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Abstract. Forced phonetic alignment (FPA) is the task of associating a
given phonetic unit to a timestamp interval in the speech waveform. Pho-
neticians are able mark the boundaries with precision, but as the corpus
grows it becomes infeasible to do it by hand. For Brazilian Portuguese
(BP) in particular, only three tools appear to perform FPA: EasyAlign,
Montreal Forced Aligner (MFA), and UFPAlign. Therefore, this work
aims to develop resources based on Kaldi toolkit for UFPAlign, includ-
ing their release alongside all scripts under open licenses; and to bring
forth a comparison to the other two aforementioned aligners. Evaluation
took place in terms of the phone boundary metric over a dataset of 385
hand-aligned utterances, and results show that Kaldi-based aligners per-
form better overall, and that UFPAlign models are more accurate than
MFA’s. Furthermore, complex deep-learning-based approaches did not
seem to improve performance compared to simpler models.

Keywords: Forced phonetic alignment · Speech segmentation · Acoustic
modeling · Kaldi · Brazilian Portuguese

1 Introduction

The analysis of the prosodic structure of speech very often requires the alignment
of the speech recording with a phonetic transcription of the speech, a task known
as forced phonetic alignment (FPA). However, transcribing and aligning several
hours of speech by hand is very time-consuming, even for experienced phoneti-
cians. As several approaches have been applied to automate this process, some of
them brought from the automatic speech recognition (ASR) domain, the combi-
nation of hidden Markov models (HMM) and Gaussian mixture models (GMM)
has been for long the most widely explored for FPA.

With respect to ASR-based frameworks, we found only three forced aligners
that provide pre-trained models for Brazilian Portuguese (BP): EasyAlign [9],
Montreal Forced Aligner (MFA) [16] and UFPAlign [32,6]. To the best of our
knowledge, EasyAlign is the only HTK-based aligner that ships with a model for
BP, MFA is the only Kaldi-based one, and UFPAlign has been evolving through
time to work with both HTK and Kaldi as back-end.
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It should be remarked that UFPAlign was born in [32] as an early effort to
mitigate the gap for Brazilian Portuguese, providing a package with grapheme-
to-phoneme (G2P) converter, syllabification system and GMM-based acoustic
models trained over the HTK toolkit [34]. As usual, tests comparing the auto-
matic versus manual segmentations were performed. An extra comparison was
made to EasyAlign [9], which to our knowledge was the only aligner that sup-
ported BP at that moment. It was observed that the tools achieved equivalent
behaviors, considering two metrics: boundary-based and overlap rate.

Later on, following Kaldi’s success as the de facto open-source toolkit for
ASR [25] due to its efficient implementation of deep neural networks (DNN)
for hybrid HMM-DNN acoustic modeling, UFPAlign was updated in [6] w.r.t.
its older HTK-based version, yielding better results with both monophone and
triphone GMM-based models, as well as with a standard feed-forward network
trained using nnet2 recipes. Both HTK- and Kaldi-based versions of UFPAlign
were then evaluated over a dataset containing 181 utterances spoken by a male
speaker, whose phonemes were manually aligned by an expert phonetician.

Therefore, as nnet2 recipes became outdated, this work builds upon [6] by
updating training scripts to Kaldi’s nnet3 recipe, which contains the current
state-of-the-art scripts for ASR. Up-to-date versions of the acoustic models, pho-
netic and syllabic dictionaries were released to the public under the MIT license
on FalaBrasil’s GitHub account1, as well as the scripts to generate them. Assum-
ing Kaldi is pre-installed as a dependency, UFPAlign pipeline’s works fine under
Linux environments via command line, but also provides a graphical interface
as a plugin to Praat [3], a popular free software package for speech analysis.

