solution were implemented as an Unity plug-in.

Reaching targets were grouped within four different classes,

namely Up (class 1), Down (class 2), Left (class 3), and Right

(class 4) targets. Two sessions on 10 consecutive days were

recorded. Each session was performed during 10min with a

5min break, yielding a total of 200min recorded Mocap and

EEG data. EEG data was recorded at 2048Hz using a wireless

(a) Experimental Setup (b) Virtual scene (c) Reaching targets

Fig. 1. Self-paced goal-directed reaching experimental protocol. Full-body
motion capture was recorded in real time. Figure 1a shows the subject using
a Mocap suit with 37 LED red marks, an Oculus DK2 for VR immersion and
the Emotiv neuroheadset for EEG data recording. Figure 1b shows the virtual
body following a subject’s reaching motion. Virtual targets are represented
by seven yellow tennis balls and a blue ball indicates the resting position.
Collision detection algorithms were added to indicate task accomplishment.
Figure 1c shows the 4-classes mapping from the seven reaching targets, the
middle target was unconsidered.

Emotiv EPOC neuroheadset with 14 channels: {AF3, F7,

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4}.
Before the neuroheadset sends the EEG signals wirelessly, it

filters the signals between 0.2 and 45Hz and down-sample

at 128Hz. The open-source software platform OpenVibe [13]

was used to record the EEG signals into CSV files. Full-

body reaching motions were recorded using a PhaseSpace

Impulse X2 Mocap system. 3D locations in Cartesian space

of head, torso, shoulder, arms, wrists, hands, legs and feet

were sampled at 240Hz. A User Datagram Protocol (UDP)

connection was used to trigger the Openvibe and PhaseSpace

platforms allowing Mocap and EEG data synchronization.

B. EEG Image Representation

In the current study, as movement intention is related to

motor actions, we used channels correspondig to electrodes

placed on the frontal lobe {F3, F4} and fronto-central lobe

{FC5, FC6} that capture activity from pre-motor and motor

cortex [14]. Amplitude variation in time domain from the

δ frequency range was extracted from EEG raw data by

filtering with a band-pass zero-phase Butterworth filter. To

avoid the ripple side-effect - as a consequence of producing a

higher order filter with a steep roll-off [15] - we compute the

difference between the highest and lowest cutoff frequencies.

If the difference was < 3, then a 3rd order filter was used,

otherwise a 4th order was applied. The δ band was then

decomposed into 8 frequency ranges for each of the four

channels as follows: δ1 = (0.2 − 1 Hz), δ2 = (0.2 − 2 Hz),
δ3 = (0.5 − 1 Hz), δ4 = (0.5 − 2 Hz), δ5 = (1 − 2 Hz),
δ6 = (1 − 3 Hz), δ7 = (1 − 4 Hz), and δ8 = (2 − 4 Hz).
Finally, EEG images were built concatenating the 8 1D sub-

frequency components, as shown by the following array X:
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Where, N denotes the number of sampled time-points of

channel {ck}k=1...4, xc
j,δf

is the jth attribute of X at a given

frequency range f within the δ band and T indicates the

transpose. In the end, each image had a size of 32 × 32
given a total of 1024 attributes. The matrix X comprised the

input image for the deep classifier. Figure 2 depicts the EEG
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Fig. 2. EEG image patterns for each of the directed-reaching targets.

image in grey contrast for each of the 4-classes generated

in this study. Each image in Figure 2 shows an average

pattern representation for each of the 4-classes studied (reach

directions).

C. Training and Test Datasets

EEG and Mocap were recorded for 10 days, 2 sessions

daily, which comprised a total of 2140 trials for the 4 classes.

The next step divided the data into training and testing sets.

So, 90% of the trials were randomly selected to compose

the training set and the remaining trials provided the test

set. The training set was composed of images from short

epochs [16] of 250ms which corresponded to the intention

time interval, that is, a time window prior to the reaching

onset within the [−1s 0s] interval. The time 0 marked the

reaching onset. Epochs were obtained by using a sliding

window procedure. To increase the number of training images,

epochs were measured with overlapping every 7.8ms, yielding

a total of 97 epochs per trial. Thus, the training set has a total

of 186.822 images. In order to analyze the response of the

trained classifiers, the validation model was performed using

sliding windows of 250ms within [−2.5s 0s] and overlapping

every 62.5ms. This overlapping adequately encapsulates the

variation of δ amplitudes within a 1s time window [17].

