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A R T I C L E  I N F O   

Keywords: 
Cyanobacteria 
Lectins 
Bioinformatics 
Molecular Biology 
Biotechnology 

A B S T R A C T   

Cyanobacteria, a group of photosynthetic prokaryotes, can sinthesize several substances due to their secondary 
metabolism, with notable properties, such as Cyanovirin-N(CVN), a carbohydrate-binding lectin, that exhibits 
antiviral activity against several pathogens, due to its ability to bind viral surface carbohydrates such as 
mannose, thus interfering with the viral entry on the cell. CVN has been described in several cyanobacterial 
strains and shows biotechnological potential for the development of drugs of pharmaceutical interest. This study 
focuses on the genomic exploration and characterization of Cyanovirin-N homologs to assess the conservation of 
carbohydrate-binding affinity within the group. The analysis of their antiviral properties was carried out using 
bioinformatics tools to study protein models through an in silico pipeline, following the steps of genomic pro
spection on public databases, homology modeling, docking, molecular dynamics and energetic analysis. Mannose 
served as the reference ligand, and the lectins’ binding affinity with mannose was assessed across Cyanovirin-N 
homologs. Genomic mining identified 33 cyanobacterial lectin sequences, which underwent structural and 
functional characterization. The results obtained from this work indicate strong carbohydrate affinity on several 
homologs, pointing to the conservation of antiviral properties alongside the group. However, this affinity was not 
uniformly distributed among sequences, exhibiting significant heterogeneity in binding site residues, suggesting 
potential multi-ligand binding capabilities on the Cyanovirin-N homologs group. Studies focused on the prop
erties involved in these molecules and the investigation of the genetic diversity of Cyanovirin-N homologs could 
provide valuable insights into the discovery of new drug candidates, harvesting the potential of bioinformatics 
for large-scale functional and structural analysis.   

1. Introduction 

Cyanobacteria are a group of gram-negative prokaryotes notable for 
their ability to carry out photosynthesis using water, sunlight, and car
bon dioxide, resulting in the production of carbohydrates and oxygen, 
more efficiently than plants and with more than half the resources [1]. 
These organisms are often referred to as biofactories due to their sec
ondary metabolism [2] by which a variety of bioactive compounds can 
be synthesized, such as anticancer, antibacterial, and antiviral sub
stances [2,3]. Among these, lectins stand out as a group of proteins 
capable of reversible binding to oligosaccharides without altering the 
ligand structure, a property that gives them potential to be explored on 
the scope of rational drug design. 

Due to their ability of carbohydrate binding, lectins can interact with 
oligosaccharides rich in mannose, present on the cell surface of several 

viruses, including Human Immunodeficiency Virus (HIV), Simian Im
munodeficiency Virus (SIV), Rhinovirus, Herpes Virus, Influenza, Zaire 
Ebola Virus, and even SARS-CoV-2 [4–6]. The mechanism of viral in
hibition occurs by preventing the pathogen from entering the host cell, 
interfering with viral replication. Besides, viral envelope carbohydrates 
exhibit significant homology among viruses, turning molecules that 
interact with them into potential targets for drug development. 

One of the most notable enzymes on the group of cyanobacterial 
metabolites is Cyanovirin-N, a lectin that has demonstrated its efficacy 
in preventing vaginal transmission of HIV-1 and HIV-2, acting as a 
topical microbicide on in vivo studies [7]. Additionally, Cyanovirin-N 
has shown the potential to protect cells by inhibiting the formation of 
syncytium between healthy CD4+ T cells and HIV-1 infected T cells, 
thereby preventing viral fusion with the host cell [8]. This molecule was 
initially discovered as a metabolite produced by the cyanobacterial 
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species Nostoc ellipsosporum [9]. 
The protein structure of Cyanovirin-N (PDB code: 1IIY) consists of a 

peptide chain of 101 amino acids, with molecular mass of approximately 
10 kDa and containing four cysteine residues that form two disulfide 
bonds, without which it loses its function. The structural composition of 
the carbohydrate-binding domain includes two pseudo-symmetrical 
domains, demarcated by amino acids 1–38 and 90–101 (Domain A), 
forming the low-affinity domain, with a disulfide bond between residues 
Cys-58 and Cys-73; and amino acids 38–89 (Domain B), the high-affinity 
domain, with a disulfide bond between Cys-8 and Cys-22. The disulfide 
bonds are essential for stabilizing the molecule and they may also impair 
the oligosaccharide binding. These domains are linked by a sequence of 
4 amino acids: Gln-Pro-Ser-Asn [10]. 