Additionally, some intra- and inter-evaluation procedures were performed,
the former considering all acoustic models trained within the Kaldi’s default
GMM and DNN pipeline, while the latter applied the HTK former version of
UFPAlign [32], EasyAlign [9], and MFA [16] aligners over the same dataset for
the sake of a fair comparison. The evaluation dataset was extended from 193
utterances spoken by a male individual to include 192 sentences spoken by a
female speaker, i.e., 385 manually aligned audio files in total. The similarity
measure is given by the absolute difference between the forced alignments with
respect to manual ones, which is called phonetic boundary [16].

In summary, the contributions of this work include:

– Release of monophone-, triphone-, and DNN-based (nnet3) acoustic models,
which comprise a total of five pre-trained, Kaldi-compatible models included
as part of UFPAlign. Scripts used to train such models are also available.

– Generation of multi-tier TextGrid files for Praat, based on phonetic and
syllabic dictionaries built over a list of words in BP collected from multiple
sources and post-processed by GNU Aspell [2] spell checker.

– Comparison to the only two ASR-based phonetic aligners that exist for
Brazilian Portuguese (to the best of our knowledge), regarding the phone
boundary metric [16] over a dataset of 385 hand-aligned utterances.

1 https://github.com/falabrasil

https://github.com/falabrasil
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The remainder of this paper is as follows. Section 2 presents the FPA pro-
cedure with Kaldi, and some other resources used for training and evaluation.
Evaluation tests and results are reported and discussed on Sections 3 and 4, re-
spectively. Finally, Section 5 presents the conclusion and plans for future work.

2 Methodology

This section details the forced phonetic alignment process within UFPAlign,
which is similar to a traditional decoding stage in speech recognition where one
needs an acoustic model and a phonetic dictionary (or lexicon) to decide among
senones, except the language model is not necessary in such case.

UFPAlign uses Kaldi as the ASR back-end, and FalaBrasil’s grapheme-to-
phoneme (G2P) and syllabification tools to provide phonemes and syllables from
regular words (also known as graphemes), given that users themselves provide
such transcriptions as input alongside with the corresponding audio file. The
output is stored in a TextGrid file — a well-known file format for Praat users.

2.1 Kaldi, Grapheme-to-Phoneme and Syllabification Tools

Kaldi [25] is an open-source toolkit developed to support speech recognition
researchers. The DNN training framework is provided by Kaldi in three distinct
setups2: nnet1 [14], nnet2 [35,27] and nnet3. Unlike nnet1 and nnet2, nnet3
offers an easier access to more specialized kinds of networks other than simple
feed-forward ones, including long short-term memory (LSTM) [21] and time-
delay neural networks (TDNN) [22,24], for example.

Scripts in Kaldi’s nnet3 setup use factorized time-delay neural networks
(TDNN-F) as default architecture [22], which are a type of feed-forward net-
work that has a behavior similar to recurrent topologies like LSTMs in the sense
of capturing past and future temporal contexts w.r.t. the current speech frame
to be recognized, but with an easier procedure for parallelization. This opposes
to previous nnet2 recipes, for instance, which are pure vanilla networks.

As Kaldi requires a lexicon to serve as the target being modeled by HMMs,
this work uses a G2P converter provided by the FalaBrasil Group as an open-
source library written in Java [30,18]. This tool relies on a stress determination
system to provide only one pronunciation per word, which means it does not
consider co-articulation between words (i.e., cross-word events are ignored). The
phonetic alphabet is composed by 38 phonemes plus a silence phone, inspired
by the Speech Assessment Methods Phonetic Alphabet (SAMPA) [7].

The syllabification tool, on the other hand, is not a requirement when training
acoustic models for ASR, but rather just a feature of UFPAlign for composing
another tier in the TextGrid output file. It is also provided by the FalaBrasil
Group within the same library as the G2P [19].

2 http://www.kaldi-asr.org/doc/dnn.html

http://www.kaldi-asr.org/doc/dnn.html
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2.2 Training Speech Corpora and Lexicon

To build an effective acoustic model (AM), a relatively large amount of labeled
data is required, apart from a language model (LM) and a pronunciation model
(a.k.a. phonetic dictionary or lexicon). An LM is necessary for speech recog-
nition despite not being explicitly used during phonetic alignment itself. The
model used here was built in [18] using SRILM [33] toolkit over approximately
1.5 million sentences from the CETENFolha dataset [12]. The FalaBrasil speech
corpora, on the other hand, consists of seven datasets in Brazilian Portuguese
with a total of approximately 170 hours of transcribed audio, the same as in [6].

