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Abstract. Assembling metagenomic data sequenced by NGS platforms
poses significant computational challenges, especially due to large vol-
umes of data, sequencing errors, and variations in size, complexity, diver-
sity and abundance of organisms present in a given metagenome. To over-
come these problems, this work proposes an open-source, bioinformatic
tool called GCSplit, which partitions metagenomic sequences into sub-
sets using a computationally inexpensive metric: the GC content. Exper- AQ1

iments performed on real data show that preprocessing short reads with
GCSplit prior to assembly reduces memory consumption and generates
higher quality results, such as an increase in the size of the largest con-
tig and N50 metric, while both the L50 value and the total number of
contigs produced in the assembly were reduced. GCSplit is available at
https://github.com/mirand863/gcsplit.
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1 Introduction

Metagenomics consists in determining the collective DNA of microorganisms
that coexist as communities in a variety of environments, such as soil, sea and
even the human body [1–3]. In a sense, the field of metagenomics transcends the
traditional study of genes and genomes, because it allows scientists to investigate
all the organisms present in a certain community, thus allowing the possibility
to infer the consequences of the presence or absence of certain microbes. For
example, sequencing the gastrointestinal microbiota enables the understanding
of the role played by microbial organisms in the human health [4].

Nevertheless, second generation sequencing technologies—which belong to
the Next Generation Sequencing (NGS), and are still the most widespread tech-
nology on the market—are unable to completely sequence the individual genome
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of each organism that comprises a metagenome. Instead, NGS platforms can
sequence only small fragments of DNA from random positions, and the frag-
ments of the different organisms are blended [5]. Hence, one of the fundamental
tasks in metagenome analysis is to overlap the short reads in order to obtain
longer sequences, denominated contigs, with the purpose of reconstructing each
individual genome of a metagenome or represent the gene repertoire of a com-
munity [6]. This task is referred to as the metagenome assembly problem.

Roughly speaking, metagenome assembly can be done with or without the
guidance of a reference genome. The reference assembly can be performed by
aligning reads to the genomes of cultivated microbes [7]. However, this method
is rather limited because the microbial diversity of most environments extends far
beyond what is covered by the reference databases. Consequently, it is necessary
to perform de novo assembly when reconstructing a metagenome that contains
many unknown microorganisms.

Although it seems simple at first glance, the metagenome assembly problem
is actually quite complex. Among the several challenges this task arises, there
are sequencing errors specific to each platform and the processing of the large
volume of data produced by NGS platforms [8]. Moreover, the problem is further
complicated by variations on the size of the genomes and also by the complexity,
diversity and abundance of each organism present in a microbial community [9].
For these reasons, the metagenome assembly becomes a challenging problem.

To solve all these challenges, either de novo assembly can be performed
directly by a metagenome assembler, or the short reads can be clustered
in advance in order to individually assembly each organism present in the
metagenome [10]. The latter approach has the advantage of reducing the com-
putational complexity during the metagenome assembly, because the assembler
will process smaller subsets of short reads and, furthermore, it is possible to
run the individual assembly of each genome in parallel, since those tasks are
independent from each other. The reduction of computational complexity can
also be achieved through the previous digital normalization or data partitioning
prior to assembly, which reduces the dataset by removing redundant sequences,
and divides it into groups of similar reads, respectively [11].

The main focus of this study is the application of the data partitioning
method towards the reduction of computational complexity and the improve-
ment of metagenome assembly. The developed computational approach, denom-
inated GCSplit, uses the nucleotide composition of the reads, i.e., the amount of
bases A, G, C and T present on DNA sequences. This decision was based on the
fact that different organisms or genes that compose metagenomes have distinct
GC content and different GC contents will present coverage variation, a metric
used by assemblers to reconstruct the genomes, which in turn affects the k-mer
selected to perform the sequence assembly based on NGS reads.

The rest of this paper is structured as follows. Related works on digital
normalization and data partitioning are discussed in Sect. 2. Section 3 then
presents the proposed algorithm. In Sect. 4, the impact of the new approach
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on the performance of the metagenomic assembler metaSPAdes [12] is evaluated
through experiments on real data. Finally, Sect. 5 presents the conclusions and
plans for future works.