Each domain has two helical turns and five β-strands. Domain A has a 
carbon and nitrogen terminal, which are lacking in Domain B, making 
Domain A possibly more flexible and influencing its binding properties 
[12]. Consequently, regions of higher and lower affinity can be found 
within the domains, which may generate variable affinities at the 
binding sites. Fig. 1 provides a visualization of the Cyanovirin-N binding 
site and the main residues involved [11]. The antiviral activity of lectins 
is based on their affinity for mannose-rich glycans, such as the glyco
proteins gp120 [13] and gp41 found on the surface of the HIV envelope, 
which play a crucial role in viral evasion and cell entry. 

Cyanovirin-N interacts with these carbohydrates to inhibit viral 
fusion and block the connection between the pathogen and the host cell. 
It has already shown clinical potential as a topical microbicide [14], 
exhibiting interesting pharmaceutical properties such as low toxicity to 
the human body and resistance to denaturing processes, organic sol
vents, detergents, and temperature variations [10]. Heterologous 
expression systems have been developed to produce Cyanovirin-N in 
various organisms, including fungi, Escherichia coli, and even plants 
[15]. Its application in plants has gained prominence due to the use of 
genetically engineered soybeans to produce recombinant CVN, which 
has also shown antiviral properties, indicating that homologous se
quences could also play a similar role [16]. 

Given the biotechnological potential of cyanobacterial lectins, this 
study focuses on evaluating the pharmacological potential of cyano
bacterial metabolites that share the homologous domain of Cyanovirin- 
N (CVNH, Pfam: PF08881) through carbohydrate affinity analysis. 
Bioinformatic tools were employed to analyze the structural and func
tional aspects of these homologous proteins, as they could potentially 
exhibit antiviral properties based on their degree of similarity and 
conservation of the three-dimensional structure, which may offer ad
vantages such as lower toxicity and more cost-effective production rates 
for broad-scale applications. With that in mind, this study aims to 
evaluate the existence of antiviral activity, by researching the difference 
between the binding specificities displayed by different members of the 
CVNH family. 

2. Results 

2.1. Genomic prospecting 

Upon genomic prospection, 33 sequences from cyanobacterial 
strains were obtained, distributed amog several genera, with higher 
frequency of Nostoc, Scytonema, Tolypothrix, Microcystis, and Calothrix. 
The models showed variable size, ranging from 52 to 230 amino acids, 
which illustrates the wide distribution and diversity of Cyanovirin-N 
Homologs. The sequences were subjected to a filtering process for 
quality assessment and size separation. The initial characterization of 
the sequences is described in Table S1(See supplementary material), 
pointing structural features like protein length, identity with the tem
plate (PDB Code: 1IIY), and presence of signal peptide. 

2.2. Molecular modeling 

The 33 Cyanovirin-N homologous sequences proceeded to the mo
lecular modeling step, with the construction of tridimensional models of 
the sequences. The Root Mean Square Deviation (RMSD) indices showed 
low structural assimetry, with RMSD values ranging from 0.10 to 0.20, 
which means the tridimensional structures are closely related to the 
template. In this work, five validation parameters were used to assess the 
models’ quality and verify their stability, shown in Table S2. 

An alignment on Espript3 (Fig. 2) was conducted to verify the con
servation of essential elements in the lectin, such as the disulfide bonds – 
formed between 4 cysteines, without which the lectin loses its function. 
In Cyanovirin-N, they are found at positions Cys-8, 22, 58, and 73. The 
mannose-binding site is represented by the residues Lys-3, Gln-6, Thr-7, 
Glu-23, Thr-25, Glu-41, Asn-42, Asp-44, Ser-52, Asn-53, Glu-56, Thr-57, 
Lys-74, Arg-76, Gln-78. 