Finally, the phonetic dictionary was created via FalaBrasil G2P tool [30,18]
based on a list of words collected from multiple sources on the Internet, including
University of Minho’s Projecto Natura [1], LibreOffice’s VERO dictionary [17],
NILC’s CETENFolha dataset [12], and FrequencyWords repository based on
subtitles from OpenSubtitles [8,20]. GNU Aspell [2] is responsible for checking
out the spelling and consequently filtering the huge number of words collected,
resulting in approximately 200,000 words in the final list.

2.3 Acoustic Models

The deep-learning-based training approach in Kaldi actually uses the GMM
training as a pre-processing stage. For this work, AMs were trained by adapting
the recipe for Mini-librispeech dataset [23]. For details on the GMM training
pipeline, the reader is referred to [6]. The DNN is trained on the top of the last
GMM model of the pipeline, which comprises a speaker-adapted training (SAT).

Figure 1 details how the DNN model is obtained as a final-stage AM by us-
ing the neural network to model the state likelihood distributions as well as to

Fig. 1: Stages for training a TDNN-F following Kaldi’s Mini-librispeech recipe.
On the left side, high-resolution, cepstral-normalized MFCCs (40 features in-
stead of 13) are extracted from an augmented corpora after applying speed and
volume perturbation [15], as are the speaker-related 100-dimensional i-vector
features [5,31]; to be used as input to the neural network. On the right side,
training labels are provided by a GMM tri-SAT acoustic model.
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input those likelihoods into the decision tree leaf nodes [10]. The implementa-
tion in Kaldi uses a sub-sampling technique that avoids the whole computation
of a feed-forward’s hidden activations at all time steps and therefore allows a
faster training of TDNNs. The “factorized” term distinguishes a TDNN-F from
a traditional TDNN architecture by a singular value decomposition (SVD) that
is applied at the hidden layer’s weight matrices in order to reduce the number
of model parameters without degrading performance [24].

2.4 Kaldi Forced Phonetic Alignment

Kaldi’s FPA procedure performs several steps for obtaining the time-marked con-
versation (CTM) files, which contains a list of numerical indices corresponding
to phonemes with both their start times and durations in seconds. After Kaldi
scripts extract some features from time-domain audio data, the forced alignment
step, that employs the aforementioned pre-trained acoustic models, is computed
by Kaldi using Viterbi beam search algorithm [11]. Figure 2 shows an overview
of the stages within UFPAlign.

Fig. 2: Pipeline followed by UFPAlign. When a user feeds the system with an
audio (.wav) and its respective transcription (.txt), they should expect a Praat’s
TextGrid file (.tg) as output. Time marks are provided by Kaldi, which relies
on the knowledge of the acoustic model (AM) and tokens of the lexicon (L.fst).

The data and language preparation stage in particular also creates some
“data files” on the fly, which contain information regarding the specifics of the
audio file and its transcription, namely text, wav.scp, utt2spk, and spk2utt.
The language preparation stage, on the other hand, is given by a script provided
by Kaldi to create another set of important files, the main one being the lexicon
parsed into a finite-state transducer (FST) format, called L.fst.

For data preparation, the first step consists in checking whether there are any
new words in the input data that were not seen during the acoustic model train-
ing. If any word in the transcriptions is not found in the pronunciation dictio-
nary (lexicon), it calls the grapheme-phoneme conversion module (G2P) [30,18]
to extend the lexicon with each new word along with its respective phonemic
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pronunciation. For Praat’s final visualization purposes, the word is also divided
into syllables through the embedded syllabification tool [19]. As the original pho-
netic and syllabic dictionaries contain approximately 200,000 entries, they both
become lex 200k+ and syll 200k+ files after the insertion of missing words.

