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ABSTRACT

So-called polarization horns appear in electromagnetic well
logs when the sondes move through the interface between
formations of different conductivities. Since the early 1990s,
peaks in the logs have been attributed to the influence of surface
charges due to the presence of electric field components
perpendicular to the interfaces. A new analysis finds that surface
charges should not be pinpointed as the immediate cause for the
appearance of interface peaks in electromagnetic logs from any
tool operating in any frequency range. This is accomplished by
calculating the derivatives of the magnetic field components
with respect to the sonde’s vertical position as it crosses the
interface between two homogeneous isotropic media. The

mathematical expressions reveal the components with smooth
transitions and the ones with discontinuities in their rates of
change across the interface. The analysis is applied to the four
components needed to simulate the responses of coaxial and
coplanar coil configurations in dipping logs. The results show
that only the horizontal field from a horizontal dipole source
suffers an influence from the current density field perpendicular
to the interface between the two media, which gives rise to
surface charges, but even for this component, the nonsmooth
transitions are not associated with the perpendicular current.
An anisotropic example gives further support to the conclusion
that the polarization horns are associated with the discontinuous
current density field parallel to the interface rather than with the
continuous current across the interface.

INTRODUCTION

Electromagnetic well logging was originally performed exclu-
sively in vertical wells using the coaxial source-receiver configura-
tion. The calculation of apparent resistivities and the modeling of
the data were performed only with the vertical magnetic component
generated by a vertical magnetic dipole (VMD). Later, when coaxial
tools started to be used in inclined wells, and later still, in the 1990s,
when the first experiments were carried out with the coplanar con-
figuration to resolve anisotropy in thinly laminated formations, the
horizontal magnetic dipole (HMD) source started to be used in the
calculations and in the sondes.
In dipping wells profiled with any configuration and in vertical

wells profiled with coplanar configurations, the logs started to show
strong spikes as the sondes crossed the interfaces between formations
with different conductivities. At first, these “horns” were considered

an inconvenience; they were even called “undesirable artifacts”
(Moran and Gianzero, 1979) because boundary effects were known
to induce apparent resistivity responses not corresponding to any re-
sistivity in a heterogeneous medium. According to Kriegshäuser et al.
(2000), “the induction response of the new coplanar coils is complex
and sometimes not intuitive. Borehole and eccentricity effects can
distort the new coplanar responses more than conventional coaxial
induction coil responses.”
Anderson et al. (1992) show a classic North Sea field log example

that illustrates how an unexpected horn on 2 MHz logging while
drilling (LWD) logs turned out to be a useful indicator of bed boun-
dary crossings in highly deviated wells. In this case, the computed
log was modeled first, before the well was drilled, so it could be
used to confirm that it was possible to identify the position where
the tool crossed the interface between a 1.0 ohm-m shale and an
1000 ohm-m gas sand in a 72° deviated well. The subsequent field
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log is in good agreement with the modeled results, showing a horn
associated with the boundary as a real feature and not an isolated
tool artifact or computer modeling effect (Anderson, 2019).
With time, as dipping wells became common and as the use of

coaxial and coplanar configurations became important in the appli-
cation to anisotropic formations, the spikes started to be taken as an
unavoidable part of the logs, and they were even interpreted as use-
ful boundary markers. Currently, the horns in LWD logs are an im-
portant guide to correct the drilling in real-time geosteering and
keep the well horizontal within the target layer (Pitcher et al.,
2011). They are now recognized as a general feature of induction
logs, not restricted to any particular tool configuration.
In the interpretation of the physical causes of the horns, a critical

observation was that the spikes in the resistivity logs appeared only
in situations in which electric field lines crossed the interfaces,
which did not happen in coaxial logs in vertical wells. Based on
this behavior, Howard and Chew (1989, 1992) present the first
interpretation of the horns as a consequence of the bed boundary
charge buildup, or polarization, associated with the electric field
component perpendicular to the interfaces between formations.
They describe the surface charges due to the dipole sources and
assumed that the nonsmooth behavior of the logs was exclusively
due to these surface charges. Since then, these spikes in the logs
have been known as polarization horns, and it has been universally
accepted that their causes are the surface charges.
Here, we present an analysis that demonstrates that spikes in the

plots of the magnetic field components of magnetic dipole sources
may appear in situations in which there are no electric field lines
crossing any interface, therefore no surface charges. It is also shown
that, even in cases in which there are surface charges involved, the
horns may not be attributed to them.
An analysis of the physics of the flow of currents that generate the

observed magnetic fields allows the conclusion that the nonsmooth
behavior of the magnetic components is due to the discontinuities in
the current density vector field parallel to the interfaces, which imply
continuous electric field components parallel to the same boundary,
rather than those in the electric field perpendicular to the interface,
which are associated with continuous current density across the same
boundary and which give rise to surface charges.