2.3. Docking 

After validating the models, they were subjected to docking. The 
sequences obtained favorable results in terms of potential carbohydrate- 
binding affinity. The docking step served a dual purpose: predicting the 
optimal coordinates for ligand anchoring and screening the sequences to 
identify the most promising candidates for further Molecular Dynamics 
(MD) simulations. The Cyanovirin structure and its homologs possess 
two binding sites that are symmetrically opposite, with the reference 
ligand being the disaccharide Man-α (1–2)Man. Although the con
structed models were structurally related to the template, there was 
some degree of variation in the location of the mannose docking site 
residues. Fig. S1 provides a visualization of the two di-mannoses docked 
onto the Cyanovirin template (1IIY). Docking results of the sequences 
are displayed on Table S3, ranked by Mol Dock Score. The best result on 
the docking step was Microcystis novacekii (Identifier: TRU87446.1). 
Table S4 highlights an Energy Overview Parameters for this model and 

Fig. 1. Cyanovirin-N active sites A and B, representing the residues that interact directly with the Di-Mannoses.  
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the ligand interactions for the best complexes at the docking step are 
shown in Figs. S2–S4. 

2.4. Molecular dynamics 

MD simulations involved producing 100ns for the models generated 
during the docking step. The stability of the models was evaluated using 

Fig. 2. Alignment of Cyanovirin-N (1IIY) and the homolog sequences on Espript3 software. The binding site residues of Cyanovirin are marked with yellow triangles. 
The red and blue boxes represent the sequences identity and similarity, respectively. 
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RMSD, RMSF and energetic evaluations. In this study, it was utilized to 
calculate the average deviation between corresponding atoms of the 
protein and the ligand, thereby measuring their fluctuation. It also 
enabled examination of the carbohydrate-binding configuration to the 
protein model, providing insights into its stability over time to investi
gate the dynamics and stability of the protein-ligand complexes 
throughout the simulation and capturing the interaction of the enzymes 
with both binding sites of the complex. 

A cross-reference analysis from the results of the three fields was 
implemented to evaluate and select the most promising models in terms 
of stability and ligand affinity through the 100ns of simulation at a 
temperature 300 K. The results of the binding free energy analysis were 
used as a parameter to filter the models with higher stability, since the 
lower the binding free energy resulting from the complex at the end of 
molecular dynamics, the higher the rate of well-formed and stable 
intermolecular bonds. The MD simulations highlighted significant dif
ferences in carbohydrate affinity among the binding sites, with values 
varying between − 10 and − 28 kcal/mol for Mannose Binding Site A and 
− 2 to − 26 kcal/mol for Site B. At the end of simulations, 6 systems were 
selected, through binding free energy and structural analysis, displaying 
as promising lectin models that could share antiviral properties of 
Cyanovirin-N with even higher carbohydrate affinity and less cytotox
icity. The Binding Free Energy results of the top systems are shown at 
Table 1, with the graph presenting being the average values obtained 
from the systems in triplicate. The RMSD graphs of the 3 best models are 
shown in Figs. 3–5 and RMSF graphs of the top 2 are shown in Figs. 7–8. 

Most of the Dimmanose interactions that hold it together after lectin 
attachment are composed of hydrogen bonds that lies in the usual range 
of 1.5–2.5 Å, as shown on Figs. S5–S6, that present a picture of the li
gands position and distances to the receptor after MD simulations. One 
of the parameters evaluated for a successful simulation was the correct 
attachment of the receptor and ligand since a receptor with low affinity 
might not hold it tightly. On Fig. S7 it is presented an illustration of 
Nostoc calcicola after simulation, with the ligands binded. 

2.5. Energy decomposition 

In addition to the Binding Free Energy calculation, the energetic 
analysis also encompasses the evaluation of individual residue contri
butions to binding of the complex. This analysis is crucial because 
certain residues may hinder interaction with the ligand. This study aims 
to identify the key residues within the complex that play a significant 
role and those that have minimal impact. Such information can guide 
further investigations, including in silico point mutations to remove or 

enhance specific residues. To examine whether the energetic contribu
tion of individual residues in the binding site could potentially interfere 
with carbohydrate attachment and destabilize the systems, sequences 
representing the extreme ends of the Binding Free Energy results were 
selected. The Energy Decomposition analysis, depicted in Figs. 6–9 
provides insights into the individual energetic contributions of residues 
towards mannose binding among models. 