The last block of the phonetic alignment process handles the conversion of
both CTM files to a Praat’s TextGrid (.tg), a text file containing the alignment
information. Therefore, CTM files are read by a Python script that in the con-
version process uses the lex 200k+ and syll 200k+ extended dictionaries to
generate the output five-tier TextGrid that can be displayed by Praat’s editor.

3 Evaluation Tests

The evaluation procedure takes place by comparing a bunch of TextGrid files:
the hand-aligned reference and the ones automatically annotated by the forced
aligners (i.e., by inference), as the phone boundary metric considers the absolute
difference between the ending time of both phoneme occurrences [16]. The calcu-
lation is performed for each acoustic model, and it takes place over all utterances
from the evaluation dataset composed by one male and one female speaker.

3.1 Evaluation Speech Corpus

The automatic alignment was estimated on the basis of the manual segmentation.
The original dataset used for assessing the accuracy of the phonetic aligner is
composed of 200 and 199 utterances spoken by a male and a female speaker, in
a total of 15 minutes and 32 seconds of hand-aligned audio, as shown in Table 1.
Praat’s TextGrid files, whose phonetic timestamps were manually adjusted by a
phonetician, are available alongside audio and text transcriptions.

Table 1: Speech corpus used to evaluate the automatic phonetic aligners. Actual
duration and number of files after discard are shown between parentheses, as
well as the number of unique words.

Dataset Duration # Files # Words # Tokens

Male 7m:58s (7m:40s) 200 (193) 1,260 (665) 5,275

Female 7m:34s (7m:18s) 199 (192) 1,258 (664) 5,262

Total 15m:32s (14m:58s) 399 (385) 2,518 (686) 10,537

This dataset was aligned with a set of phonemes inspired by the SAMPA
alphabet, which in theory is the same set used by the FalaBrasil’s G2P software
that creates the lexicon during acoustic model training. Nevertheless, there are
some problems of phonetic mismatches, and some cross-word phonemes between
words, which makes the mapping between both phoneme sets challenging, given
that FalaBrasil’s G2P only handles internal-word conversion [30].
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Fig. 3: Evaluation takes place by comparing the output of all forced aligners to
a hand-aligned ground-truth. The M2M mapping is applied to make different
phone sets match the SAMPA version used by FalaBrasil’s G2P, which is pro-
vided by the lexicon generated over transcriptions of the corpus (lex M/F).

The example in Table 2 shows the phonetic transcription for a sentence given
by the original dataset (top) and the acoustic model (bottom) which then sup-
press vowel sounds altogether due to cross-word rules (usually elision and apoc-
ope) when they occur at the end of the current word and at the beginning at the
next. Such mismatches occur because the dataset was aligned by a phonetician
considering acoustic information (i.e., listening), which cannot be done by the
G2P tool that creates the acoustic model’s lexicon, since it is provided only with
textual information. Situations like these of phonetic information loss led to the
removal of such audio files from the dataset before evaluation.

Table 2: Cross-word mismatches between transcriptions manually aligned by a
phonetician (top) vs. generated by our G2P software (bottom). Word boundary
losses are represented by the empty set symbol (∅).

(a) “às novi meia, pairum ar no rio” → “às nove e meia, paira um ar no rio”

6 ∅ Z n O v i ∅ . . . p a j 4 ∅ u∼ m a h/ . . .
a j s n O v i i . . . p a j r a u∼ ∅ a X . . .

In the end, fourteen files were excluded from the dataset, so about 34 seconds
of audio was discarded, and 193 and 192 utterances remained in the male and
female datasets, respectively. The filtering also ignored intra- and inter-word
pauses and silences, resulting in 2,518 words (686 unique, since the utterances’
transcriptions are identical for both speakers, i.e, they speak the very same
sentences) and 10,537 phonetic segments (tokens) (c.f. Table 1).
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3.2 Simulation Overview

Figure 3 shows a diagram of the experiments where EasyAlign, UFPAlign and
MFA forced aligners receive the same input of audio files (.wav) with their respec-
tive textual transcriptions (.txt). These are the files whose manual annotation
is available. All three aligners output one TextGrid file (.tg) for each audio given
as input, which then serve as the inference inputs to the phone boundary calcu-
lation. The reference ground-truth annotations, on the other hand, are provided
by the 385 TextGrid files that contain the hand-aligned phonemes corresponding
to the transcriptions in the evaluation dataset.