MODEL CASE

The simplest situation to be studied is that of two homogeneous
isotropic half-spaces separated by a horizontal plane interface, with-
out the presence of the borehole and invasion zones, to simulate
deviated logs with respect to a horizontal bed boundary. According
to Anderson et al. (1992), the horn spikes appear sharper in this
situation than in the real logs. This 1D simple model provides basic
insight for understanding tool responses in more complex scenarios.
The building blocks for the modern multicomponent induction

tools are the basic coaxial and coplanar two-coil arrays, to which
is added a third so-called bucking coil to cancel the direct linkage,
or mutual coupling (Kaufman and Ytskovich, 2017). The dipole
source in each case points in a direction that depends on the dip
angle: The dipole moment vector of the source in a coaxial array
points in the direction of the profile, whereas the source in a
coplanar array has a dipole moment perpendicular to the profile
line. However, to simulate a measurement of any induction logging
tool, operating in any frequency range, it is enough to calculate the
responses of HMD and VMD sources and combine the horizontal

and vertical magnetic components generated by both sources in the
point receiver position, taking into account the deviation angle of
the well. Therefore, the analysis presented here focuses on four con-
figurations: vertical and horizontal magnetic components generated
by VMD and HMD.
As a further reduction in the problem, the following calculations

assume, without loss of generality for the horizontally layered 1D
case, that the log profile is on the ðx; zÞ-plane at y ¼ 0. The tilt angle
θ of the profile is measured in relation to the vertical z-axis. A mag-
netic component at the receiver position is represented byHij, with i
indicating the direction (x or z) of the source dipole and j indicating
the direction of the field component.
The observed fields for the coaxial (CX) and coplanar (CP) coil

configurations, with source dipole moments m, are the combination
of four signals, originating from two unit dipoles:

HCX ¼ mðHxx sin
2 θ þHxz sin θ cos θ

þHzx sin θ cos θ þHzz cos
2 θÞ; (1)

HCP ¼ mðHxx cos
2 θ −Hxz sin θ cos θ

−Hzx sin θ cos θ þHzz sin
2 θÞ: (2)

The next sections will study these four signals separately to de-
termine each contribution to the behavior of the total fields. The
analysis determines the behavior of the magnetic field in two sit-
uations, during the transitions of the transmitter and the receiver
through the interface between the two half-spaces. To facilitate
the interpretation of the logs of the illustration example, all points
in the curves are plotted at the position of the receiver. This is con-
trary to the usual practice of plotting the measurements at the mid-
point between the transmitter and the receiver, but the resulting plots
have the advantage of exactly locating the discontinuities in the rate
of change of the fields as the tool moves across the interface.
To illustrate the behavior of all components involved in a wireline

induction log example, the following curves were generated for a
two half-space model with top and bottom conductivities of σ1 ¼
0.01 S∕m and σ2 ¼ 1.0 S∕m, respectively, and the same relative
electric permittivity or dielectric constant εr ¼ 1. The profile runs
at a dip angle θ ¼ 60° with the vertical direction and with a source
dipole moment of 1.0Am2 at 20 kHz. The separation between the
source and receiver is L ¼ 1.0 m. Figure 1 shows the coaxial and
coplanar profiles for this model.
Nonsmooth transitions are observed in all four curves, meaning

that there are discontinuities in the rates of change of the magnetic
field components in the tool positions where the receiver crosses the
interface as well as where the transmitter crosses the interface. Of
particular interest are the curves of the imaginary component be-
cause they are the ones used to calculate the raw apparent conduc-
tivities.
Although this model is used to illustrate the behavior of the fields

in an ordinary environment, the conclusions will not be drawn from
the study of this or any particular case, but rather from the analysis
of the general expressions for the rate of change of the fields at the
interface, which are valid for any range of frequency as long as the
continuity of the current density field normal to the interface
is valid.
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CALCULATIONS

In an electromagnetic problem, the magnetic field is created by
the flow of current in the medium in two forms: conduction and
displacement currents, of which the density vector fields are jointly
expressed in the frequency domain as J ¼ ðσ þ iωε0εrÞE. This
linear constitutive relation between the electric and the current den-
sity fields holds for all of the field intensities and in the media in-
volved in any electromagnetic logging tool. The term

ηj ¼ σj þ iωε0εrðjÞ (3)

is called the admittivity of medium j (Harrington, 2001, p. 19).
Notice that the following calculation remains unchanged even in
dispersive cases in which the conductivity and the permittivity
may be complex functions of the frequency.
In many applications that work in the quasistatic regime, the ad-

mittivity is approximated by the conductivity because the iωε0εr
term is very small. In the applications of electromagnetic well logging,
however, the frequency may reach the MHz range,
as in the case of LWD, and the sondes may en-
counter formations with high relative electric per-
mittivity εr. Therefore, the formulation in this
theoretical study must use the complete expression
for the admittivity, so that it may be applied to any
range of frequency used in the actual tools.
A central point in this analysis is that, at any

point of the interface between the two media
(z ¼ 0), the component of the total current density
field perpendicular to the interface is continuous
(Ward and Hohmann, 1987; for a more detailed
discussion, see Kaufman and Ytskovich, 2017):

J z ¼ η1Ezð1Þ ¼ η2Ezð2Þ ðz ¼ 0Þ: (4)

Therefore, the normal electric field is discontinu-
ous, such that the ratio of the field immediately
above and immediately below the interface is

Ezð1Þ
Ezð2Þ

����
z¼0

¼ η2
η1

: (5)

The current density tangential to the interface (J x) is discontinu-
ous, such that the ratio of the current immediately above and below
the interface is the same as the contrast ratio of the electrical proper-
ties (admittivity) of the two media,

J xð1Þ
J xð2Þ

����
z¼0

¼ η1
η2

; (6)

and the tangent electric field is always continuous (Harrington,
2001, p. 34).
In view of these boundary (or interface) conditions, we would ex-

pect the nonsmooth characteristics of the logs to be associated with the
horizontal rather than with the vertical component of the current in our
plane interface model. These considerations lead to a conclusion that
is contrary to the view that surface charge buildup determines the non-
smooth behavior of the magnetic field observed in the induction tool
responses. To investigate this, we calculate the rate of change of each
magnetic component as the tool moves across the interface.