3. Discussion 

3.1. Structural characterization 

Cyanovirin-N (CVN), the first antiviral lectin identified in cyano
bacteria, demonstrates considerable diversity within its taxonomic 
group, that can be seen by the variation between size and binding site 
residues among its homologs. However, the dissulfide bonds that 
maintain the lectin integrity remain conserved in between the group, 
and also the catalytic residues involved in Man-α (1–2) Man attachment. 
Alongside that, the CVN also shares the conformation of a higher affinity 
site and a lower affinity, present in various of the models tested. Most 
systems present a slightly greater binding affinity for ligand site A, in 
accordance with literature findings over cyanobacterial lectins. How
ever, some of homologs analyzed here stand out for a different confor
mation, like Microcystis aeruginosa NIES-298(Identifier: GBD54541.1) 
and Nostoc calcicola (Identifier: OKH34345.1) that have high indices of 
ligand affinity on both binding sites, suggesting a greater efficiency at 
carbohydrate attachment than the original cyanovirin-N and, therefore, 
potential for higher antiviral affinity with less citotoxicity. 

Besides, although binding site A is usually referred to as of higher 
affinity, some of the models displayed strong results for Mannose B 
ligand site instead, such as Planktothrix rubescens (Identifier: 
CUR27819.1) and Microcystis aeruginosa PCC 9807(Identifier: 
CCI16563.1), which is an example of the diversity among the group of 
CVN homologs and an indicator of multiple ligand Affinity, that has yet 
to be studied in order to unveil its possibilities. 

Even among homologous sequences, a certain degree of variability is 
anticipated. Properties like molecular weight and adherence to the 
template exhibit heterogeneity. Nonetheless, all surveyed sequences 
were found to harbor a signal peptide responsible for tagging proteins 
for extracellular transport. The prevalence of this signal peptide in most 
sequences suggests potential involvement in extracellular processes, 
such as pathogen recognition or cell-to-cell interactions in cyanobac
teria. These interactions are likely associated with colony formation, a 
prevalent feature in cyanobacteria [19]. Supporting evidence comes 

Table 1 
Binding free energy results of MM-GBSA and MM-PBSA calculations of higher affinity cyanovirin homologs considering both ligand sites.  

Binding Site A  

MM-GBSA MM-PBSA 

Organism Identifier Average Std. Dev. Err. of Mean Average Std. Dev. Err. of Mean 

Microcystis aeruginosa NIES-298 GBD54541.1 − 34.81 3.47 0.22 − 33.56 3.68 0.22 
Nostoc calcicola OKH34345.1 − 26.48 2.76 0.27 − 25.37 3.48 0.35 
Nostoc sp. membranacea cyanobiont OYD88502.1 − 21.99 3.77 0.23 − 17.39 4.45 0.32 
Cyanobacteria bacterium HBE21694.1 − 21.14 3.93 0.26 − 17.56 4.30 0.29 
Planktothrix rubescens CUR27819.1 − 14.65 1.66 0.06 − 14.25 1.82 0.07 
Microcystis aeruginosa PCC 9807 CCI16563.1 − 13.74 3.95 0.22 − 13.97 3.83 0.22  

Binding Site B  
MM-GBSA MM-PBSA 

Organism Identifier Average Std. Dev. Err. of Mean Average Std. Dev. Err. of Mean 

Microcystis aeruginosa NIES-298 GBD54541.1 − 31.18 3.16 0.10 − 30.24 3.56 0.11 
Nostoc calcicola OKH34345.1 − 27.53 2.66 0.27 − 25.80 3.31 0.33 
Nostoc sp. membranacea cyanobiont OYD88502.1 − 8.06 2.66 0.16 − 8.64 2.73 0.17 
Cyanobacteria bacterium HBE21694.1 − 5.89 1.75 0.07 − 5.39 2.33 0.08 
Planktothrix rubescens CUR27819.1 − 29.89 3.43 0.23 − 27.35 3.52 0.24 
Microcystis aeruginosa PCC 9807 CCI16563.1 − 25.01 3.18 0.18 − 23.27 3.60 0.21  
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from other lectins, such as microvirin, which exhibits similar molecular 
weight and shares 33 % identity. Microvirin has been demonstrated to 
specifically recognize carbohydrates that differentiate and mediate cell 
attachment within colonies [20]. Although the original physiological 
role of lectins in cyanobacteria’s survival and metabolism remains 
incompletely understood, it is conceivable that this function has been 
conserved within the family, offering new insights into 
lectin-carbohydrate binding on a macromolecular scale. 