However, for computing phone boundaries, there must exist a one-to-one
mapping between the reference and the inference phones, which was not possible
at first due to the nature of the phonetic alphabets: UFPAlign and EasyAlign
share the same SAMPA-inspired lexicon generated by FalaBrasil’s G2P tool,
while MFA is based on ARPAbet [29]. Furthermore, the hand-aligned utter-
ances fall on a special case where the phonetic alphabet used (referred here as
“original”) is also SAMPA-inspired, but not exactly the same as FalaBrasil’s.

Apart from the fact that cross-word rules can insert or delete phones, some
phonemes do not have an equivalent, such as /tS/ and /dZ/. Besides, there are
also usual swaps between phonetically similar sounds: /h//, /h\/, /h/ and /4/,
for instance, might be almost deliberately mapped to either /r/, /R/ or /X/.
This is worse in MFA, where the set of phonemes is entirely different.

Thus, since the situation seemed to require a smarter approach than a simple
one-to-one tabular, static mapping, it was necessary to employ a many-to-many
(M2M) mapping procedure (c.f. dashed blocks on Fig. 3) based on statistical
frequency of occurrence, e.g., how many times phones /t/ and /S/ from the
original evaluation dataset were mapped to a single phone /tS/ in the lex

M/F file representing FalaBrasil’s G2P SAMPA-inspired alphabet. This mapping
also works when dealing with MFA’s ARPAbet phonemes, and will be further
discussed in Section 3.3.

3.3 Many-to-Many (M2M) Phonetic Mapping

By taking another look at Table 2, one might have also reasoned that the map-
ping between the two sets of phonemes is not always one-to-one. The usual
situation is where a pair of phonemes from the dataset (original) is merged into
a single one for the AM (FalaBrasil G2P), such as /i∼/ /n/ → /i∼/ and /t/

/S/ → /tS/. However, a single phoneme can also be less frequently split into
two or more, such as /u/ /S/ → /u/ /j/ /s/.

To deal with these irregularities, we used the many-to-many alignment (m2m-
aligner) software [13] in the core of a pipeline that converts the original TextGrid
from the evaluation dataset to a TextGrid that is compatible with the FalaBrasil’s
lexicon used to train the acoustic models. We took advantage of the same pipeline
to convert MFA’s ARPAbet-based phonemes to SAMPA as well.

The m2m-aligner works in an unsupervised fashion, using an edit-distance-
based algorithm to align two strings from a file in the news format, in order for
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them to share the same length [13]. All 385 TextGrid files from our evaluation
dataset (.tg) are used to compose a single news file, as exemplified in Table 3.
Notice the file is composed by the phonemes of the whole sentence rather than
by isolated words, in order to mitigate the effects of the cross-word boundaries.
The string mapping is finished after a certain number of iterations when the
m2m-aligner provides a one-to-one mapping in a file we called m2m that joins
some phonemes together, as shown by shades of gray in Table 3.

Table 3: Example of a single news file with phonemes from three out of 385
TextGrid files for sentences “é bom pousar” and “os lindos jardins”. Each line
contains a whole phonetic sentence to be converted, and different phone sets
are separated into two distinct columns divided by a tabular ‘\t’ character, so
every other token is separated by a single space. Groups of phonemes which are
supposed to be later merged by m2m-aligner in the m2m file are shaded in gray.

