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A B S T R A C T

This study describes the comparative study of different methods for estimating daily global solar irradiation (H):
Angstrom-Prescott (A-P) model and two Machine Learning techniques (ML) – Support Vector Machine (SVM)
and Artificial Neural Network (ANN). The H database was measured from 1996 to 2011 in Botucatu/SP/Brazil.
Different combinations of input variables were adopted. MBE, RMSE, d Willmott, r and r2 statistical indicators
obtained in the validation of A-P and SVM and ANN models showed that: SVM technique has better
performance in estimating H than A-P and ANN models. A-P model has better performance in estimating H
than ANN.

1. Introduction

Knowledge of global solar irradiation (H) is of utmost importance in
climate studies on renewable energy, architecture projects and agri-
culture (growth models and yield of agricultural crops and evapotran-
spiration estimates) (Chen et al., 2004; Souza et al., 2005; Almorox
et al., 2005; Hsiao et al., 2008; Bosch et al., 2008; El-Sebaii et al.,
2009). Brazil is a country of great continental dimensions and knowl-
edge of annual solarimetric availability for different applications,
mainly projects of power generation and cogeneration is also very
important (Martins et al., 2012; Castillo et al., 2016). However, Brazil
has a tremendous lack of solarimetric information caused by high cost
and maintenance of solarimetric stations. Therefore, many researchers
have been developing and adjusting models that allow estimating
different types of solar radiation such as: global, diffuse, direct and
spectral radiation (UV, Photosynthetically Active Radiation – PAR and
Near Infrared Radiation – NIR). In general, these models are categor-
ized into different classes: statistical, empirical, physical (radiative
transfer) and more recently Machine Learning techniques (ML)
(Oliveira et al., 2002; Soares et al., 2004; Jiang, 2008; Martins et al.,
2008; Escobedo et al., 2012; Santos et al., 2014, 2016; Lyra et al.,
2015).

Statistical models are usually more recommended because of their
simplicity of use, as they need other input variable for routine

measurements in meteorological stations. Their disadvantage is that
they are only valid for locations in which they are generated, adjusted
or for regions of similar climate. The main and most used statistical
model is the Angstrom-Prescott model (A-P), which estimates H in
daily or monthly partition from daily sunshine duration values (n).
Hargreaves and Samani (1982) and Bristow and Campbell (1984) are
the two other models which use air temperature variation as an input
variable. There are also other modified models from different locations
which associate air temperature with other input variables (Hunt et al.,
1998; Bechini et al., 2000; Almorox et al., 2011a; Bojanowski et al.,
2013).

Radiative transfer models are more complex than statistical models
and require mixed input meteorological parameters measured by
satellites on the Earth's surface and atmosphere (Madkour et al.,
2006). The disadvantage of these models is the need for detailed
information of difficult access on ozone, aerosols, gases and water
vapor concentrations in the atmosphere (Gueymard, 2003; Kaushika
et al., 2014). Radiative transfer models require extensive computa-
tional work on complex atmospheric transfer processes as a result of
temporal and spatial variations of aerosols and water vapor concentra-
tions (Dai and Fang, 2014; Zhang et al., 2014).

ML models are able to solve complex problems and have been
successfully applied to estimate solar radiation (Rehman and
Mohandes, 2008). The technique allows modeling a system in which
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only the input and output variables are known. The main advantage of
using ML models is their capacity of generalizing and optimizing time
(Oliveira et al., 2006). The main ML models used were as follows:
Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural
Network (ANN), Genetic Programming (GP) and Support Vector
Machine (SVM). Some recent studies have concluded that the SVM
technique has better performance in estimating solar radiation than
ANN, ANFIS techniques and other numerical methods. In particular, H
estimates by SVM and ANN models have been studied and compared
with statistical models, and the results have shown that the perfor-
mance of ML (SVM and ANN) models are similar in some cases and
better in other cases than statistical models (Elizondo et al., 1994;
Tymvios et al., 2005; Chen et al., 2013; Piri et al., 2015; Quej et al.,
2017). The SVM technique shows better performance than the A-P
model in several cases, because the formulation of SVM involves the
minimization concept of the structural risk, as an opposing approach to
minimization of the empirical risk, which is widely used in the methods
of statistical learning. The minimization of the structural risk attenu-
ates the upper limit in the generalization error in contrast to the
minimization of the empirical risk, which makes the error minimum in
data of training. That difference is the reason for the SVM’s better
generalization potential (Shamshirband et al., 2014; Ramedani et al.,
2014).