To assess the functionality of cyanovirin homologs, a structural 
analysis was conducted, generating three-dimensional models of CVNH 
(Cyanovirin Homologs) sequences complexed with their ligands. These 
models were constructed through a comparative modeling approach 
based on homology. Sequence alignments revealed positive identity 
values (Id), with the majority exceeding 30 %, surpassing the minimum 
expected rate for homologous sequences. Other modeling assessment 
parameters demonstrated favorable values, with most Qmean values 
falling between − 2 and 0, indicating satisfactory local model quality. 
The Ramachandran analysis, measuring stereochemical quality, yielded 
positive results, with over 90 % of residues located within acceptable 
regions. Additionally, the sequences displayed low MolProbity [17,18] 
scores. 

Upon analyzing the three-dimensional structure of the models, it 
becomes apparent that most folds are conserved and visually resemble 
cyanovirin. However, there is significant variability in mannose affinity 
among them, a feature noted in previous studies [21]. Molecular 
modeling facilitated the evaluation of crucial parameters, including the 
conservation of essential components for structural stability. Notably, 
the alignment using Espript3 revealed the conservation of some crucial 
cysteine residues that form disulfide bridges, vital for maintaining 
molecule stability. 

The RMSD graphs indicate positive outcome from the systems, with 
variation of 1 Å at the most, and so does the RMSF Figures, that point to 
slight fluctuations on the protein structure over the 100ns of simulation. 
This suggests the possibility that CVN homologous sequences may 
exhibit affinity to other carbohydrates beyond mannose, either prefer
entially or simultaneously. 

3.2. Differences in carbohydrate affinity 

The assessment of Binding Free Energy provided valuable insights 
into the distribution of optimal models between ligands A and B within 
the family of CVN homologs. This distribution reveals varying affinities 
to glycans among homologs, suggesting the potential for in silico 
refinement of the complex interaction. Decomposition graphics identify 
candidate residues for in silico improvement, highlighting specific res
idues amenable to direct point mutations for enhanced carbohydrate 

Fig. 3. RMSD graph of the interaction of Nostoc sp. Peltigera membranacea cyanobiont (Identifier: OYD88502.1) with ligands A and B, over the 100 ns of molecular 
dynamics simulation. 

Fig. 4. RMSD graph of the interaction of Microcystis aeruginosa NIES-298 with 
ligands A and B, over the 100 ns of molecular dynamics simulation. 

Fig. 5. RMSD graph of the interaction of Nostoc calcicola with ligands A and B, 
over the 100 ns of molecular dynamics simulation. 
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affinity in the lectin, thereby improving viral inhibition. It is noteworthy 
that mutations in binding site residues of cyanovirin-like sequences 
typically compromise ligand affinity, indicating an evolutionarily 
selected optimal configuration [21]. Domain A of Cyanovirin-N typically 
possesses the low-affinity binding site, resulting in less efficient binding 
rates [22]. 

However, in Table 1 it is possible to see that several sequences from 
both domains A and B achieved good results, and domain A obtained 
better outcomes on average, when analyzing both free energy and RMSD 
results. 

Differential binding affinity rates among both domains could offer 
advantages by incorporating low-affinity binding sites, granting sup
plementary binding specificity to the protein. This flexibility allows the 

identification and attachment of different ligands with diverse affinities, 
potentially useful given the rapid evolution or alterations in viral mol
ecules. Therefore, low-affinity binding sites may serve as a protective 
mechanism, enabling the protein to adjust its binding interaction 
effectively. The results of Binding Free Energy exhibited a significant 
correlation with the deviation indices of the structures. RMSD graphs 
demonstrated overall stability in most systems during MD simulations, 
with some local fluctuations observed among ligands within the same 
systems. Sequences with poor binding energy correlated with higher 
RMSD, indicating lower affinity to the ligand, impacting the stability of 
the entire complex. 

CVN homologs demonstrated differential affinity for the two carbo
hydrate binding sites, with binding site B displaying superior results. 

Fig. 6. Individual Residue Energy Decomposition from Nostoc sp. membranacea cyanobiont 213 (Identifier: OYD88502.1) with the two ligands, separately.  

Fig. 7. Individual Residue Energy Decomposition from Nostoc sp. ATCC RCJ14707.1 with the two ligands.  