(a) Original dataset phone set (original SAMPA) vs. FalaBrasil’s (SAMPA)

Dataset phonemes (SAMPA, original) AM phonemes (SAMPA, FB)

E b o∼ n p o w z a h E b o∼ p o w z a X

u S l i∼ n d u S Z a h\ d Z i∼ n S u j s l i∼ d u s Z a R dZ i∼ s

(b) MFA phone set (ARPAbet) vs. FalaBrasil’s (SAMPA)

MFA phonemes (ARPAbet) AM phonemes (SAMPA, FB)

E+ B O∼+ W∼ P O Z A+ RR E b o∼ p o w z a X

UX S L I∼+ D UX S Z A RR DJ I∼ S u j s l i∼ d u s Z a R dZ i∼ s

Finally, as the m2m-aligner provides the mapping for phonemes, another
script provides the time stamps calculations prior to creating the converted
TextGrid file. Table 4 illustrates how the phonetic time stamps, in milliseconds,
are mapped accordingly. Basically if two or more phonemes are mapped into
a single one (merging), as in /o∼/ /n/ → /o∼/ or /d/ /Z/ → /dZ/ (marked
with an ∗), the time stamp of the last phoneme is considered. However, if one
phoneme is mapped to two or more (splitting) as in /e∼/ → /e∼/ /j∼/, then
linearly spaced time stamps are generated in between the phone to be split (†)
and its immediate predecessor (‡).

4 Results and Discussion

Results will be reported in terms of statistics such as mean (µ), median and
standard deviation (σ) over the distribution of phone boundary values, and a
tolerance threshold that shows how many phonetic tokens were more precisely
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Table 4: Conversion of time stamps for the sentence “onde existem”.

494 533∗ 558 565∗ 583 682 748 854 929 979‡ 1042†

o∼ n d Z i i z i S t e∼

o∼ dZ i e z i s t e∼ j∼

533∗ 565∗ 583 682 748 854 929 979‡ 1010 1042†

aligned with respect to the manual alignments. Numerical values, in milliseconds,
are presented in Table 5. The best ones are highlighted in bold.

As far as MFA train-and-align (T&A) feature is concerned, roughly only 1%
of phoneme tokens aligned by Kaldi-based aligners are off the 100 ms toler-
ance, against 3% of tokens aligned by HTK-based tools. In fact, approximately
96%–97% of phonemes were under the 50 ms tolerance when aligned by acoustic
models trained with MFA and UFPAlign, considering an average of all mod-
els. Unfortunately, this is not true for MFA’s pre-trained model for Brazilian
Portuguese (in align-only mode), which on the other hand, for larger tolerance
threshold values, performed a little worse than HTK.

Among HTK-based aligners, EasyAlign performed best considering all statis-
tics and tolerance thresholds for both male and female speakers. However, as
already pointed out in [32], the same ground-truth dataset used for evalua-
tion in this work was also used to train the BP acoustic model shipped with
EasyAlign, so this might have had some bias during the comparison. Overall,
UFPAlign (HTK) achieved very similar values across metrics for both speakers of
the dataset, while EasyAlign’s behavior shows a greater accuracy on the female
voice. Nevertheless, the parcel of phonetic tokens whose difference to the manual
segmentation was less than 10 ms stayed below the 40% even for EasyAlign.

In align-only (A) mode, MFA models performed slightly better until 10 ms
than EasyAlign’s, but increasingly worse for larger values of tolerance for both
male and female speakers. These poor results may be due to the nature of the
dataset used to generate MFA’s pre-trained acoustic models (GlobalPhone [28]),
which contains only 22 hours of transcribed audio. In contrast, training and
aligning (T&A) on the same evaluation dataset with MFA proved better than
HTK for the male speaker, and the results are similar for the female speaker.

The monophone- and triphone-based GMM models we trained with Kaldi for
UFPAlign achieved the best performance with respect to phone boundary when
compared to both MFA and HTK-based aligners. On average, approximately
45% of tokens were accurately aligned within the 10 ms margin for all GMM
models. Mean and median values are the lowest (except for tri-SAT on the male
dataset, which was greater than MFA’s T&A) and at most ∼4 ms distant from
each other. With respect to the speakers’ gender, UFPAlign (Kaldi) performed
approximately 4% better for the woman’s voice until the 50 ms of tolerance, and
about 2 ms more accurate according to the average mean.