In southeastern Brazil, there are few studies on H modeling using
ML, so adjustment and validation of ML models in estimating H is of
great interest for mapping and potential using of solar radiation in
projects in Brazil (Lima et al., 2016).

The present study presents a comparative study between the A-P
statistical model and ML models. A 16-year daily global solar irradia-
tion database from 1996 to 2011 was used to generate and validate A-P
models and two SVM and ANN techniques. For SVM and ANN
techniques, four different kinds of architecture combining input
variables in the model were studied: model 1 of SVM and ANN has
as input variables fractional daily sunshine duration (r′=n/N, where n
is daily sunshine duration and N is day length) and solar radiation at
the top of the atmosphere (HO) equal to the A-P model; and in the
following models 2, 3 and 4, other variables were added, one by one,
such as air temperature, precipitation and relative humidity, respec-
tively. The results of validation, comparison between measurements
and model estimates by correlation (r) and statistical indicators (MBE,
RMSE and d Willmott), allowed classifying the performance of models
in H estimates and expansion of climate series.

2. Material and method

2.1. Study location and data

Data used in this study were measured in the Solar Radiometric
Station at the College of Agricultural Sciences (FCA), University of the
State of São Paulo (UNESP), located in Botucatu (22º53′S latitude,
48º26′W longitude and 786 m altitude). Botucatu is a municipality
located in the midwestern region of São Paulo state, 1,482,642 km2

total area. The city has high altitude gradient between 400 and 500 m
in the lowest region and between 700 and 900 m in the mountainous
region. That difference causes changes in air temperature and winds.
With Cerrado and Atlantic forest biomes, and according to the Köppen
climatic classification, the climate of the Botucatu region is Cwa,
characterized as altitude tropical climate, hot and humid summer with
high precipitation, dry winter and average temperature of the warmest
month higher than 22 °C. Topography and climate in the region are
very favorable for agriculture and solarimetric projects. Moreover, high
prevalence of sugarcane and eucalyptus crops in the region is observed
(Santos and Escobedo, 2016).

Data on daily sunshine duration, air temperature (maximum and
minimum), precipitation and air relative humidity for the 1996–2011
period were used. Global solar irradiance (I, W m−2) was monitored

using an Eppley PSP pyranometer with 4.1% error (Reda et al., 2008).
In the acquisition of I data, a Campbell Scientific CR23X datalogger
was used, operating at frequency of 1 Hz and storing averages every
5 min. Those data have been subjected to rigorous quality control (for
elimination of spurious or inconsistent values) through programs
developed for calculating integrated irradiation on the day H (Chaves
and Escobedo, 2000). Daily sunshine duration data (n, hours) were
obtained by a Campbell-Stokes sunshine recorder; precipitation (P,
mm) measured by an Ota Keiki Seisakusho rain gauge; maximum and
minimum air temperature (T, °C) measured by mercury and alcohol
bulb thermometer, respectively; and air relative humidity (RH, %)
measured by a hygrometer according to the World Meteorological
Organization, WMO (1981).

2.2. Angstrom-Prescott Model (A-P)

Several models have been suggested to estimate H using daily
sunshine duration as input variable. The most widely known model to
estimate H was proposed by Angström (1924) and later modified by
Prescott (1940) using Eq. (1): wherein (HO) is the solar radiation at the
top of the atmosphere, (n) is the daily sunshine duration and (N) is the
day length:

H
H

a b n
N

= + ×
o

⎛
⎝⎜

⎞
⎠⎟ (1)

Coefficient "a" can be interpreted as the H fraction that reaches the
Earth's surface on a cloudy day, being dependent on the type and
thickness of clouds. Coefficient "b" is a supplement which gives the
total H. The sum (a+b) is the potential fraction of solar radiation at the
top of the atmosphere available to reach the surface (i.e., H on a clear
sky day). Ho depends on the latitude, solar declination, timing angle
and day length (N) (Souza et al., 2016). Coefficients "a" and "b" of the
A-P model were determined by the least square method. This method
minimizes mean square error of the estimated data compared to
measured data.