The magnetic field components of both dipole sources are calcu-
lated using the mathematical tools described byWard and Hohmann
(1987). The analytical solutions for the three positions shown in
Figure 2 are written as integrals of the Hankel transform, which
must be evaluated numerically.
The field from the vertical dipole propagates exclusively in the

transverse electric mode in relation to the z-axis (TEz), which means
that all electric field lines are parallel to the horizontal interface and
no surface charges appear anywhere.
Using Schelkunoff potentials, the field from the HMD can be writ-

ten as the combination of a TEz and a transverse magnetic (TMz)
mode propagations. The solutions for the vertical Hxz component in-
volve only the TEz mode, whereas the horizontal Hxx component is
written as the sum of integrals for the TEz and the TMz modes.
The Hxx component generated by the HMDx is the only one of the

four considered here that suffers the influence of the vertical compo-
nents of the electric field and current density. Therefore, this is the
only component with which surface charges may be involved.
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Figure 1. Coaxial and coplanar logs of the magnetic field from unit dipole sources at
20 kHz, source/receiver spacing L ¼ 1.0 m, dip angle of 60°, for a two-half-space model
with conductivities of σtop ¼ σ1 ¼ 0.01 S∕m and σbottom ¼ σ2 ¼ 1.0 S∕m.

a) b) c)

Figure 2. Three positions of the transmitter-receiver pair as the
sonde crosses the interface: (a) position 1, (b) position 2, and (c)
position 3.
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The formulation uses the same notation as in Ward and Hohmann
(1987), with a time factor eiωt. Both half-spaces are assumed to have
the same vacuum magnetic permeability μ0. Attributing the same
permeability to both media insures that all magnetic components
are continuous at the interface. The formulas are expressed in terms
of the following parameters:

h0 is the z-coordinate of the dipole source;
m is the dipole moment of the source;
θ is the dip angle;
Lz ¼ L cos θ is the vertical separation between source and
receiver;
r is the horizontal separation between source and receiver;
σ1 and σ2 are the top and bottom conductivities, respectively;
ηj is the admittivity of medium j: ηj ¼ σj þ iωε0εrðjÞ;
kj is the wavenumber for medium j: k2j ¼ −iωμ0ηj;
λ is the variable of integration of the Hankel transform.
u2j ¼ λ2 − k2j ;
Yj ¼ uj

iωμ0
is the admitance of medium j;

Zj ¼ uj
ηj
is the impedance of medium j;

RTE ¼ Y1−Y2

Y1þY2
¼ u1−u2

u1þu2
; for μ1 ¼ μ2 ¼ μ0;

RTM ¼ Z1−Z2

Z1þZ2
.

The last two are the reflection coefficients associated with the
field propagating from medium 1 to medium 2. The expressions
for the contributions of the TEz mode fields depend only on the
admittances of the media, whereas those of the TMz mode fields
depend only on the impedances.
To indicate one of the three positions illustrated in Figure 2, the

magnetic component at the receiver position is represented with a
superscript HðkÞ

ij (k ¼ 1, 2, or 3). In all cases, the arguments of these
functions indicate the coordinates ðr; zÞ and the source position
ðh0Þ, so the complete representation is HðkÞ

ij ðr; z; h0Þ.
This section presents the analysis of the final expressions for the

derivatives of the magnetic components with respect to the source
position h0 at the coordinates of the receiver crossing (h0 ¼ −Lz)
and the transmitter crossing (h0 ¼ 0) the interface. The intermediate
steps in the derivation are presented in Appendix A.

Fields of the VMD

AVMD transmitter in a horizontally layered medium generates
three field components with perfect cylindrical symmetry: the azi-
muthal electric field, and two (radial and vertical) magnetic com-
ponents. The electric field lines are horizontal circles concentric
with the dipole source. There is no component of the electric field
normal to the interface. The fields propagate only in the TEz mode.

Vertical magnetic component of the VMD

The receiver crosses the interface when the transmitter is at h0 ¼
−Lz and the transmitter crosses the interface at h0 ¼ 0. In both
cases, the rates of change of Hz immediately before and after the
interface are the same:

∂
∂h0

Hð1Þ
zz ðr;h0þLz;h0Þ

����
h0¼−Lz

¼ ∂
∂h0

Hð2Þ
zz ðr;h0þLz;h0Þ

����
h0¼−Lz

¼ m
2π

Z
∞

0

RTEe−u1LzJ0ðλrÞλ3dλ; (7)

∂
∂h0

Hð2Þ
zz ðr;h0þLz;h0Þ

����
h0¼0

¼ ∂
∂h0

Hð3Þ
zz ðr;h0þLz;h0Þ

����
h0¼0

¼ m
2π

Z
∞

0

RTEe−u2LzJ0ðλrÞλ3dλ: (8)

These equalities indicate that the profile curve for the Hzz com-
ponent of the VMD is always smooth as the sonde crosses the inter-
face, regardless of the dip angle of the well.

