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Abstract. Forced phonetic alignment (FPA) is the task of assessing
the time boundaries of phonetic units, i.e., calculating when in the
speech utterance a certain phoneme starts and ends. This paper describes
experiments on FPA for Brazilian Portuguese using Kaldi toolkit. Based
on time-delay neural networks (TDNN), several acoustic models were
trained on the top of the combination between hidden Markov models
(HMM) and Gaussian mixture models (GMM). The nature of the input
features and the topology of the HMMs have been varied in order to
analyze each one’s influence. Results with respect to the phone bound-
ary metric over a dataset of 385 hand-aligned utterances show that the
network is mostly invariant to the input features, while regular HMM
topologies do perform better in comparison to a modified version used in
chain models. Conversely, the neural network still does not outperform
GMM models for phonetic alignment.
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1 Introduction

Forced phonetic alignment (FPA) is the task of aligning a speech recording with
its phonetic transcription, which is useful across a myriad of linguistic tasks.
However, annotating phonetic boundaries of several hours of speech by hand is
very time-consuming, even for experienced phoneticians. As several approaches
have been applied to automate this process, some of them brought from the
automatic speech recognition (ASR) domain, the combination of hidden Markov
models (HMM) and Gaussian mixture models (GMM) has been for long the
most widely explored for FPA.

Before Kaldi’s success on ASR [10], mainly due to its efficient implementa-
tion of deep neural networks (DNN) for HMM-DNN hybrid acoustic modeling,
EasyAlign [4] and UFPAlign [15] were the only ASR-based forced aligners with
support to Brazilian Portuguese (BP), based on HTK toolkit [16]. Nowadays,
Montreal Forced Aligner (MFA) [8] and an updated version of UFPAlign [1,3]
both provide Kaldi-compliant acoustic models for BP.
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Hence, this work provides an additional study on phonetic alignment using
Kaldi tools, bearing in mind the idea of seeking improvements using the default
neural network architecture that achieves state of the art for ASR in Kaldi’s
nnet3 framework—factorized time-delay neural networks (TDNN-F) [9]. In
total, 24 acoustic models were trained by varying i) the GMM model the net-
work was trained upon (monophones, triphones and speaker-adapted triphones,
namely mono, tri-deltas and tri-sat); ii) the HMM topology used as refer-
ence (single state vs. three-state, namely chain or no-chain); iii) and finally
the input features: MFCCs or LDA, with or without stacked i-vectors.

To overcome the time it would take to train all such models, only LaPS-
Benchmark dataset was used, which sums up to a total of only 54min of recorded
speech, 700 utterances divided among 10 female and 25 male native BP speakers.
Evaluation procedures, on the other hand, were performed over 385 manually
aligned audio files, 193 spoken by a male speaker and 192 spoken by a female
speaker, which sums up to about 15min of speech. The similarity measure is
given by the absolute difference between the forced alignments with respect to
manual ones, which is called phonetic boundary [8]. All scripts and resources
have been release under MIT open license on GitHub1.

2 Model Training and Evaluation Tests

The deep-learning-based training approach in Kaldi actually uses the GMM
training as a pre-processing stage. For details on the GMM training pipeline, the
reader is referred to [3]. The DNN is trained on the top of the last GMMmodel of
the pipeline, which usually comprises a speaker-adapted triphone training (SAT).
However, we experimented with monophones and triphones without SAT as well.

Figure 1 details how the DNN model is obtained as a final-stage acoustic
model (AM) by using the neural network to model the state likelihood distribu-
tions as well as to input those likelihoods into the decision tree leaf nodes [5]. The
implementation in Kaldi uses a sub-sampling technique (with a default factor of
3) that avoids the whole computation of a feed-forward’s hidden activations at
all time steps and therefore allows a faster training of TDNNs.

Models were trained following Kaldi’s LibriSpeech recipe. The hardware
setup consists of an Intel R⃝ Core

TM
i7-10700 octa-core processor, 32 GB of RAM

and an 10 GB NVIDIA GeForce RTX 3080 GPU running CUDA 11.3. Although
in Kaldi the number of epochs actually differs from the number of iterations
in which the algorithm “sees” each data point, the former was set to 10 for all
simulations. The number of layers was reduced to seven, as opposed to 16 in the
default recipe for speeding up purposes. Layers were kept with dimension 1,536
each. Time strides were also left as is, with three past frames and nine future
frames (i.e., left and right context w.r.t. the reference frame, respectively.) As
the amount of training data was made to be limited, all five HMM-GMM models
and 24 HMM-DNN could be trained in less than 12 h.