2.3. Support Vector Machine (SVM) with the Sequential Minimal
Optimization (SMO) algorithm

Support Vector Machine (SVM) is a supervised learning technique
based on the statistical learning theory (Vapnik, 1995). More detailed
information on SVM can be found at Vapnik (1998). Due to its ability
to provide excellent generalization performance, SVM has become a
powerful tool for resolving problems of pattern recognition, classifica-
tion, prediction, and regression (Shevade et al., 2000). Solution for
regression problems using SVM can be given through an iterative
algorithm called Sequential Minimal Optimization (SMO) (Smola and
Schölkopf, 1998). Subsequently, improvements in SMO have been
suggested (Shevade et al., 2000). SMO is a simple algorithm that
quickly solves the problem of the lowest possible optimization with two
Lagrange multipliers (Platt, 1998; Smola and Schölkopf, 2004).
Computational speed and ease of implementation are favorable char-
acteristics in the use of the SMO algorithm. The advantage of its use
over other techniques is because it is based on the structural risk
minimization principle, which attempts to minimize a generalization
error upper limit instead of minimizing the local training error (Chen
et al., 2013). In addition, it offers a unique solution and estimates
regression using a set of kernel functions which are defined in a high-
dimensional space, making data linearly separable. The used Kernel
functions are generally polynomial, sigmoidal and the radial basis
function (RBF). In this study, RBF is used for regression because of
computational efficiency, simplicity and adaptation for optimization of
complex problems.

When using RBF, it is necessary to properly adjust C (cost), γ
(gamma) and ε (epsilon) parameters. C, γ and ε values are tested and
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those with the best accuracy in the cross validation are chosen. After
several parameter tests (C = 100, γ = 0.3 and ε = 0.001), values equal to
those obtained by Ramedani et al. (2014) and Mohammadi et al.
(2015a) were used.

2.4. Multilayer Perceptron (MLP) with Back Propagation algorithm
(BP)

Multilayer Perceptron (MLP) was the ANN used. MLP maps sets of
input data for a set of output data. This technique is widely used in
modeling to solve complex problems. Fig. 1 shows the MLP structure,
wherein the first layer is the input (xi,j), the second has one or more
hidden layers of compute nodes with connection weights (wi,j) and the
third layer corresponds to the output of compute nodes (yi), (Lyra
et al., 2015). Input signals are sent to the hidden layer. Then, hidden
and output layers multiply input signals by a set of weights.

The typical MLP with a hidden layer can be modeled as Eq. (2)
(Lam et al., 2008b):

∑y w x θ= +i j

n
i j i j i=1 , , (2)

Where θi is the bias of neuron i. Each entry is multiplied by a
connection weight. Output of neurons is calculated by applying a
nonlinear activation function, Eq. (3), which is typically standard
sigmoid (Rehman and Mohandes, 2008).

f x sigmoid x
exp x

( ) = ( ) = 1
(1 + (− )) (3)

There are many specific learning algorithms for certain neural
network models. MLP was trained using supervised learning algorithm
Back Propagation (BP) and the momentum term. In this algorithm, the
value of each output layer is used to update the weight of the previous
layer. BP interactively learns the joint processing of data training
examples. Weight adjustment in the iteration depends on the learning
rate and momentum. The learning rate for each interaction controls the
size of weight changes and bias.

2.5. Software used

Waikato Environment for Knowledge Analysis (WEKA) toolbox was
used to train and validate H data with the SMO algorithm for SVM and
BP for ANN. WEKA is a set of ML algorithms containing tools for data
preprocessing, classification, regression and association and visualiza-
tion rules (Witten et al., 2011). SMO is used with the RBF Kernel
function for model formation. In ANN models with BP algorithm, the
following values were considered: learning rate = 0.3; momentum=0.2
and number of iterations=500. The hidden layers were tested, ranging

from 1 to 10, but the WEKA default value was adopted for the best fit
found. In WEKA, the pattern of hidden layers is defined as "α"= [(input
variables+classes)/2]. The sigmoidal activation function is adopted.