D. Deep Learning Approach

We used images to build a pattern space representation of

the EEG recordings able to encapsulate the desired information

for the subsequent classification. Considering the use of EEG

images, we used a deep neural network model, such as the

Convolutional Neural Network (CNN), to learn and classify

reaching targets. CNN is known to efficiently learn patterns

directly from 2D data overcoming important issues that arise

when using ordinary fully connected feed-forward networks,

such as the pre-processing of the image dimensions. Moreover,

CNNs are especially flexible with respect to the variance

in translations or local image distortions [18], because of a

hierarchical representation that maintains a level of shift, scale,

and distortion invariance [19].

The ability of the CNN to learn complex functions that

in turn represent complex abstractions from the data lies

on how the inputs are transformed throughout the network.

Despite of the linear, sigmoidal and hyperbolic tangent are

well known functions that increase the features expressiveness,

the Rectified Linear Unit (ReLU) function is widely used.

Mainly because, the ReLu obtains sparse representations of

the data which promotes the information disentangling, ef-

ficient variable-size representation, it has other features that

resembles the biological information encoding and it provides

fast calculations (ReLU(z) = max(0, z)) [20]. In addition,

CNN suffers less from the vanishing gradient problem [21].

1) CNN Architecture: The CNN architecture is a four-

learned layers model: two implement convolution and two

fully-connected. Figure 3 shows an illustration of the CNN

architecture used in this work. The 32×32 image is presented

as the input. It is convoluted with 50 different filters, each

of size 11 × 11, using a stride of one in both width and

height, generating 6050 parameters. The resulting feature maps

are then passed through a ReLU function, and pooled with

overlapping pooling regions (stride of 1) and no-padding.

Similar operations are repeated in layer 2, that is composed

of 800 filters of size 5 × 5 and stride of 1, given a total

of 20000 parameters. The feature maps are passed through

another ReLU layer and then pooled with overlapping pooling

regions (stride of 2) and padding of 1.

The last learner layer is fully connected, taking features

from the top convolutional layer as input in vector form. This

layer is followed by ReLU and dropout (50%) layers. The final

layer is a 4-way softmax function responding the probability

distribution of four classes with cross-entropy loss function.

2) Training the CNN Classifiers: The CNN was trained

with stochastic gradient descent at an initial learning rate of

0.0001. The learning rate was reduced by 0.1 at each 10
epochs, at a total of 20 epochs (an average of 15 iteration per

epoch). The factor for the L2 regularizer is 0.0001 and the

batch size for each epoch is 128 with momentum of 0.9. The

input data was shuffled once before training and zero-centered

every time data is forward-propagated through the input layer.

The default initial weights are a Gaussian distribution with

mean 0 and standard deviation 0.01, and the default for the

initial bias is 0.

Figure 4 presents the first 20 weights of each convolu-

tional layer. The first layer’s weights were learned to detect

activations along the vertical axis. Some of them respond

better to signals in the first channels (row 1, column 8, for

example), while the opposite occurs for the last channels

(row 2, column 1, for example). Lighter regions correspond
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Fig. 3. The CNN architecture is composed of 3 learned layers, max pool and
ReLU layers, besides fully-connected and softmax layers. More than 26000
parameters are extracted from the dataset.

to higher activation regions. The filters are also activated by

specific bands in channels, in a more located way, such as in

row 2, column 6.

Fig. 4. First 20 filter weights in the first and second convolutional layers after
training.

The classification assessment was measured by the correct

classification rate and how close it was to the maximum rate

(100%). The observation of the accuracy rate in contrast with

the accuracy achieved by chance, the so called chance-level

rate, is common in neural signal processing [22], [23].

The theoretical chance-level rates for groups 1 and 2 and

group 3 are 50% and 25%, respectively. These measurements

consider an infinite sample size scenario, where the relation

100/c is true (being c the number of classes), which is

unfeasible for real applications. For actual scenarios, [24]

propose the use of binomial inverse cumulative distribution

function to compute the statistically significant threshold of

the classification, assuming that the classification errors obey

a binomial cumulative distribution.