Horizontal magnetic component of the VMD

As the receiver crosses the interface (h0 ¼ −Lz), the rate of
change of Hzx changes discontinuously:

∂
∂h0

Hð1Þ
zx ðr; h0 þ Lz; h0Þ

����
h0¼−Lz

¼ −m
2π

Z
∞

0

u1RTEe−u1LzJ1ðλrÞλ2dλ; (9)

∂
∂h0

Hð2Þ
zx ðr; h0 þ Lz; h0Þ

����
h0¼−Lz

¼ m
2π

Z
∞

0

u2RTEe−u1LzJ1ðλrÞλ2dλ: (10)

The derivatives are different by the factor uj in the integrands
(−u1 above the interface and u2 below it). Therefore, the expres-
sions for the rates of change of the field (equations 9 and 10) dem-
onstrate that the curve for Hzx will not have a smooth transition
between the two media. Depending on the resistivities and fre-
quency, the profile curve as the receiver crosses the interface will
show either a sharp kink (when the two derivatives have the same
sign), or a true spike (a horn shape, when the derivatives have op-
posite signs), even though in the case of the VMD there is abso-
lutely no surface charge.
The rates of change for cases 1 and 2 (equations A-14 and A-15)

can be written as the sum of two signals, one that changes smoothly
and one with a discontinuity at the interface. Start by opening up the
expression for the reflection coefficient:

u1RTE ¼ u21
u1 þ u2

−
u1u2

u1 þ u2
; (11)

u2RTE ¼ u1u2
u1 þ u2

−
u22

u1 þ u2
: (12)

Then, use u2j ¼ λ2 − k2j ¼ λ2 þ iωμ0ηj and arrive at

∂
∂h0

Hð1Þ
zx ðr; h0 þ Lz; h0Þ

¼ m
2π

�Z
∞

0

u1u2 − λ2

u1 þ u2
eu1ð2h0þLzÞJ1ðλrÞλ2dλ

− η1

Z
∞

0

iωμ0
u1 þ u2

e−u1LzJ1ðλrÞλ2dλ
�
; (13)
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∂
∂h0

Hð2Þ
zx ðr; h0 þ Lz; h0Þ

¼ m
2π

�Z
∞

0

u1u2 − λ2

u1 þ u2
eu1h0e−u2ðh0þLzÞJ1ðλrÞλ2dλ

− η2

Z
∞

0

iωμ0
u1 þ u2

e−u1LzJ1ðλrÞλ2dλ
�
: (14)

When the receiver is at the interface (h0 ¼ −Lz),

∂
∂h0

Hð1Þ
zx ðr; h0 þ Lz; h0Þ

����
h0¼−Lz

¼ m
2π

�Z
∞

0

u1u2 − λ2

u1 þ u2
e−u1LzJ1ðλrÞλ2dλ

− η1

Z
∞

0

iωμ0
u1 þ u2

e−u1LzJ1ðλrÞλ2dλ
�
; (15)

∂
∂h0

Hð2Þ
zx ðr; h0 þ Lz; h0Þ

����
h0¼−Lz

¼ m
2π

�Z
∞

0

u1u2 − λ2

u1 þ u2
e−u1LzJ1ðλrÞλ2dλ

− η2

Z
∞

0

iωμ0
u1 þ u2

e−u1LzJ1ðλrÞλ2dλ
�
: (16)

The second term in these expressions (the one that imposes the
discontinuity in the rate of change of the field) differs from case 1 to
case 2 only by the ηj factor multiplying the same integral. The ratio
of this term in both cases at the interface (η1∕η2) is the same ratio of
the horizontal component of the current density field immediately
above and below the interface (equation 6).
As the vertical dipole transmitter crosses the interface (h0 ¼ 0),

the horizontal Hzx component presents a smooth transition:

∂
∂h0

Hð2Þ
zx ðr; h0 þLz;h0Þ

����
h0¼0

¼ ∂
∂h0

Hð3Þ
zx ðr; h0 þLz;h0Þ

����
h0¼0

¼
Z

∞

0

u2RTEe−u2LzJ1ðλrÞλ2dλ: (17)

To illustrate these behaviors, Figure 3 shows a plot of both mag-
netic components from a unit VMD, calculated for the two-half-
space model (Figure 2) with the same parameters as those used
to generate the logs in Figure 1. In this case, the curves for Hzz

exhibit the expected smooth behavior and those for Hzx show
the horn shape, even with no surface charges appearing anywhere.

Fields of the HMDx

The transmitter now is an HMD source with a dipole moment
oriented along the x-axis. In this case, there are electric field lines
crossing the interface, giving rise to surface charges resulting from
the necessity for continuity of the normal component of the current
density field, which is demanded by the conservation of electric
charge.

Vertical magnetic component of the HMDx

Observing the contributions of the two propagation modes, one
finds out that the vertical Hxz component depends exclusively on
the TEz mode, which means that it is created by the parts of the
flow of currents that are always parallel to the interface: again,
no surface charges involved.
Now,Hxz has a smooth transition as the receiver crosses the inter-

face (h0 ¼ −Lz):

∂
∂h0

Hð1Þ
xz ðr;h0þLz;h0Þ

����
h0¼−Lz

¼ ∂
∂h0

Hð2Þ
xz ðr;h0þLz;h0Þ

����
h0¼−Lz

¼ m
2π

Z
∞

0

u1RTEe−u1LzJ1ðλrÞλ2dλ: (18)

When the source crosses the interface (h0 ¼ 0), the derivatives
are

∂
∂h0

Hð2Þ
xz ðr; h0 þ Lz; h0Þ

����
h0¼0

¼ m
2π

Z
∞

0

u1RTEe−u2LzJ1ðλrÞλ2dλ; (19)

∂
∂h0

Hð3Þ
xz ðr; h0 þ Lz; h0Þ

����
h0¼0

¼ −m
2π

Z
∞

0

u2RTEe−u2LzJ1ðλrÞλ2dλ: (20)

Again, we find the same expressions except for the u1 and −u2
terms in the integrands. So, there is a nonsmooth transition, a dis-
continuity in the rate of change of the field as the transmitter crosses
the interface. This discontinuity will manifest itself either as a sharp
bend or a horn shape in the log. Furthermore, repeating the same
steps as in the case of the horizontal (Hzx) component of the vertical
dipole source (equations 11–16), these derivatives can be written as
the sum of a smooth signal and a discontinuous one for which the
discontinuity ratio is again the same as that of the tangent compo-
nent of the current density field: η1∕η2 (equation 6).
The results for the Hxz component of the HMDx could be de-

duced from symmetry and reciprocity considerations applied to
the Hzx field from the VMD.