2.6. Validation database of models: selection of atypical and typical
years

In the validation of models generated in this work, a 2-year
database of H was used, called typical and atypical year, separated
from the total 16-year database 1996–2011. The selection of typical
and atypical years was accomplished through statistical analysis of
data, where the average inter-year H value with standard deviation of
each month and the average irradiance value of each month per year
were compared in each month of the year. Example of application of
this methodology can be found in Fig. 2, where the horizontal line with
dumbbells represents the average inter-year irradiation with standard
deviation, and columns represent the average irradiation of each year
for the month of January.

The typical year selection criterion is similar to the selection process
of the typical meteorological year published by the World
Meteorological Organization (WMO) in 1981. For the month of
January, the typical year was 2004 – column closest to the average
inter-year irradiation, while 2001 was atypical – column farthest from
the average inter-year irradiation. The results found for the remaining
months are shown in Table 1, which shows the monthly constitution of
typical and atypical years of the total 16- year database.

The organization structure of input data begins with the initial
columns corresponding to the input variables and the last column to
the output variable, columns separated by comma. The input files in
the .dat format for training and validation of SVM and ANN were
transformed into .arff file, which is the extent necessary for processing
data in the WEKA toolbox.

2.7. Statistical indicators

There are several statistical indexes used to evaluate model
performances. For solar radiation models the following indexes are
usually used: Mean Bias Error (MBE), Relative Mean Bias Error
(rMBE), Root Mean Square Error (RMSE), Relative Root Mean
Square Error (rRMSE), correlation coefficient (r), determination
coefficient (r2) and the Willmott Concordance Index (d) (Santos
et al., 2016). The equations below were used to evaluate the perfor-
mance of the generated models:

MBE
Y X
M

=
∑ ( − )i

M
i i=1

(4)

Fig. 1. Block diagram showing the Artificial Neural Network (ANN) architecture used,
adapted from Haykin (1998).

Fig. 2. Comparison between the average inter-year H value with standard deviation and
the average irradiance value of the year for the month of January in the series.
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where Yi represents the estimated values, Yi are the average estimated
values, Xi are the measured values, X are the average measured values
and M is the number of observations.

MBE (or rMBE) provides information on the performance of long-
term models, allowing a comparison of the actual deviation between
estimates and measures. The ideal MBE value is "zero". The disadvan-
tage of this method is that an overestimation cancels an underestima-
tion. RMSE (or rRMSE) provides information on the short-term
performance. The RMSE value is always positive, and the lower the
RMSE values obtained, the better the model performance. The adjust-
ment index "d" ranging from 0 to 1 represents total maladjustment and
adjustment, respectively, between estimates and measures (Willmott,
1981). A classification scale for different rRMSE intervals to evaluate
the performance of models is used (Jamieson et al., 1991; Li et al.,
2013): excellent if rRMSE < 10%; good if 10%≤rRMSE < 20%; accep-
table if rRMSE≤20%< 30% and poor if rRMSE≥30.

3. Results and discussion

3.1. Correlation between atmospheric transmissivity of global solar
irradiation (H/HO) and fractional daily sunshine duration (n/N):
Angstrom-Prescott Model (A-P)

Fig. 3 shows the correlation between atmospheric transmissivity of
global solar irradiance (Kt = H/HO) and fractional daily sunshine
duration (n/N) for the database measured in the 1996–2011 period in
Botucatu, SP. Overall, 5685 days were used, of which 921 days were for
Kt ≤ 0.35 (cloudy sky condition), and 3387 days were for 0.35 <Kt ≤
0.65 (partly cloudy sky condition) and 1377 days with Kt > 0.65 (clear
sky condition). The correlation is linear throughout the variation range
n/N between 0 and 1. Correlation scattering is similar to that from
most studies using the Angstrom-Prescott equation (Bakirci, 2009).