Following the [24] proposal and assuming the binomial

cumulative distribution, our data chance-level rate is St(α) =
25.30, for four classes (c = 4) and α = 0.001, being α the

ratio of tolerated false positives. This threshold indicates that

at least 25.30% of samples were predicted by chance, similar

to the theoretical measure. Taking the same α, and isolating

the targets in terms of left/right and up/down, the thresholds

St(α) = 50.42 and St(α) = 50.50, must be overcomed.

On the other hand, it is possible to measure the statistical

significance of classification using permutation tests [25]. In

these non-parametric tests the samples are permuted across

classes and the classification accuracy is measured. The bi-

nomial method requires minimal assumptions for validity, the

permutation method, in turn, provides a flexible and intuitive

approach to assess the correct classification.

In our data, the classes were permuted among the samples

and the randomization tests are pictured in figures 5a-5c

of section III-A. Given the classes distribution, 85% of the

samples were randomized.

III. RESULTS

All the experiments reported in this work were run on a

2.7GHz Intel Core i7-7500U with 16GB of RAM and NVIDIA

GeForce 940M 4GB graphic card. Both train and test sets were

processed by CUDA kernels. On average, the training time of

one CNN model - for groups 1 and 2 - was approximately 5

hours to converge. Considering the batch size of 128 samples,

on average, 12 iterations were necessary to process the data

at each epoch, on a total of 20 epochs. The training time of

one CNN model for group 3 was 10 hours, by keeping the

same number of epochs as before and it took 30 iterations

to process the data in batches. It is important to stress that

until the final CNN architecture was reached, we performed

experiments during four weeks and tested several parameters

to fine tune the CNN architecture described in this work.

A. Overall Classification Performance of Reaching Targets

To evaluate the overall performance of the CNN classifiers

in predicting reaching targets before movement onset, we

trained and tested their accuracy on experimental data of the

10 days (we call them overall classifiers) and arranged the

four classes into three different groups. More specifically,

four CNN classifiers were trained for predicting left and right

targets (group 1), four CNN for predicting up and down targets

(group 2) and four to predict left, right, up, and down targets

(group 3). All the twelve CNN classifiers were trained with

2D images as described in Section II-B.

Figures 5a, 5b and 5c show the mean and standard de-

viation (shaded area) accuracy results of the test set from

−2, 25s to 0s, respectively. We observed that all the three

classification performances demonstrated similar curve shapes.

They increased from chance level around −1s and achieved

a peak performance before movement onset at −382.8ms.

This time yielded the highest mean accuracies for all three

classifications: (69.06 ± 0.33), (65.33 ± 0.94) and (50.34 ±
0.38).

B. Day Specific Classifier Performance

To evaluate daily classification performance and analyze if

the subject’s neural signatures improves their discrimination

power over day sessions, we trained 10 CNN classifiers with

data from that day, that is, the day 1 classifier was trained with

data of the first day and so on. This analysis is challenging

because the onset of visually-guided self-paced reaching is

subjected to more sources of errors compared to cue-based

experiments. For example, mocap error due to calibration

problems, the subject requires more concentration to perform

gaze-centered reaching and muscular fatigue because he per-

forms reaching movements while standing. Because group 3
gave the lower performance compared to the other groups
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(a) Classification performance for group 1 (b) Classification performance for group 2 (c) Classification performance for group 3

Fig. 5. Classification accuracy of the test .The horizontal dotted lines are the chance level computed for each group. The best mean accuracy and the time
where they occur is shown by the vertical dotted line in each Figure.

(see Figure 5), it was analyzed. Table I depicts the maximum

accuracy and anticipation time for each acquisition day.

TABLE I
THIS TABLE SHOWS THE MAXIMUM CLASSIFICATION ACCURACY

(COLUMN 2) FOR EACH DAY (COLUMN 1) AND THE TIME BEFORE

REACHING ONSET (COLUMN 3).