2 Related Work

In the literature there are several studies that attempt to reduce the compu-
tational complexity and improve metagenomic assemblies through data prepro-
cessing techniques. The main approaches used are either digital normalization or
data partitioning, the latter being the main focus of this article. In this context,
the goal of this section is to carry out a bibliographical review of tools that use
such methodologies.

Diginorm [13] is a tool that uses the CountMin Sketch data structure to count
k-mers, with the purpose of obtaining an estimate of the sequencing coverage;
and reducing coverage variation by discarding redundant data. Due to the data
structure, this technique keeps a constant memory usage and a linear runtime
complexity for the de novo assembly in relation to the amount of input data.

Trinity’s in silico normalization (TIS) [14], which belongs to the Trinity
assembler algorithm package, presents an implementation that computes the
median k-mer coverage for all reads of a given dataset. If the median coverage
is lower than the desired value, all reads are kept. Otherwise, the reads may be
kept with a probability that is equal to the ratio of the desired coverage by the
median coverage.

NeatFreq [15] clusters and selects short reads based on the median k-mer
frequency. However, the main innovation in the work is the inclusion of methods
for the use of paired reads alongside with preferential selection of regions with
extremely low coverage. The results achieved indicate that the coverage reduction
obtained by NeatFreq increased the processing speed and reduced the memory
usage during the de novo assembly of bacterial genomes.

ORNA [16] presents a novel and interesting approach that normalizes short
reads to the minimum necessary amount in order to preserve important k-mers
that connect different regions of the assembly graph. The authors treat data nor-
malization as a set multi-cover problem, and they also have proposed a heuris-
tic algorithm. Their results show that a better normalization was achieved with
ORNA, when compared with similar tools. Moreover, the size of the datasets was
drastically reduced without a significant loss in the quality of the assemblies.

Khmer [17,18] presents a novel data partitioning methodology, in which the
main data structure—a probabilistic model called bloom filter—is used to obtain
a compact representation for graphs. The authors’ implementation can represent
each k-mer using only 4 bits, which was the major factor for achieving a forty-fold
memory economy while assembling a soil metagenome.

MetaPrep [19] contains efficient implementations for k-mer counting, par-
allel sorting, and graph connectivity and partitioning. The developed solution
was evaluated in a soil metagenome dataset composed of 223 Gigabases (Gb)
distributed in 1.13 billion short reads. As a result of the experiment, MetaPrep
took only 14 min to process this dataset using just 16 nodes of the NERSC
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Edison supercomputer. The authors also assessed how MetaPrep can improve
the performance of the metagenomic assembler MEGAHIT.

Latent Strain Analysis [20] is an approach that separates the DNA sequences
into partitions considering the biological factor, thus allowing the individual
assembly of each genome present in a metagenome. The proposed methodology
assumes that the abundance of the genomes present in a sample reflects on their
k-mer abundance. The results achieved allowed the partial or almost complete
assembly of bacteria whose relative abundance varies to a minimum of 0.00001%.

During the literature review, it was not found any software that performs
data partitioning using the information present in the nucleotide composition
of short reads sequenced by NGS platforms. Hence, in this work we propose
GCSplit, a tool that uses the GC content of the DNA sequences in combination
with statistical metrics to partition the dataset. This new approach is promising
because it is computationally inexpensive and uses information present in the
reads that, as far as we know, has not been used in any other work for data
partitioning. Further details about this new algorithm will follow.

3 The Proposed Algorithm

GCSplit was implemented in C++ in order to facilitate the communication
with the library that performs the parallelization of the critical sections of
the algorithm. The software KmerStream [21] and metaSPAdes [12], which are
automatically executed to estimate the best values of k-mer and to assembly
the metagenome, respectively, are dependencies of the proposed algorithm. The
object-oriented programming paradigm was used in order to simplify an eventual
addition of either new assemblers or k-mer estimation programs in the future,
since one would only need to implement new classes to interact with the desired
programs. Figure 1 summarizes the main steps of the developed algorithm.