Correlation scattering is high, for each n/N value, there is a wide
range of variation in H/HO values. The effect is because of the great
variability of cloud concentrations (when combining layer type, num-

ber and thickness), water vapor and aerosols in the atmosphere that
absorb and spread global radiation differently in different types of sky
coverage for the same n/N values. There are many cloud cover
combinations that will generate the same n/N value, but one cannot
expect that each combination produces a single H/HO value, as can be
seen in n/N values close to zero. The Eq. (11) of A-P obtained in the
correlation of Fig. 3 by linear regression is:

H H n N( / ) = 0.253 + 0.465 × ( / )O (11)

The determination coefficient (r2) is 0.806 and the value of the
minimum H fraction a is 0.253, which provides total H (b = 0.465) or
the maximum atmospheric fraction (a + b = 0.718) are similar to
values obtained in several locations in Brazil and are within the
variation range of coefficients (a = 0.265 ± 0.052) (a + b = 0.689 ±
0.058) and r2, whose average is 0.778 ± 0.095 (Table 2).

Despite the wide use of A-P model, much because of its practicality
and not much because of its accuracy; it depends on the climate in the
location of the measures. The permanent adjustment of the equation
coefficients a and b must be assessed periodically because of climatic
variations. Other limitation of the method is the sunshine measure,
which is not accurate, mainly in tropical regions where air relative
humidity is high, making it difficult burning the heliograph tape.

Climatic conditions, cloud type and thickness, water vapor and
aerosol concentrations in the atmosphere are factors responsible for
variations of "a" and "a+b" coefficients in each location. The "a" and
"b" values are found in this study close to those suggested by Allen et al.
(1998) by the FAO-56 Bulletin, which is a = 0.25 and b = 0.50 to be a
universal equation that meets locations where there are no solar global
radiation measures and no calibration has been carried out for
improved a and b values. Therefore, the coefficients obtained can be
used in locations with the same climatic conditions.

3.2. Validation of the Angstrom-Prescott model (A-P)

Fig. 4(a, b) shows the correlations obtained in the validation
between estimates and H measures for typical and atypical databases.

Table 1
Typical and atypical year obtained from the 16-year database.

Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Year Typical 2004 2000 2008 2005 2005 2005 2002 2003 2000 2003 2003 2005
Atypical 2001 2005 2011 2008 2003 1997 2009 1998 2009 2001 1998 2011

Fig. 3. Correlation between atmospheric transmissivity of global solar irradiation (H/
HO) and fractional daily sunshine duration (n/N); the red color line is the linear
regression line in the 1996–2011 period. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Distribution of values estimated by the A-P equation and measures in
both validation conditions are in linear correlation with the ideal lines
of comparison (1:1). Linear regression equations with correlation
coefficients rt = 0.942 (“t” index indicates typical year) and ra =
0.939 (“a” index indicates atypical year) show that the A-P equation can
estimate H with determination coefficients rt

2 = 0.887 (Fig. 4a) and ra
2

= 0.882 (Fig. 4b). Linear correlation coefficients (r) obtained in this
study are higher than the r value of = 0.939 and is at the same order of
magnitude as r = 0.89–0.98 determined by Li et al. (2011) (Table 3).

Table 3 shows statistical indexes (rMBE, RMSE, r) obtained in the
model validation and those from other locations. Values of rMBEt

(A-P) = −3.0% and rMBEa
(A-P) = 1.1% in Botucatu are at the same order

of magnitude as the experimental error for global radiation measured
by the sensor, which is 4.1% (Reda et al., 2008). They are higher than
those found by Martim et al. (2014), Sabzipavar et al. (2013), Zhao
et al. (2013) and Iziomon and Mayer (2001). Moreover, the results
were lower than values found by Trnka et al. (2005), Lam et al.
(2008a), Wan et al. (2008), Li et al. (2011) and Berusky et al. (2015).
The results obtained by Manzano et al. (2015) alternate values above
and below the results from Botucatu. These differences result from

adjustments of the model to climate conditions of each location.
Scattering values (rRMSEt