Finally, TDNN-F simulation was definitely disappointing. We expected that
results from a nnet3 DNN-based setup would be at least similar to GMM-based
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Table 5: Results regarding mean (µ), median (med.), standard deviation (σ), and
cumulative percentage below a tolerance threshold, in milliseconds, of the differ-
ences between forced aligned audio and ground-truth (hand aligned) phonemes,
also known as phone boundary. Notations on MFA stand for align-only (A) and
train-and-align (T&A) procedures, while on UFPAlign they denote either the
nature of the toolkit or the acoustic model.

Cumulative tolerance (%)

Toolkit µ med. σ <10 ms <25 ms <50 ms <100 ms

F
e
m
a
le

d
a
t
a
s
e
t

UFPAlign (HTK) 26.44 17.00 38.31 31.40 63.94 88.19 97.08

EasyAlign 18.42 13.00 20.30 36.59 78.12 94.06 98.91

MFA ( A ) 23.62 12.00 34.16 39.34 75.99 87.77 95.65

MFA (T&A) 17.60 13.00 18.62 37.65 78.69 95.16 99.08

UFPAlign (mono) 13.58 10.00 15.02 47.47 87.70 97.55 99.57

UFPAlign (tri-∆) 12.43 9.00 13.28 50.44 89.88 98.34 99.62

UFPAlign (tri-LDA) 12.99 10.00 12.62 47.48 89.22 98.27 99.76

UFPAlign (tri-SAT) 13.43 10.00 12.75 45.69 88.20 98.15 99.77

UFPAlign (TDNN-F) 17.18 14.00 13.87 34.41 75.94 97.61 99.87

M
a
le

d
a
t
a
s
e
t

UFPAlign (HTK) 26.86 17.00 32.61 30.73 62.45 86.55 96.42

EasyAlign 24.35 17.00 30.70 31.53 67.51 89.69 96.95

MFA ( A ) 34.28 16.00 46.70 32.81 64.85 78.49 90.61

MFA (T&A) 14.65 11.00 14.37 45.12 83.34 97.23 99.66

UFPAlign (mono) 15.25 11.00 15.70 43.51 83.42 96.29 99.42

UFPAlign (tri-∆) 14.16 10.00 14.06 46.28 85.55 97.13 99.74

UFPAlign (tri-LDA) 14.66 11.00 13.82 43.49 84.50 97.19 99.74

UFPAlign (tri-SAT) 14.96 12.00 13.77 42.14 83.51 97.19 99.78

UFPAlign (TDNN-F) 18.58 16.00 14.26 32.02 70.62 96.65 99.94

ones, as it was in [6] with nnet2, but cumulative tolerance values were instead
just slightly better than EasyAlign. Therefore, even though one can say that
the best result was achieved by tri-delta (∆) models on both male and female
datasets, since it holds the rows with most boldface values in Table 5 (except
MFA was better off after 50 ms on the man’s voice, but the values compared
to UFPAlign’s tri-∆ model are fairly and virtually the same), we would rather
prefer to state that all GMM-based AMs in UFPAlign achieved similar results.
Even monophone models, the simplest ones, had a close performance on tri-SAT,
the most complex.
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4.1 Discussion

A possible reason for such a difference between HTK- and Kaldi-based aligners
might be that HTK uses Baum-Welch algorithm for training HMMs while Kaldi
uses Viterbi training [4]. On the other hand, among Kaldi models, tri-∆ stands
out as being virtually the best one. However, with just a ∼1–3% difference in
tolerance, and ∼1 ms difference in both mean and median values, we cannot
tell whether it is significant enough to classify one model into being better than
the others, as they appear pretty close at glance. The linear sequence of model
training just does not result in lower errors in phonetic boundaries as it resulted
in lower word error rates for speech recognition.