Fig. 8. Individual Residue Energy Decomposition from Mastigocoleus testarum with the two ligands, respectively.  
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Individual residue decomposition graphics identified residues poten
tially impairing ligand attachment, supporting the hypothesis that lectin 
carbohydrate binding could be enhanced by introducing point muta
tions to remove residues negatively affecting the protein-receptor 
connection. Despite observed variability, several sequences exhibited 
affinity for dimannose, forming stable complexes during the 100ns MD 
simulation. Carbohydrate affinity appears conserved among homolo
gous sequences of Cyanovirin-N, albeit with divergences not only be
tween species but also between binding site domains. The lectin’s 
pseudo-domain B consistently produced the best outcomes, indicating 
that while domain A has lower affinity, it likely serves a function 
adapted for multiple ligand binding. 

Binding Free Energy values varied, with most enzyme-substrate 
complexes yielding results in the range of − 20 to − 30 kcal/mol, indic
ative of greater complex stability. Based on energetic analysis results 
and considering satisfactory outcomes for both ligands and stability 
during RMSD and RMSF calculations, the models from Microcystis aer
uginosa NIES-298 and Nostoc calcícola presented as the most promising 
lectins, standing out as a promising alternative to Cyanovirin-N in the 
field of antiviral inhibitors. 

4. Materials and methods 

4.1. Genomic prospection 

This work used an in-silico approach, through bioinformatics tools, to 
identify and characterize cyanobacterial lectins’ biotechnological po
tential. Initially, a genomic prospection was conducted by applying a 
search strategy based on domain conservation. This was made by 
searching for lectin coding sequences in cyanobacterial genomes avail
able in public databases, like the National Center for Biotechnology 
Information (NCBI) [19]. The search was performed using a conserved 
domain identification approach. First, the amino acid sequences anno
tated as lectins and whose structure had been already experimentally 
resolved were obtained from NCBI Ref Seq [20]. After that, the CD-HIT 
tool [21] was used to group sequences with more than 90 % identity, 
creating a non-redundant dataset. This dataset was submitted to NCBI’s 
Conserved Domain Database [22] to identify all the domains present. 
The result was used for lectin identification. All the coding sequences 
(CDS) annotated in cyanobacterial genomes used in this study were 
extracted and translated with Geneious R9 software [23], using the 
bacterial genetic code. Next, for each genome, the translated CDS were 
subjected to CDD. A script developed in Perl analyzed the result of each 
genome in the CDD and returned only the sequences with the same 
domains present in the NCBI dataset. Those sequences formed the initial 
dataset, that proceeded to the molecular modeling step. 

4.2. Molecular modeling 

For the construction of the tridimensional models, the chosen 
approach was homology modeling. The chosen template was the orig
inal Cyanovirin-N (PDB Code: 1IIY). Multiple sequence alignments were 
performed on Promals3D program [24] and ClustalW [25]. The se
quences that showed reasonable identity values with the template 
deposited in the Protein Data Bank [26] were modeled using the Mod
eller 10.4 [27] software. One hundred models were generated for each 
sequence, considering the different possible spatial conformations, and 
choosing the best model. The models were evaluated on Modeller ac
cording to DOPE score, satisfying spatial constraints such as bond 
lengths, angles, and non-bonded interactions, in addition to the use of 
automatic loop refinement. After building the models, the stereochem
ical quality was evaluated using the Ramachandran, generated by the 
MolProbity server [17,18]. The folding quality of the model was 
analyzed using the Verify3D program [28] and the local quality of the 
model was measured using Qmean [29]. 

4.3. Docking 

The Molecular Docking step is focused on predicting the optimal 
orientation of the Mannose ligands binding to the Lectins and is 
responsible to anchor the receptor and ligand structures, determining 
the interaction coordinates and evaluating the formed complex ener
getically, to verify the stability of the interaction. Molecular Docking 
was made on the Molegro Virtual Docking 5.5 software [30], by 
assessing potential ligand binding configurations to predict the most 
energetically favorable arrangement. For the docking parameters, it was 
used the grid resolution value of 0.30. The assessment of the docking 
runs was performed using the MolDock scoring function [31] through a 
piecewise linear potential (PLP) that considers the directionality of the 
grid. The best solutions were then re-evaluated to increase the efficiency 
of the process using the Re-Rank scoring function, which considers a 
sp2-sp2 twist term and a Lennard-Jones potential [32]. The 
ligand-protein interaction graphs were made using LigPlot + v.2.2.8 
[33]. The following steps were the energy minimization and optimiza
tion of hydrogen bonds. Each procedure had 10 rounds of calculation, 
with a population of 100 and maximum iterations of 2000. The best 
complexes, selected through MolDock and ReRank, were selected for the 
MD simulatons. 