1 https://github.com/falabrasil.
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Fig. 1. Stages for training a TDNN-F in Kaldi. On the left side, high-resolution,
cepstral-normalized MFCCs (40 features instead of 13) are extracted from an aug-
mented corpora after applying speed and volume perturbation [7], as are the speaker-
related 100-dimensional i-vectors [2,14]; to be used as input to the neural network. On
the right side, labels are provided by a GMM acoustic model. Dashed blocks may or
may not be used. For instance, the tree must only be rebuilt when using chain models,
in which the HMM topology is modified, whereas i-vectors may be excluded from the
network’s input as well.

The evaluation procedure takes place by comparing pairs of annotated files:
the alignments that we consider as gold standard (hand-aligned reference), and
the ones automatically annotated by inference (forced-aligned hypothesis). The
phone boundary metric considers the absolute difference between the ending
time of both phoneme occurrences [8], as a phone’s beginning time is considered
the same as its predecessor’s ending time. The calculation is performed for each
acoustic model, and involves all utterances from the evaluation dataset composed
by one male and one female speaker.

2.1 Evaluation Speech Corpus

The automatic alignment was estimated on the basis of the manual segmenta-
tion. The original dataset used for assessing the accuracy of the phonetic aligner
is composed of 200 and 199 utterances spoken by a male and a female speaker,
in a total of 15 min and 32 s of hand-aligned audio, as shown in Table 1. Praat’s
TextGrid files, whose phonetic timestamps were manually adjusted by a pho-
netician, are available alongside audio and text transcriptions.

The authors acknowledge that this corpus is rather limited in both its size
and speaker variability: 15min of recorded speech from two speakers is too small
indeed. However, we emphasize the difficulty to get access to this kind of labeled
data, which very often requires an expert phonetician to spend hours aligning
audios by hand.

This dataset was aligned with a set of phonemes inspired by the SAMPA
alphabet, which in theory is the same set used by the FalaBrasil’s G2P software
that creates the lexicon during acoustic model training. Nevertheless, there are
some problems of phonetic mismatches, and some cross-word phonemes between
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Table 1. Speech corpus used to evaluate the automatic phonetic aligners. Actual
duration and number of files after discard are shown between parentheses, as well
as the number of unique words.

Dataset Duration # Files # Words # Tokens

Male 7m:58 s (7m:40 s) 200 (193) 1,260 (665) 5,275

Female 7m:34 s (7m:18 s) 199 (192) 1,258 (664) 5,262

Total 15m:32 s (14m:58 s) 399 (385) 2,518 (686) 10,537

words, which makes the mapping between both phoneme sets challenging, given
that FalaBrasil’s G2P only handles internal-word conversion [13].

The example in Table 2 shows the phonetic transcription for a sentence given
by the original dataset (top) and the acoustic model (bottom) which then sup-
press vowel sounds altogether due to cross-word rules (usually elision and apoc-
ope) when they occur at the end of the current word and at the beginning at the
next. Such mismatches occur because the dataset was aligned by a phonetician
considering acoustic information (i.e., listening), which cannot be done by the
G2P tool that creates the acoustic model’s lexicon, since it is provided only with
textual information. Situations like these of phonetic information loss led to the
removal of such audio files from the dataset before evaluation.

Table 2. Cross-word mismatches between transcriptions manually aligned by a pho-
netician (top) vs. generated by FalaBrasil’s G2P software (bottom). Word boundary
losses are represented by the empty set symbol (∅).

(a) “ ás novi meia, pairum ar no rio” → “ ás nove e meia, paira um ar no rio”

6 ∅ Z n O v i ∅ . . . p a j 4 ∅ u∼ m a h/ . . .

a j s n O v i i . . . p a j r a u∼ ∅ a X . . .

In the end, fourteen files were excluded from the dataset, so about 34 s of
audio was discarded, and 193 and 192 utterances remained in the male and
female datasets, respectively. The filtering also ignored intra- and inter-word
pauses and silences, resulting in 2,518 words (686 unique, since the utterances’
transcriptions are identical for both speakers, i.e., they speak the very same
sentences) and 10,537 phonetic segments (tokens) (c.f. Table 1).