Fig. 1. GCSplit algorithm overview.
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As input, GCSplit takes two paired FASTQ files, both containing the metage-
nome’s sequences. The files are automatically passed to KmerStream, which esti-
mates the best k-mer values for the assembly. Next, an algorithm was developed
within GCSplit in order to partition the datasets, as shown in the pseudo-code
of Algorithm 1. More specifically, the algorithm computes the GC content from
all reads, making use of OpenMP library to do so in parallel. C++ STL library,
on the other hand, has a parallel implementation of the merge sort algorithm,
which is used to sort the sequences according to their GC content in ascending
order.

Algorithm 1. Pseudo-code to partition the dataset
Input : Paired reads vectors Li(x) and Ri(x), number of partitions n
Output : n sets of paired FASTQ files

1 s← |L|;
2 for i← 0 to s− 1 do
3 l← |Li|;
4 Li.gc = 0;
5 for j ← 0 to l − 1 do
6 if Li[j] = ‘C’ or Li[j] = ‘G’ then
7 Li.gc = Li.gc + 1;

8 Li.gc =
Li.gc× 100

l
;

9 Li.pair ← Ri ; // Creates a pointer from Li to Ri

10 sort(L, 0, s− 1) ; // merge sort

11 p← s
n

;

12 r ← s mod n ;
13 x← 0 ;
14 y ← 0 ;
15 for i← 0 to n do
16 if r > 0 then
17 y ← y + p + 1;
18 r ← r − 1;

19 else
20 y ← y + p;

21 createPartition(L, x, y - 1, string(i));
22 x← y;

The proposed algorithm then calculates the approximate number of reads
p that go into each partition n and also divides the dataset into n sub-
sets/partitions based on this value. The number of partitions “ n”—which is
expected to be much smaller than the number of reads “ s”, i.e., n << s—is
defined by the user because the ideal value may vary for each dataset. It is
important to notice that this partitioning method keeps the reads paired, which
is crucial in obtaining assemblies with the highest quality possible.
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Procedure. createPartition(L, b, e, i)
Input : dataset vector Li(x), the beginning of the partition b, the end of the

partition e, the index of the partition i
Output : Two paired FASTQ files with reads from the selected range

1 OutputStream r1 ← New OutputStream(“partition” + i + “ R1.fastq”);
2 OutputStream r2 ← New OutputStream(“partition” + i + “ R2.fastq”);
3 for j ← b to e do
4 r1 ← Lj ;
5 r2 ← Lj .pair;

6 r1.close();
7 r2.close();

The division of the data into subsets is performed by a procedure called
createPartition, whose implementation has four instructions and a single loop.
Therefore, the asymptotic analysis of the second task results in a complexity of
O(e − b), where “ b” is the beginning and “ e” the end of the partition.

Regarding Algorithm1, the computation of the number of reads |L| takes
O(s); sorting with merge sort takes Θ(s log s); dividing the dataset into “ n”
partitions takes O(n(b − e)); and computing the GC content of “ s” reads with
length “ l” takes O(sl) due to the nested loop ranging from lines 2 to 9. Therefore,
we can conclude that the proposed partitioning algorithm has an asymptotic
complexity of O(sl), since “ s” is normally much greater than “ n” (s >> n) and,
thus, s × l > s log s > n × (b − e) in the worst case.

The created partitions are individually assembled by metaSPAdes. Then,
another assembly is performed with SPAdes [22] to concatenate the n previous
assemblies, where the assembly result that gets the highest N50 is used as input
in the trusted contigs parameter and the remaining are used as single libraries.
SPAdes was used in this final step because metaSPAdes does not accept multiple
libraries as input yet. Ultimately, the final output is a FASTA file that contains
a high quality assembly.

4 Evaluation

4.1 Datasets and Platform

In order to evaluate GCSplit, analysis were conducted in three real metagenomic
datasets, whose samples were collected from the following environments: from
a moose rumen, from hot springs at headwaters and a sewage treatment plant.
The datasets used in the experiments are listed in Table 1.