A-P = 13.1% and rRMSEa
A-P = 15.7%)

were also considered good results according to the criterion by
Jamieson et al. (1991). Local rRMSE values were higher than those
found by Iziomon and Mayer (2001), Nicácio et al. (2001), Trnka et al.
(2005), Torres et al. (2010), Li et al. (2011), Andrade Júnior et al.
(2012), Martim et al. (2014) and Berusky et al. (2015). Local rRMSE
values alternate with values obtained by: Lam et al. (2008a), Wan et al.
(2008), Liu et al. (2009), Li et al. (2012), Chen et al. (2013), Sabzipavar
et al. (2013), Zhao et al. (2013), Mohammadi et al. (2015a), Manzano
et al. (2015) and Park et al. (2015). Local rRMSE values were lower
than those found by Pereira (2010). Concordance index dtA-P=0.963
and daA-P = 0.959 close to 1 shows good agreement between estimates
and measures.

3.3. Training and validation of models of SVM and ANN techniques

The same data base used for generation of the A-P model (Fig. 3)
was used in the training of SVM and ANN techniques. The Angstrom-
Prescott model and SVM1 and ANN1 models (combination 1) use the

Table 2
Angstrom-Prescott coefficients (A-P) obtained in Brazil by several authors.

Authors Cities Coefficients

a b a+b r2

Mota et al. (1977) 55 locations (Brazil) 0.170–0.31 0.41–0.57 0.71–0.74 –

Azevedo et al. (1981) Fortaleza (CE) 0.27 0.36 0.63 0.74
Araújo et al. (2001) São Paulo (SP) 0.29 0.36 0.65 –

Nicácio et al. (2001) Maceió (AL) 0.32 0.37 0.69 0.76
Blanco and Sentelhas (2002) Piracicaba (SP) 0.23 0.5 0.73 0.84
Pacheco and Bastos (2002) Capitão Poço (PA) 0.30 0.34 0.64 0.70
Texeira et al. (2002) Juazeiro (BA) 0.26 0.32 0.58 0.81
Dantas et al. (2003) Lavras (MG) 0.23 0.49 0.72 0.79
Santos et al. (2003) Ilha Solteira (SP) 0.26 0.47 0.73 0.81
Dallacort et al. (2004) Palotina (PR) 0.21 0.39 0.6 0.84
Back (2005) Urussanga (SC) 0.23 0.49 0.71 0.72
Dornelas et al. (2006) Brasília (DF) 0.28 0.49 0.77 0.81
Pilau et al. (2007) Araras (SP) 0.24 0.46 0.7 0.72
Pereira et al. (2010) Pedra Azul (MG) 0.27 0.33 0.59 0.57
Torres et al. (2010) Canavieiras (BA) 0.37 0.27 0.63 0.99
Carvalho et al. (2011) Seropédica (RJ) 0.28 0.43 0.72 0.82
Andrade Júnior et al. (2012) Parnaíba (PI) 0.32 0.46 0.78 0.63
Belúcio et al. (2014) Macapá (AP) 0.27 0.43 0.7 0.82
Martim et al. (2014) Sinop (MT) 0.27 0.47 0.74 0.86
Berusky et al. (2015) Ponta Grossa (PR) 0.14 0.48 0.62 –

Souza et al. (2016) 3 locations (AL) 0.24–0.34 0.38–0.48 0.71–0.73 –

Abbreviations represent the following Brazilian states: AP = Amapá, AL = Alagoas, BA = Bahia, CE = Ceará, DF = Federal District, MT = Mato Grosso, MG = Minas Gerais, PA = Pará,
PI=Piauí, RJ = Rio de Janeiro, SP = São Paulo, PR = Paraná, SC = Santa Catarina.
– Information not provided by the authors.

Fig. 4. (a, b). Comparison between values estimated by the method A-P and those measured for (a) typical and (b) atypical years.
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same input variables HO, N and n (measured). In addition to
combination 1, three new combinations were trained (SVM2, SVM3
and SVM4; ANN2, ANN3 and ANN4), maintaining the same variables
of combination 1 and adding the following input variables: maximum
and minimum air temperature (T, ºC), precipitation (P, mm) and
relative humidity (RH, %), as shown in Table 4. Input data for SVM and
ANN models consist of independent and dependent variables. Input
variables were selected because of their correlation with H and being
more easily monitored and available in stations (Liu and Scott, 2001;
Podestá et al., 2004; Behrang et al., 2010).