Horizontal magnetic component of the HMDx

The horizontal component (Hxx) generated by the HMDx is writ-
ten as the sum of the separate contributions of the TEz and TMz

propagation modes. In the general situations in which y ≠ 0, the
TMz contribution is written as the sum of two integrals, involving
J0 and J1, but for y ¼ 0 only the J1 integral is present.
Repeating the same procedure as previously, the rates of change

of the Hxx field with respect to h0 are as follows:
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for the receiver crossing the interface (h0 ¼ −Lz),

∂
∂h0

Hð1Þ
xx ðr; h0 þ Lz; h0Þ

����
h0¼−Lz

¼ m
2πr

�Z
∞

0

k21RTMe−u1LzJ1ðλrÞdλ

−
Z

∞

0

u21RTEe−u1LzJ1ðλrÞdλ

þ r
Z

∞

0

u21RTEe−u1LzJ0ðλrÞλdλ
�
; (21)

∂
∂h0

Hð2Þ
xx ðr; h0 þ Lz; h0Þ

����
h0¼−Lz

¼ m
2πr

�Z
∞

0

k21ðu1 − u2Þ
η1ðZ1 þ Z2Þ

e−u1LzJ1ðλrÞdλ

þ
Z

∞

0

u1u2RTEe−u1LzJ1ðλrÞdλ

− r
Z

∞

0

u1u2RTEe−u1LzJ0ðλrÞλdλ
�
: (22)

The equations show that the TEz contribution, which does not
suffer the influence of surface charges, presents the same character-
istics found in the previous components, indicating the nonsmooth
transition, or discontinuity in the rate of change of the function: the
expressions for the derivatives immediately above and below the
interface are the same, except for the different uj terms in the in-
tegrands and the sign reversal. In addition, by performing the same
separation of the ujRTE term as in the case of the Hzx component,
the same ratio (η1∕η2) is found between the discontinuous part of
the derivative from the two cases.
For the analysis of the TM contribution, which does suffer the

influence of surface charges, the expressions for the two sonde
positions (equations 21 and 22) can be written as the sums of

two parts by separating the fractions involving ðu1 − u2Þ in the
two cases:
case 1:

Z
∞

0

k21RTMe−u1LzJ1ðλrÞdλ

¼
Z

∞

0

k21
Z1

ðZ1 þ Z2Þ
e−u1LzJ1ðλrÞdλ

−
1

η2

Z
∞

0

k21
u2

ðZ1 þ Z2Þ
e−u1LzJ1ðλrÞdλ; (23)

case 2:

Z
∞

0

k21ðu1 − u2Þ
η1ðZ1 þ Z2Þ

e−u1LzJ1ðλrÞdλ

¼
Z

∞

0

k21
Z1

ðZ1 þ Z2Þ
e−u1LzJ1ðλrÞdλ

−
1

η1

Z
∞

0

k21
u2

ðZ1 þ Z2Þ
e−u1LzJ1ðλrÞdλ: (24)

The first part is exactly the same in both sonde positions, whereas
in the second part the same integral is divided by η2 in case 1 and by
η1 in case 2. Therefore, the TMz mode contributes with a signal that
has a smooth transition at the receiver position and another with a
discontinuous rate of change at the interface. Once again, the term
responsible for the discontinuity of the derivative presents a ratio of
the signals immediately above and below the interface equal to that
of the tangent density current field: η1∕η2.
For the transmitter crossing the interface (h0 ¼ 0),

∂
∂h0

Hð2Þ
xx ðr; h0 þ Lz; h0Þ

����
h0¼0

¼ m
2πr

�Z
∞

0

k21ðu1 − u2Þ
η1ðZ1 þ Z2Þ

e−u2LzJ1ðλrÞdλ

þ
Z

∞

0

u1u2RTEe−u2LzJ1ðλrÞdλ

− r
Z

∞

0

u1u2RTEe−u2LzJ0ðλrÞλdλ
�
:

(25)

∂
∂h0

Hð3Þ
xx ðr; h0 þ Lz; h0Þ

����
h0¼0

¼ m
2πr

�Z
∞

0

k22RTMe−u2LzJ1ðλrÞdλ

−
Z

∞

0

u22RTEe−u2LzJ1ðλrÞdλ

þ r
Z

∞

0

u22RTEe−u2LzJ0ðλrÞλdλ
�
:

(26)

The same behaviors are observed and the same
conclusions are drawn as in the case of the
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Figure 3. The Hzz and Hzx from a unit VMD at 20 kHz, source/receiver spacing
L ¼ 1.0 m, dip angle of 60°, for a two-half-space model with conductivities of σtop ¼
σ1 ¼ 0.01 S∕m and σbottom ¼ σ2 ¼ 1.0 S∕m.
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receiver transition, which would be expected from the reciprocity
and symmetry considerations.
The example shown in Figure 4 is for the same model that gen-

erated the curves for the VMD shown in Figure 3 and the logs
shown in Figure 1. All of the plots illustrate the conclusions drawn
from the analysis of the rate of change of the field with the position
of the sonde. Note that the imaginary part of the horizontal com-
ponent shows two different discontinuities in its derivative: a kink at
the transition of the source and a true, albeit small, horn at the tran-
sition of the receiver.
To simulate a log of a dipped well, the four components illustrated

in Figures 3 and 4 are combined using equations 1 and 2 to generate
the coaxial and the coplanar responses shown in Figure 1.