The moose rumen sample was collected in Växsjö, Sweden. This sample was
sequenced with the Illumina HiSeq 2500 platform and contains 25, 680, 424
paired short reads with 101 base pairs (bp). These short reads can be obtained
from the Sequence Read Archive (SRA) database through the accession number
ERR1278073.
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Table 1. Dataset description

ID Dataset Read count
R (×106)

Size
M (Gbp)

SRA accession
number

MR Moose rumen 25.6 5.2 ERR1278073

HS Hot springs 7.4 3.7 ERR975001

STP Sewage treatment plant 21.3 6.4 SRR2107212,
SRR2107213

The hot springs samples were collected in the years 2014 and 2015 at the
headwaters of Little Hot Creek, located in the Long Valley Caldera, near Mam-
moth Lake in California, United States [23]. Sequencing was conducted using
one of the following Illumina platforms: MiSeq PE250, MiSeq PE300 or HiSeq
Rapid PE250. The insert size used has approximately 400 bp and MiSeq runs
were prepared using the Agilent SureSelect kit, while HiSeq PE250 samples were
prepared using the Nextera XT library preparation kit. These data, which con-
tain 7, 422, 611 short reads of 250 base pairs can be obtained via SRA accession
number ERR975001.

The sludge sample was collected in a municipal sewage treatment plant
located in Argentina [24]. This sample was split in two technical replicates
and sequenced with the platform Illumina HiSeq 1500 in 150 bp short reads.
This dataset can be downloaded via SRA accession numbers SRR2107212 and
SRR2107213, which contain 8, 899, 734 and 12, 406, 582 short reads, respectively.

The assemblies were performed in a cluster that runs the GNU/Linux
x64 operating system (openSUSE), and contains 4 nodes with 64 cores and
512 Gigabytes (GB) of Random Access Memory (RAM).

4.2 Results

Table 2 shows the assembly quality results produced by metaSPAdes without
preprocessing and after preprocessing with GCSplit using four partitions for the
metagenomes collected from the Moose Rumen (MR), the Hot Springs (HS) and
the Sewage Treatment Plant (STP). The best 10 k-mers estimated by Kmer-
Stream were used in those assemblies. The statistics were computed with the
tool QUAST [25], while peak memory usage was extracted from the assemblers’
log. The best results are highlighted in bold.

For the MR dataset, the amount of contigs was drastically reduced from 175,
761 to 572 when preprocessing the data with GCSplit. The N50 value increased
from 2, 004 bp in the assembly without preprocessing to 164, 782 bp after pre-
processing, while the L50 value decreased from 23, 843 to 6 contigs. This implies
that to reach the N50 value of 164, 782 bp, we need to sum the length of only
6 contigs, whereas without GCSplit 23, 843 contigs were necessary to reach a
much smaller N50 value, which means that the assembly with metaSPAdes alone
contains more fragmented sequences overall. There was also a reduction of 13 GB
in memory consumption during the assembly with GCSplit.
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Table 2. Assembly quality comparison with four partitions

MetaSPAdes assembly statistics

Dataset Preproc.? #Contigs Largest
contig

Total
length
(Mbp)

N50 L50 Memory
peak
(GB)

MR Yes 572 791, 884 4.3 164, 782 6 21

No 175, 761 408, 484 276.1 2, 004 23, 843 34

HS Yes 98 193, 569 3.1 109, 605 11 21

No 26, 656 109, 705 28.7 1, 108 4, 795 45

STP Yes 1, 562 1, 020, 504 19.6 85, 650 59 33

No 385, 566 340, 186 463.8 1, 312 71, 126 76

Moreover, the largest contig produced in the MR assembly after preprocess-
ing the dataset with GCSplit increased from 408, 484 bp to 791, 884 bp. How-
ever, the total length of the assembly generated after applying GCSplit to the
data dropped from 276.1 Mbp to 4.3 Mbp. The merging strategy adopted using
SPAdes may be one of the reasons for this reduction because it breaks down the
contigs into smaller sequences of length k (k-mers), but other possibilities are
under investigation.

The assembly of the HS sample also showed improvements with the usage
of GCSplit. Memory peak dropped from 45 GB to 21 GB on partitioned data.
Furthermore, the amount of contigs decreased from 26, 656 in the assembly with
metaSPAdes alone to 98 contigs after preprocessing with GCSplit, representing a
99% reduction. On the other hand, the N50 value increased significantly, yield-
ing a 9792% growth after partitioning, which is excellent for gene prediction.
Moreover, the L50 value reduced about 99% with the GC content partitioning.