2.2 Simulation Overview

Figure 2 shows a diagram of the experiments where the input audio files (.wav)
with their respective textual transcriptions (.txt) are passed to Kaldi aligner.
These are the files whose manual annotation is available. The output is a TextGrid
file (.tg) for each audio given as input, which then serve as the inference inputs to
the phone boundary calculation. The reference ground-truth annotations, on the
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Fig. 2. Evaluation takes place by comparing the output of Kaldi to a hand-aligned
ground-truth. The M2M mapping is applied to make different phone sets match the
SAMPA version used by FalaBrasil’s G2P, which is provided by the lexicon generated
over transcriptions of the corpus (lex M/F).

other hand, are provided by the 385 TextGrid files that contain the hand-aligned
phonemes corresponding to the transcriptions in the evaluation dataset.

However, for computing phone boundaries, there must exist a one-to-one
mapping between the reference and the inference phones, which was not possible
at first due to the nature of the phonetic alphabets: in our experiments, we
used the SAMPA-inspired lexicon generated by FalaBrasil’s G2P tool, while
the hand-aligned utterances (referred here as “original”) are also available in a
SAMPA-inspired phonetic alphabet, but not exactly the same as FalaBrasil’s.

Apart from the fact that cross-word rules can insert or delete phones, some
phonemes do not have an equivalent, such as /tS/ and /dZ/. Besides, there are
also usual swaps between phonetically similar sounds: /h//, /h\/, /h/ and /4/,
for instance, might be almost deliberately mapped to either /r/, /R/ or /X/.

Thus, since the situation seemed to require a smarter approach than a simple
one-to-one tabular, static mapping, it was necessary to employ a many-to-many
(M2M) mapping procedure (c.f. dashed blocks on Fig. 2) based on statistical
frequency of occurrence, e.g., how many times phones /t/ and /S/ from the
original evaluation dataset were mapped to a single phone /tS/ in the lex M/F
file representing FalaBrasil’s G2P SAMPA-inspired alphabet.

By taking another look at Table 2, one might have also reasoned that the
mapping between the two sets of phonemes is not always one-to-one. The usual
situation is where a pair of phonemes from the dataset (original) is merged into
a single one for the AM (FalaBrasil G2P), such as /i∼/ /n/ → /i∼/ and /t/
/S/ → /tS/. However, a single phoneme can also be less frequently split into
two or more, such as /u/ /S/ → /u/ /j/ /s/.

To deal with these irregularities, we used the many-to-many alignment
(m2m-aligner) software [6] in the core of a pipeline that converts the original
TextGrid from the evaluation dataset to a TextGrid that is compatible with the
FalaBrasil’s lexicon used to train the acoustic models. The m2m-aligner works
in an unsupervised fashion, using an edit-distance-based algorithm to align two
strings in order for them to share the same length [6].
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3 Results and Discussion

Results will be reported in terms of tolerance thresholds of 10, 25 and 50 ms
that show how many phonetic tokens were more precisely aligned with respect
to the manual alignments in the context of the phone boundary metric. Numeric
values are shown in Figs. 3 and 4 for the GMM- and TDNN-F-based models,
respectively. All bar charts have been trimmed at 30% percentage for the sake of
a better visualization. Both graphs report average measures of five independent
training repetitions of each acoustic model, hence vertical caps/whiskers repre-
sent the standard deviation. Blue- and red-shaded bars represent the male and
the female speakers from the evaluation dataset, respectively.

Fig. 3. Cumulative percentage below a tolerance threshold, in milliseconds, of the
differences between forced aligned audio and ground-truth (hand aligned) phonemes,
also known as phone boundary. Results for monophones and triphones trained with low
resolution, MFCCs (deltas), spliced-MFCCs (LDA+MLLT) and speaker adaptation
(SAT) within the HMM-GMM framework. (Color figure online)

The performance of the GMM models is shown in Fig. 3. As it can be seen,
all four models’ behaviors were virtually the very same: there is nearly a 1%
difference in tokens correctly aligned within the 10 ms threshold, with an average
of ∼43% across all models. With respect to the gender of the speaker, there
have not been much of a difference either. One could say that tri-SAT and tri-
LDA+MLLT contain all the high numbers for phone boundary, but we would
rather state their performance is comparable. At the tolerance of 50 ms, more
than 90% of the phonemes are correctly aligned with the speech.