Geometry of the field lines

The example model shows the changes in the magnitude of the
magnetic field with the movement of the tool. Away from the inter-
face, the magnetic field lines follow the dipolar field geometry. The
magnitude depends on the conductivity and frequency, but the geo-
metric design of the field lines is the same in both media when con-
sidered as an infinite homogeneous space. At the receiver position,
the magnetic vector points in the same direction in both media, re-
gardless of the conductivity.
As the tool in medium 1 approaches the interface, the influence of

the second medium (shoulder effect) starts to be felt and the mag-
netic field lines are distorted, so that the magnetic vector at the point
receiver changes not only in magnitude but also in direction. After

the sonde has passed into medium 2 and distan-
ces itself from the interface, the magnetic vector
at the position of the point receiver goes back to
pointing in the same direction dictated by the
geometry of the dipolar field in a homogeneous
medium, now with an increased magnitude.
The combined effect of the changing rotations

of the magnetic vector and the discontinuity in
the current density field imposes the different
behaviors observed on the vertical and horizontal
components. For example, in this particular
model, the Hzz component from the VMD in-
creases monotonically, whereas that of the Hzx

component shows varying behavior, increasing
and decreasing as the field vector rotates at the
same time as the magnitude changes (Figure 3),
all under the influence of the flow of current in
the nonhomogeneous medium.
In the case of theHMDx, theHxz component is

analogous to the horizontal one from the VMD
and it shows the same pattern of behavior with
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Figure 4. The Hxz and Hxx from a unit HMDx at 20 kHz, source/receiver spacing
L = 1.0 m, dip angle of 60°, for a two-half-space model with conductivities of σtop ¼
σ1 ¼ 0.01 S∕m and σbottom ¼ σ2 ¼ 1.0 S∕m.
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Figure 5. Imaginary magnetic field logs from the coaxial (blue) and coplanar (red) coil arrays within (a) isotropic and (b and c) anisotropic
two-half-space models without horizontal conductivity variation.
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the movement of the sonde. The Hxx component presents the most
complicated case, with sharp variations in the geometry of the log
line at the crossings of source and receiver.

AN ANISOTROPIC EXAMPLE

A last example further illustrates the argument about what is the
immediate cause of the horns. Now the bottom half-space is isotropic
with conductivity σ2, and the top half-space is anisotropic with ver-
tical σv and horizontal σh conductivity components. The particular
situation of interest here has the horizontal conductivity equal to that
of the bottom medium (σh ¼ σ2) and a contrast in the vertical con-
ductivity (σv ≠ σ2). This example has been in the literature for a long
time (Moran and Gianzero, 1979; Zhdanov et al., 2001). In this
model with homogeneous horizontal conductivity, there will be no
discontinuity in the current density field parallel to the interface, re-
gardless of the direction of the dipole source. However, a dipole
pointing in any direction other than the vertical will generate electric
field components perpendicular to the interface; therefore, there will
be a current flow across the interface and surface charges will rise.
To put the following anisotropic case in context, Figure 5a shows

the logs of a vertical profile in a two-half-space isotropic model,
where σ1 ¼ 0.125 S∕m and σ2 ¼ 0.5 S∕m. The logs reproduce
the classic characteristics of the two configurations, with a smooth
line for the coaxial and unmistakable horns for the coplanar array.
The magnetic field components in a layered anisotropic medium

were calculated as described by Kaufman and Ytskovich (2017). The
logs in Figure 5b are from a vertical profile in an anisotropic model in
which the bottom isotropic half-space has σ2 ¼ 0.5 S∕m and the top
anisotropic medium has σv ¼ 0.125 S∕m and σh ¼ 0.5 S∕m. Be-
cause σ2 ¼ σh and the fields from the vertical dipole are insensitive
to the vertical resistivity, the coaxial line is straight along the whole
profile. The coplanar log, however, changes smoothly between the
two media, showing no horns nor any discontinuity in its rate of
change. In this case, the dipole source is horizontal, so there are elec-
tric field components perpendicular to the interface and surface
charges appear at the discontinuity of the vertical conductivity. How-
ever, because the horizontal conductivity is the same in both media,
there is no discontinuous component of the current density field to
impose nonsmooth transitions to the logs.
Logs of inclined (60°) profiles in the same model are shown in

Figure 5c. Now, the field geometry from both sources gives rise to
surface charges, but not to a discontinuous current density field.
Therefore, both log curves change smoothly and no horns nor other
nonsmooth behavior appear anywhere.