The somewhat shocking results were produced by the DNN. For the state
of the art for ASR to perform so poorly in phonetic alignment problems, it
certainly needs careful investigation. We suspect the HMM topology used in
nnet3 chain models, which can be traversed in one frame rather than in three
on the traditional left-to-right [26], may have had some unfavorable influence.
Moreover, data insufficiency could even have been the problem for the DNN
in the first place, since the ∼171 hours in our training dataset are far from
the ideal volume to train a neural network efficiently. Other reasons include
the possible high number of hidden layers in the TDNN-F, and the use of frame
subsampling, which requires an extra normalization value to be passed to Kaldi’s
ali-to-phones script for compensation.

Besides, navigating through all the burden to train a DNN model with Kaldi
(which requires at least one GPU card) may not be the more appropriate move
if the final task’s goal is to align phonemes rather than to recognize speech. As
MFA seem to have dropped support to DNN models, and our previous results
with a nnet2 neural network setup only took tolerance values so far as to match
tri-∆ models [6], we feel discouraged to invest so much time computer power to
train a DNN model. Nevertheless, conjectures still need to be experimented.

5 Conclusion

This paper presented contributions for the problem of forced phonetic alignment
(FPA) in Brazilian Portuguese (BP). An update to UFPAlign [6] was offered by
providing adapted Kaldi recipes for training acoustic models on BP datasets, as
well as properly releasing all the acoustic models for free under an open-source
license on the GitHub of the FalaBrasil Group3. UFPAlign works either via
command line (Linux) or in a graphical interface as a plugin to Praat. Up-to-
date phonetic and syllabic dictionaries created over a list of 200,000 words for BP
are also provided, as well as standalone grapheme-to-phoneme and syllabification
systems for handling out-of-vocabulary words.

For evaluation, a comparison among the Kaldi-based acoustic models trained
with an updated version of the scripts from [6] was performed, as well as a
comparison to an outdated HTK-based version of UFPAlign from [32]. Results

3 https://github.com/falabrasil

https://github.com/falabrasil
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regarding the absolute difference between forced and manual aligned utterances
(phone boundary metric) showed that the HTK-based aligner performed worse
when compared to any of the Kaldi-based models, and that our acoustic models
we trained from scratch performed better than MFA’s pre-trained models.

5.1 Future Work

As future work, there are a couple of experiments to be investigated. The simplest
one would be to train GMM-based tri-∆, tri-LDA, tri-SAT and even monophone-
based acoustic models with a higher number of Gaussian mixtures per senone.
Training a DNN on the top of tri-∆, since that was the one that yielded the
most accurate results according to phone boundary, should be also worth trying.
Besides, training a DNN on the top of context-independent monophones does
not sound so absurd either, given the proximity of the results.

Regarding the DNN, one thing to verify is whether removing the i-vectors and
leaving just normalized MFCCs as input features would result in more accurate
alignments. Splicing cepstral features with LDA would also be a valid test. By
the way, the TDNN-F setup has not been altered from Mini-librispeech’s default
recipe, which means some parameters such as layer dimension, number of layers,
context width, and the application of frame subsampling could still undergo
tuning. Finally, other architectures like LSTMs should have its use evaluated.

Another idea might be the employment of transfer learning techniques to
take advantage of models pre-trained on larger volumes of audio data and just
make some adaptations to make it work on our evaluation dataset. That way, an
acoustic model trained over LibriSpeech dataset, for example, could be down-
loaded from OpenSLR [23] to serve as a starting point, and GMM-based models
would be trained from scratch over the male/female evaluation dataset to play
the role of the new tri-SAT reference alignments. One impediment, however, is
that most of the pre-trained TDNN-F-based models available on the Internet
are chain models (i.e., a simplified HMM topology is used to model phonemes),
which suggests a new, chain-free model would have to be trained from scratch
on English data, which is also freely available.

At last, although UFPAlign can be used as a plugin to Praat, we plan in
the future to train models compatible with MFA under the same licensing, as
to avoid open-source competition. The provision of a train-and-align feature for
UFPAlign is also an ongoing plan.
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