4.4. Molecular dynamics 

Unlike Docking, molecular dynamics simulations are used to model 
the dynamic behavior of atoms and molecules over time, exploring the 

Fig. 9. Individual Residue Energy Decomposition for Planktothrix rubescens and the two ligands.  
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temporal evolution of molecular systems and analysing structural as
pects, such as protein folding and conformational changes on a non- 
static system, aiming for a comprehensive understanding of the molec
ular interactions involved in the lectins’ carbohydrate interactions, 
considering important factors such as temperature, force fields, chemi
cal bonds, solvation, among others. The simulations were carried out to 
validate the models generated, as well as to evaluate the affinity of 
lectins that had their ligands predicted, on a dynamic process, to mimic a 
biological system in all their complexity. 

For the assembling, preparation, solvation of the model systems, as 
well as the energy minimization, heating, and MD steps, the Amber 23 
software [34,35] package tools were used, using the force fields 
Glycam06_j-1 [36] for the carbohydrates; Gaff [37] for the ions; and 
ff14SB [38] for the proteins. In order to proceed to MD, the models 
underwent stages of preparation, starting by protonation, that was made 
with H++ server [39,40] considering pH value of 7.0 and salinity of 
0.15, alongside default parameters for protein protonation. The objec
tive of this phase was to assess the molecular chemical surroundings. 
This assessment ensured the accurate determination of protein residue 
protonation states that are crucial for precisely calculating both intra 
and intermolecular interactions. Additionally, it aimed to simulate the 
pH influence within the system. 

Ligand preparation and system assembly were performed using 
Amber modules Antechamber, Parmchk2 and Tleap, respectively. Sol
vation was performed using a 10 Å-sized TIP3P water box model in each 
direction from the tip of the protein. Na + or Cl-ions were added to the 
system to neutralize the excess charges to stabilize the simulation. After 
this, topology and coordinate files of the complex were generated and 
brought together to obtain the final complex file. After the system as
sembly, the lectin models proceeded to the energy minimization step 
using the Sander software, a component of the Amber 23 package tools. 
When water is added to a system in a vacuum, previously non-existing 
interactions are created that could destabilize the protein. For this 
reason, the energy minimization step was used to decrease the total 
energy of the solvated system, causing water and protein to stabilize 
their interactions. The minimization occurred in 5 steps, where in the 
initial 4 steps the heavy atoms had their movement restricted by a 
harmonic potential of 1000 kcal/mol*Å2 while in the final step all atoms 
were free. Altogether, 3000 steepest descent cycles and 5000 conjugate 
gradient cycles were performed during the first 4 stages, while in the last 
stage, 5000 steepest descent cycles and 20,000 conjugate gradient cycles 
were performed. 

For the heating phase, the same principle of energy minimization 
was used, but in a greater number of steps, totalizing 14, with a lower 
harmonic potential restricting the heavy atoms, 25 kcal/mol*Å2, which 
was reduced to 0 at the end. In the first 13 steps, the temperature was 
gradually increased until reaching 300 K in an NVT ensemble, for a total 
of 650 ps. In the last step, 2ns of simulation were produced in an NPT 
ensemble to balance the system. The SHAKE algorithm was used to 
constrain the bond length of all hydrogen atoms. The Particle Mesh 
Ewald method was used to calculate the electrostatic interactions using 
a cutoff value of 10.0 Å for unbound interactions. Each system under
went 3 runs of 100 nanosseconds of MD simulation at 300 K in order to 
eliminate bias variations. structural analysis of the proteins with their 
respective ligands was made through RMSD (Root Mean Square Devia
tion) and RMSF (Root Mean Square Fluctuation) calculated from the N, 
CA, and C atoms of the main chain by the cpptraj module and for the free 
energy calculations. 