CONCLUSION

We have presented an analysis of the so-called polarization horns
that appear in induction logging. The study observes the magnetic
components generated by the vertical and horizontal dipoles used in
the modeling of induction sondes. The four cases presented here
(the vertical and horizontal components from the vertical and hori-
zontal dipole sources) are the ones needed to simulate the responses
of the coaxial and the coplanar coil configurations at any dip angle.
The analysis was performed by observing the rate of change of each
field component with respect to the vertical position of the sonde
because it crosses the interface between two homogeneous half-
spaces with different conductivities. Each component was calcu-

lated in an arbitrary position to account for the deviated angle of
the log from the vertical.
The results indicate that, for the VMD, the vertical component is

always smooth as the sonde crosses the interface; the horizontal com-
ponent has a nonsmooth transition (discontinuity in the rate of change
and possibly horns, even though in the case of the VMD there is
absolutely no surface charge) as the receiver crosses the interface
and a smooth transition at the transmitter crossing. For the HMD ori-
ented along the x-axis, the vertical component shows a smooth tran-
sition at the receiver crossing, but a discontinuity in its rate of change
at the crossing of the transmitter. The horizontal component has in-
fluence of the two propagation modes. The transitions for this com-
ponent are nonsmooth for the transmitter and receiver crossings.
In all cases, the current flow normal to the interface is always

continuous, whereas the current tangent to the interface is discon-
tinuous, with a contrast ratio that is equal to those observed in the
terms that generate the discontinuities of the rates of change of all
components for which a horn or nonsmoothness appears.
Of the four cases, only the horizontal magnetic component from

the HMD is under the influence of a vertical current crossing the
interface, in which case surface charges appear. However, even in
this case the discontinuous part of the rate of change function has
the same discontinuity ratio as that of the tangent current density
field, which is the contrast ratio of the admittivities of the two me-
dia. In no case, the ratio of the rates of change of a field component
at the interface is found to be equal to that of the perpendicular elec-
tric field associated with surface charges.
Because the magnetic field is generated by the total current den-

sity field, and the total perpendicular current is continuous at the
interface, we conclude that the horn shapes in the logs cannot be
attributed to the influence of surface charges, but are instead asso-
ciated with the discontinuity of the current density field parallel to
the interface between the two media. Further support to this con-
clusion comes from the anisotropic model, in which there is no
change in the horizontal conductivity; hence, there is no disconti-
nuity in the current density and no horns.
Of course, the surface charges, the discontinuity in the current

density field, and the geometry of the field lines are all part of
the same electromagnetic interaction between the field and the non-
homogeneous medium and therefore are all interrelated. However,
our view is that attributing the horn shapes in the logs exclusively to
the influence of surface charges misses the bigger picture of that
interaction. Putting the emphasis on the component of the current
density field that is in fact continuous across the interface instead of
recognizing the part played by the discontinuous tangent compo-
nent misleads and complicates the analysis not only of this reduced
model but also of the more realistic cases involving other interfaces,
such as well boundary and invasion zones.
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APPENDIX A

GENERAL EXPRESSIONS FOR THE DERIVATIVES

The VMD

For a VMD placed at the vertical coordinate h0, the expressions
of the vertical magnetic component for the three cases at an arbitrary
point receiver position ðr; zÞ are

Hð1Þ
zz ðr; z; h0Þ ¼

m
4π

Z
∞

0

1

u1

�
e−u1ðz−h0Þ

þ RTEeu1ðzþh0Þ
�
J0ðλrÞλ3dλ; (A-1)

Hð2Þ
zz ðr;z;h0Þ¼

m
2π

Z
∞

0

1

u1þu2
eu1h0e−u2zJ0ðλrÞλ3dλ; (A-2)

Hð3Þ
zz ðr; z; h0Þ ¼

m
4π

Z
∞

0

1

u2

�
e−u2ðz−h0Þ

− RTEe−u2ðzþh0Þ
�
J0ðλrÞλ3dλ: (A-3)

We are looking at the particular case in which the vertical coor-
dinate of the receiver (z) is at a fixed distance from the transmitter,
with a vertical separation Lz determined by the fixed dip angle:

z ¼ h0 þ Lz: (A-4)

Therefore,

Hð1Þ
zz ðr;h0þLz;h0Þ¼

m
4π

Z
∞

0

1

u1

�
e−u1Lz

þRTEeu1ð2h0þLzÞ
�
J0ðλrÞλ3dλ; (A-5)

Hð2Þ
zz ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

1

u1 þ u2
eu1h0e−u2ðh0þLzÞJ0ðλrÞλ3dλ; (A-6)

Hð3Þ
zz ðr;h0þLz;h0Þ¼

m
4π

Z
∞

0

1

u2

�
e−u2Lz

−RTEe−u2ð2h0þLzÞ
�
J0ðλrÞλ3dλ: (A-7)

To determine the behavior of the measured field components, we
find the rate of change of the field as the sonde traverses the inter-
face at z ¼ 0. This is accomplished by taking the derivative of the
fields with respect to the position h0 of the transmitter:

∂
∂h0

Hð1Þ
zz ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

RTEeu1ð2h0þLzÞJ0ðλrÞλ3dλ; (A-8)

∂
∂h0

Hð2Þ
zz ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

RTEeu1h0e−u2ðh0þLzÞJ0ðλrÞλ3dλ; (A-9)

∂
∂h0

Hð3Þ
zz ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

RTEe−u2ð2h0þLzÞJ0ðλrÞλ3dλ: (A-10)

The expressions for the horizontal component (Hzx) in the three
cases are

Hð1Þ
zx ðr; z; h0Þ ¼

m
4π

Z
∞

0

�
e−u1ðz−h0Þ

− RTEeu1ðzþh0Þ
�
J1ðλrÞλ2dλ; (A-11)

Hð2Þ
zx ðr; z; h0Þ ¼

m
2π

Z
∞

0

u2
u1 þ u2

eu1h0e−u2zJ1ðλrÞλ2dλ;
(A-12)

Hð3Þ
zx ðr; z; h0Þ ¼

m
4π

Z
∞

0

�
e−u2ðz−h0Þ

− RTEe−u2ðzþh0Þ
�
J1ðλrÞλ2dλ: (A-13)