Day Max Accuracy (%) Anticipation Time (ms)
1 56.00 382
2 47.82 272
3 50.00 944
4 57.14 507
5 52.38 444
6 61.90 757
7 52.17 257
8 57.89 1569
9 40.00 1132
10 61.90 781

C. Selected Classifier Performance

In order to decode EEG patterns that were corrupted by

some source of noise and improve the classification perfor-

mance of reaching targets, we selected to test the day specific

classifier that gave the highest accuracy before movement

onset. Our assumption is that, this classifier was able to learn

the most relevant patterns encoded in the images built from

that day. From Table I the test classifier was built with the

day 6 training data set. Figure 6 shows the classification

performance of applying the selected classifier on the test

set of each specific day. We can observe that it was able to

improve the classification accuracy of the day 9 above chance

level. This confirms our assumption that training a classifier

with relevant features can track neural signatures associated

with reaching targets in the presence of noise.

IV. DISCUSSIONS AND CONCLUSION

We have presented a new approach for classification of

reaching targets before movement onset. In our approach, we

combined the discriminant power of EEG images with the

feature extraction capabilities of a deep learning technique

called Convolutional Neural Network (CNN), which is suitable

to learn patterns directly from image data and flexible enough

Fig. 6. Comparison of classification performance between day specific and
selected classifiers. The bars and stems refer to the accuracy and anticipation
time, respectively.

to overcome local distortions. We have proposed the use of

images built from the temporal amplitudes of 8 frequency

components filtered from the δ band, because this brain rhythm

is suitable for the analysis of anticipatory movements. The

CNN classifiers were trained with images from short epochs of

250ms within the intention period of 1s before reaching onset.

We then used a sliding window technique to continuously

classify the intended target. This allowed us to visualize the

temporal classification evolution of visually-guided reaching

in 3D space before movement onset. We demonstrated the

performance of our approach in several situations as described

in Section III.

Regarding overall classification (Section III-A). Noticeably,

the CNN classifiers performed better for left and right targets

when compared to the up and down targets and even better

than group 3. The later is probably a consequence of the

increasing in the number of classes. On the other hand, the

difference in performance for groups 1 and 2 can be a conse-

quence of a sensorimotor reference frame transformation used

in visually-guided reaching in 3D space, that are performed

in the brain to transform visual signals into a motor plan to

guide the arm towards the targets [5]. During the left and

right reaching, the subject turned his head to gaze-center left

or right targets, enforcing brain signals to take account of this
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transformation. On the opposite, up and down targets did not

required head motions. These results suggest that the visual

selection of reaching targets can be discriminated using neural

signatures from temporal amplitudes of δ components encoded

within images.
Regarding daily classification (Section III-B). The results

suggest that building a model in a daily basis in most cases

provided better results than merging data from all days.

Despite days 2 and 9 loss in performance, the other days have

shown a significant increase in accuracy when compared to the

best result depicted in Figure 5c. An increase in anticipation

time can also be observed for the majority of the days. The

lowest performance of the day 9 classifier may indicate that

the neural signatures were corrupted by noise because the

maximum classification performance was at chance level. As

a consequence, the day 9 classifier was unable to efficiently

learn target patterns associated to reaching intentions within

our EEG images.
We can draw several conclusions from Figure 6 (Sec-

tion III-C). Regarding classification performance, in four of the

nine days the accuracy has raised. Regarding time anticipation

earlier detection happened on six of the nine days. We also

noticed that days 1, 4, 5, 7 and 10 had a small decrease in

accuracy performance, but regarding earlier detection the test

classifier did it earlier than day specific classifiers. On the other

hand, regarding accuracy results of days 2 and 9, we observed

an increase in classification of the selected classifier than day

specific classifiers. By turning our attention to the specific day

and overall classifiers, the classification performance of the

selected classifier on the overall training set was 44.16% at

the time −687ms, which gives a decreasing in performance

of only 6.18%. Nevertheless, the best classification result is

still above chance level and it occurred earlier.
Overall, the proposed approach has shown the feasibility

of building EEG images from temporal amplitudes of EEG

signals, to discriminate the direction of targets in 3D space be-

fore movement onset. This may has important applications in

the control of neuro-prophetesses of brain-computer interfaces,

such as the premature decoding of arm trajectories during

visually-guided reaching in 3D space. Finally, our results open

the opportunity for a new field in the use of decoded EEG

images for VR applications.
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