Figure 4 shows all results for the TDNN-F models. Again, at the 10 ms thresh-
old, one cannot observe a significant difference among distinct models and input
features. Stacking i-vectors on the top or splicing MFCCs with linear discrimi-
nant analysis procedures do not seem to improve performance at all. Topology-
wise, on the other hand, we can say that the design of the HMMs under the
chain modeling framework is not well suited for phonetic alignment. As with
regular three-state left-to-right HMM topology (i.e., no chain) [11] the range of
the cumulative percentages stayed within the 41%–45%, similar to the obtained
with GMM models, it dropped to around the 30% in the chain models. For
higher tolerance values, models outside the chain framework achieved the aver-
age of 80% and 94% of tokens correctly aligned, while chain models achieved
only ∼65% and ∼90%, respectively.
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(a) TDNN-F over monophones

(b) TDNN-F over tri-deltas

(c) TDNN-F over tri-SAT

Fig. 4. Results for the TDNN-F trained on the top (hybrid HMM-DNN framework) of
the monophones, tri-deltas and tri-SAT GMM-based AMs using either MFCCs (delta)
or spliced-MFCCs (LDA) as input, with or without i-vectors. (Color figure online)

Overall, on the chain-free framework, delta features (MFCCs) achieved the
highest percentages for both speakers, sometimes combined with i-vectors as well.
Regarding the GMM-based model upon which the TDNN-F is trained, tri-SAT
models provide the best results for the female speaker, while tri-deltas was best
for the male speaker. But once again, as maximum difference observed is 2%,
the gains are so marginal that one should avoid using the word “outperform”.

An interesting point is that one can achieve good results even with as little as
one hour of recorded speech from LaPSBenchmark to train a model for phonetic
alignment: past experiments on a dataset of ∼170 h of recorded speech also show
results floating around the 45% percentage at 10 ms [1]. What we cannot tell,
however, is how would the network behave if the training was scaled up to an
1,000 h dataset. MFA, for instance, uses the GlobalPhone dataset [12], which
we consider already small although it contains 22 h for Brazilian Portuguese.
As a matter of fact, MFA also uses GMM models, which may emphasize that
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navigating through all the burden to train any DNN model (which requires at
least one GPU card) may not be the more appropriate move if the final task’s
goal is to align phonemes rather than to recognize speech.

Furthermore, one downside is that most pre-trained models available for
Kaldi are based on the chain framework for speech recognition, and apart from
MFA releases there is a shortage on releases of GMM-based models as they are
no longer useful for ASR. One thing to keep in mind would be to train models
that perform relatively well for both tasks altogether—ASR and FPA.

4 Conclusion

This paper presented experiments on forced phonetic alignment (FPA) in Brazil-
ian Portuguese (BP). In total, 24 acoustic models trained with Kaldi over TDNN-
F networks (which represent the default architecture in Kaldi for state of the
art speech recognition in the so-called conventional or hybrid approach) were
evaluated. After tests considering the phone boundary metric, we found that
the default chain models performed worse, probably because of their simplified
HMM topology in the decision tree [11], while chain-free models and GMM are
comparable. Scripts to train the models and other resources have been released
under MIT open license on GitHub2.

We understand the limitations of using only LapsBenchmark, which contains
only 54min of recorded speech, to train complex models based on deep neural
networks such as TDNN-F. Therefore, as future work, we expect to extend the
simulations with non-chain models over all public audio datasets for BP that
have been recently released in order to verify whether a more robust model
can serve both speech recognition and forced alignment tasks. We also plan on
exploring the use of frame-subsampling on chain models, since the TDNN-F is
configured to only “see” a third of the frames. We suspect that if this feature is
disabled, the alignments could be more accurate. Moreover, other architectures
like LSTMs or CNNs in combination with time-delay networks should have its
use evaluated.

Finally, the employment of transfer learning techniques could be investi-
gated to take advantage of the abundance of audio data for other languages
like English. That way, an acoustic model trained over LibriSpeech dataset, for
example, could be trained to serve as a starting point, and GMM-based models
would be trained from scratch over the male/female evaluation dataset to play
the role of the new tri-SAT reference alignments. Once more, the impediment,
however, is that most of the pre-trained TDNN-F-based models available on the
Internet are chain models, so a chain-free would have to be trained from scratch.
Additionally, other newer toolkits could be explored alongside Kaldi if config-
ured in a phoneme-based setup, like the new K2-Lhotse-Icefall trilogy, ESPnet
or SpeechBrain.

2 https://github.com/falabrasil.
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