Then, the rates of change of the field at the receiver position
(z ¼ h0 þ Lz) as the sonde moves are

∂
∂h0

Hð1Þ
zx ðr; h0 þ Lz; h0Þ

¼ −m
2π

Z
∞

0

u1RTEeu1ð2h0þLzÞJ1ðλrÞλ2dλ; (A-14)

∂
∂h0

Hð2Þ
zx ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

u2RTEeu1h0e−u2ðh0þLzÞJ1ðλrÞλ2dλ; (A-15)

∂
∂h0

Hð3Þ
zx ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

u2RTEe−u2ð2h0þLzÞJ1ðλrÞλ2dλ: (A-16)

The HMDx

The calculation uses Schelkunoff potentials, which allow the sep-
aration of the field into the TEz and TMz modes of propagation in
relation to the z-axis.
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Considering that y ¼ 0 and μ1 ¼ μ2 ¼ μ0, the expressions for the
vertical magnetic field in the three cases are

Hð1Þ
xz ðr; z; h0Þ ¼

m
4π

Z
∞

0

�
e−u1ðz−h0Þ

þ RTEeu1ðzþh0Þ
�
J1ðλrÞλ2dλ; (A-17)

Hð2Þ
xz ðr; z; h0Þ ¼

m
2π

Z
∞

0

u1
u1 þ u2

eu1h0e−u2zJ1ðλrÞλ2dλ;
(A-18)

Hð3Þ
xz ðr; z; h0Þ ¼

m
4π

Z
∞

0

�
e−u2ðz−h0Þ

þ RTEe−u2ðzþh0Þ
�
J1ðλrÞλ2dλ: (A-19)

Then, making z ¼ h0 þ Lz, the rates of change with respect to h0
become

∂
∂h0

Hð1Þ
xz ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

u1RTEeu1ð2h0þLzÞJ1ðλrÞλ2dλ; (A-20)

∂
∂h0

Hð2Þ
xz ðr; h0 þ Lz; h0Þ

¼ m
2π

Z
∞

0

u1RTEeu1h0e−u2ðh0þLzÞJ1ðλrÞλ2dλ; (A-21)

∂
∂h0

Hð3Þ
xz ðr; h0 þ Lz; h0Þ

¼ −
m
2π

Z
∞

0

u2RTEe−u2ð2h0þLzÞJ1ðλrÞλ2dλ: (A-22)

The expressions for the horizontal magnetic component (Hxx) in
the three cases, again in the particular case with μ1 ¼ μ2 ¼ μ0, are

Hð1Þ
xx ðr;z;h0Þ¼

m
4πr

�Z
∞

0

k21
u1

�
e−u1ðz−h0ÞþRTMeu1ðzþh0Þ

�
J1ðλrÞdλ

þ
Z

∞

0

u1

�
e−u1ðz−h0Þ−RTEeu1ðzþh0Þ

�
J1ðλrÞdλ

−r
Z

∞

0

u1

�
e−u1ðz−h0Þ−RTEeu1ðzþh0Þ

�
J0ðλrÞλdλ

�
;

(A-23)

Hð2Þ
xx ðr; z; h0Þ ¼

m
2πr

�Z
∞

0

k21
ðZ1 þ Z2Þη1

eu1h0e−u2zJ1ðλrÞdλ

þ
Z

∞

0

u1u2
u1 þ u2

eu1h0e−u2zJ1ðλrÞdλ

− r
Z

∞

0

u1u2
u1 þ u2

eu1h0e−u2zJ0ðλrÞλdλ
�
; (A-24)

Hð3Þ
xx ðr;z;h0Þ¼

m
4πr

�Z
∞

0

k22
u2

�
e−u2ðz−h0Þ−RTMe−u2ðzþh0Þ

�
J1ðλrÞdλ

þ
Z

∞

0

u2

�
e−u2ðz−h0ÞþRTEe−u2ðzþh0Þ

�
J1ðλrÞdλ

−r
Z

∞

0

u2

�
e−u2ðz−h0ÞþRTEe−u2ðzþh0Þ

�
J0ðλrÞλdλ

�
: (A-25)

Then,

∂
∂h0

Hð1Þ
xx ðr;h0þLz;h0Þ¼

m
2πr

�Z
∞

0

k21RTMeu1ð2h0þLzÞJ1ðλrÞdλ

−
Z

∞

0

u21RTEeu1ð2h0þLzÞJ1ðλrÞdλ

þr
Z

∞

0

u21RTEeu1ð2h0þLzÞJ0ðλrÞλdλ
�
; (A-26)

∂
∂h0

Hð2Þ
xx ðr; h0 þ Lz; h0Þ

¼ m
2πr

�Z
∞

0

ðu1 − u2Þk21
ðZ1 þ Z2Þη1

eu1h0e−u2ðh0þLzÞJ1ðλrÞdλ

þ
Z

∞

0

u1u2RTEeu1h0e−u2ðh0þLzÞJ1ðλrÞdλ

− r
Z

∞

0

u1u2RTEeu1h0e−u2ðh0þLzÞJ0ðλrÞλdλ
�
; (A-27)

∂
∂h0

Hð3Þ
xx ðr; h0 þ Lz; h0Þ

¼ m
2πr

�Z
∞

0

k22RTMe−u2ð2h0þLzÞJ1ðλrÞdλ

−
Z

∞

0

u22RTEe−u2ð2h0þLzÞJ1ðλrÞdλ

þ r
Z

∞

0

u22RTEe−u2ð2h0þLzÞJ0ðλrÞλdλ
�
. (A-28)
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