4.5. Binding free energy 

To evaluate the behavior and stability of the biological systems 
processed during the MD simulations, an energetic evaluation approach 
was employed, following 2 methodologies: Molecular Mechanics- 
Generalized Born Surface Area (MM-GBSA) and Molecular Mechanics- 
Poisson-Boltzmann Surface Area (MM-PBSA), to calculate the Binding 

Free Energy, a thermodynamic approach to assess the affinity between 
molecules. These methods are considered “end-state" techniques, 
assessing the energy difference between the two final states of the sys
tem: bound (on) and unbound (off). The MM-PBSA, on the other hand, a 
more accurate approach to describe solute-solvent interaction. It solves 
the Poisson-Boltzmann equation to calculate the electrostatic potential 
around the solute. 

Binding Free Energy for each frame of the simulation was measured, 
and its variation was calculated to indicate the temporal evolution of the 
free energy using the last 10 ns of the simulation trajectory (5000 
frames) of MD simulations. This specific timeframe was selected to 
ensure the systems reached a stable state. Both methods involve calcu
lating the molecular mechanics energy, which includes the binding en
ergy, torsional energy, van der Waals energy, and electrostatic energy. 
The MM-GBSA is used to account for solvent effects, as a simplified 
approach to consider solvation, taking into account atom polarity and 
accessible surface area. This analysis was performed through Amber 23 
MMPBSA.py script adapted for dual ligand evaluation. 

Additionally, an assessment of individual residue energy decompo
sition was conducted, to investigate the residues’ contribution for the 
ligand attachment. The residue decomposition graphs can help to 
identify residues that may be negatively interfering with the interaction, 
establishing targets for site-directed changes. Such mutations could be 
useful for improving the lectins’ viral activity through point mutations 
in sílico. 

5. Conclusions 

One of the greatest challenges of bioinformatic approaches is the 
efficiency in mimetizing the complexity of a biological system in silico, 
capturing all molecular interactions and events that would happen in 
vivo to accurately make a biological inference. Several elements could 
bias the efficiency of this type of prediction, like the lenght of MD 
simulations, that are limited by the available computational resources. 
Also, interpretation of the energetic analyses may sometimes be sub
jective, what could impact the influence of conclusions. Given this 
framework, the results of this study altogether support the thesis that 
antiviral properties could be conserved among homolog sequences of 
Cyanovirin-N, what could be of great of importance in guiding future 
research, perhaps applying it in vitro and open doors to the possibility of 
enhancing lectin’s affinity through point mutations and produce it by 
heterologous expression. Structural and functional prediction of bio
logical molecules is a growing field of scientific research that has yet to 
be further explored. Improving in silico prospection by creating an 
efficient pipeline for harvesting biologically active molecules from 
cyanobacteria in large scale can be of great value for future research. 
This study aimed to investigate whether different homologous se
quences of CVN share carbohydrate affinity and possess antiviral ac
tivity. The findings revealed significant variation in ligand affinity, 
which are most likely attributed to structural changes in the binding site 
across the sequences. These results provide insights into new research 
possibilities in the viral inhibition mechanism and to harnessing the 
genetic diversity of cyanobacterial strains to enhance HIV therapies. 
Based on the results obtained, the study highlights the genetic variability 
among Cyanovirin-N homologs, as evidenced by variations in size, 
molecular behavior, and carbohydrate affinity. This variability can pose 
both challenges, such as homologs with low affinity to the ligand, as well 
as advantages, given that the existence of numerous homologs enables a 
search for proteins with greater potential in rational drug design. 
Biotechnological products are currently gaining increasing prominence, 
driven by the abundance of species in nature and bioactive compounds 
with pharmacologically relevant antimicrobial properties. Cyanobac
teria serve as an excellent source for discovering new compounds with 
biotechnological potential, highlighting their high capacity for produc
ing biopharmaceuticals. Molecular dynamic simulations, along with 
screening and molecular docking methodologies, have proved to be 
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valuable assets in the research and development of novel bioproducts. 
Cyanovirin-N, which exhibits significant diversity within the cyano
bacterial group, possesses binding sites that show substantial variation 
in conservation, indicating a potential affinity for different carbohy
drates. This supports the hypothesis that it may have multiple ligands 
within the cyanobacterial group. Previous research has already high
lighted the antiviral activity of Cyanovirin-N, and the analysis of its 
homologous proteins can serve as a crucial element in discovering new 
potential drugs with reduced toxicity, improved cost-benefit ratio, and 
sustainability in their acquisition and utilization. 
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