In the HS dataset, the size of the largest contig produced in the assembly after
preprocessing was closer to the assembly with metaSPAdes alone, containing
193, 569 bp and 109, 705 bp, respectively. The total length of the assembly also
experienced a less dramatical decrease, going from 28.7 Mbp in the traditional
assembly to 3.1 Mbp after using GCSplit.

For the STP sample, there was a 56% economy in memory usage with prior
data partitioning. Additionally, the amount of contigs drastically reduced from
385, 566 to 1, 562 contigs when the assembly was performed after preprocessing
the sequences with GCSplit. The N50 value raised from 1, 312 bp in the assembly
with metaSPAdes alone to 85, 650 bp after partitioning, while the L50 value
decreased from 71, 126 to 59 contigs with the aid of GCSplit.

Furthermore, the largest contig produced in the STP assembly after prepro-
cessing the dataset with GCSplit increased from 340, 186 bp to 1, 020, 504 bp.
Conversely, the total length of the assembly generated after applying GCSplit to
the data declined from 463.8 Mbp to 19.6 Mbp. This result shows that despite
the amount of data has decreased, the N50 value improved and this can favor
gene prediction in later analysis.
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Another experiment was carried out to assess whether different numbers
of partitions affect the computational complexity and quality of the assembly.
Table 3 shows the results produced by metaSPAdes after preprocessing with
GCSplit using different amounts of partition for the metagenome collected from
the Hot Springs (HS).

Table 3. Assembly quality comparison for different number of partitions

MetaSPAdes assembly statistics

Dataset #Part. #Contigs Largest
contig

Total
length
(Mbp)

N50 L50 Memory
peak
(GB)

HS 2 205 349, 825 4.7 50, 407 22 31

4 82 193, 547 2.7 110, 167 10 21

8 66 283, 547 2.5 123, 532 6 19

The results in Table 3 show that larger values of partition reduce memory
consumption. However, their total length represents about half of the data pro-
duced when the dataset is divided into only two partitions, which may indicate a
significant loss in gene representativity. Therefore, gene prediction analyses are
necessary to validate whether the largest amount of data (observed in the assem-
bly of less partitioned data) is proportional to the amount of predicted Open
Reading Frames (ORFs) or to products identified when performing a search by
homology in public databases. All things considered, the number of partitions
is a flexible parameter, so the user can evaluate several options and identify the
best, since variations in different organisms can occur due to the GC content of
the genome.

5 Conclusion

In this work, we developed a new bioinformatic tool called GCSplit, which par-
titions metagenomic data into subsets using a computationally inexpensive met-
ric: the GC content of the sequences. GCSplit has been implemented in C++
as an open-source program, which is freely available at the following repository
on GitHub: https://github.com/mirand863/gcsplit. GCSplit requires GCC ver-
sion 4.4.7 or higher, the library OpenMP and the software KmerStream and
metaSPAdes.

Empirical results showed that applying GCSplit to the data before assembling
reduces memory consumption and generates higher quality results, such as an
increase in the size of the largest contig and N50 metric, while both the L50
value and the total number of contigs generated in the assembly were reduced.

Although larger number of partitions produced less data, it is important
to notice that the next analysis performed after assembly is gene prediction,
where larger sequences are more likely to have genes predicted, as opposed to
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fragmented assemblies such as those carried out with metaSPAdes alone, which
contain smaller N50 and larger amounts of bp. Moreover, metagenome binning
can be favored by the generation of less fragmented results due to higher values
of N50.

As future work, we expect to perform gene prediction to assess whether the
contigs produced in the assembly with GCSplit contain meaningful informa-
tion. Additionally, we also plan to test the application of GCSplit in eukaryotic
datasets, and test the Overlap–Layout–Consensus (OLC) approach in the merg-
ing step. The experiments that would allow the comparison of GCSplit with
other algorithms specialized in either digital normalization or data partitioning
could not be completed by the submission deadline of this article.
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