Fig. 5 shows dispersion between H values estimated by SVM and
ANN models and measures, and the straight lines obtained by linear
regression and correlation coefficients (r) for typical (rt) and atypical
years (ra), respectively, for the four combinations. The introduction of a
new meteorological variable in each combination modifies the H
estimated value, altering scattering, and consequently, changing corre-
lations in both typical and atypical validation bases.

Visually, the dispersion differences among combinations 1, 2, 3 and
4 can be better observed by comparing dispersion in Fig. 5(a, c, e, g) for
typical basis and Fig. 5(b, d, f, h) for atypical basis.

In combination 1, values estimated by SVM1 and ANN1 are in
linear accordance with the measured values Fig. 5(a, b): correlations (r)
are very close to the ideal straight line of comparison (1:1). For SVM1,
rt = 0.962 and ra = 0.947 values, while for ANN1 rt = 0.924 and ra =
0.932 values show that H measures and estimates are statistically well
correlated. The comparison of (r) values of the training validation of
ML techniques with A-Pt model shows that SVM1 has better perfor-
mance than A-Pt and ANN1 models in both validation conditions. In
turn, A-Pt model has better performance than ANN1 in both validation
conditions.

In combination 2, SVM2 and ANN2 Fig. 5(c, d) also show
correlations (r) very close to the ideal straight line (1:1), (rt = 0.966
and rt = 0.965) and (ra = 0.951 and ra = 0.951) values obtained by
SVM2 and ANN2 techniques show that measures and estimates are
well correlated. Inclusion of temperatures (Tmax and Tmin) increased
values of correlation coefficients for SVM2 and ANN2 combinations in
relation to SVM1 and ANN1 combinations. The combination of HO, n/
N, Tmax and Tmin variables in SVM2 and ANN2 models represent the
joining of all variables of A-P, Hargreaves-Samani and Bristow-
Campbell equations. The latter two equations use Tmin and Tmax
variables (temperature range) to estimate H (Hargreaves and Samani,
1982; Bristow and Campbell, 1984). ANN2 showed the highest r
amplitude variation between models of Table 4, rt value of 0.924
increased to 0.965, while ra=0.932 increased to 0.951. SVM2 per-
formed better than the ANN2 network in both validation conditions.

For SVM3 and ANN3 combinations (Fig. 5e, f), adding precipitation
improved the performance with a small gain in r values: rt = 0.969 and
rt = 0.955, and ra = 0.964 and ra = 0.952, respectively. Similarly, for
SVM4 and ANN4 models (Fig. 5g, h), adding relative humidity (%) in
ANN3 and SVM3 combination kept rt = 0.970 and rt = 0.958 and ra =
0.963 and ra = 0.951 values, respectively, very close to those obtained
with SVM2 and ANN2 in both validation conditions.

Table 3
Statistical indicators obtained for several locations.

Authors Locations (N°) Latitudes rMBE(%) MBE(MJ m−2 day−1) rRMSE(%) RMSE(MJ m−2 day−1) r

Iziomon and Mayer
(2001)

2 (Germany) 47°52′ – 47°54′ N – (−0.02)–0 – (0.03–0.7) –

Nicácio et al. (2001) Maceió (Brazil) 9°35′ S – 0.03 – 1.73 0.87
Trnka et al. (2005) 10 (Austria/

CzechRepublic)
46°58′ – 50°11′ N (−4.14)–3.05 (−0.50)–0.32 13.0–17.34 1.41–1.80 –

Lam et al. (2008a) 40 (China) 23°23′ – 49°13′ N (−14.90)–18.7 (−2.88)–1.84 7.60–32.60 1.19–3.61 –

Liu et al. (2009) 31 (China) 31°09′ – 43°39′ N – – – 1.39–3.08 –

Wan et al. (2008) 41 (China) 22°18′ – 49°13′ N (−16.20)–
18.80

(−3.00)–2.04 7.40–31.30 1.22–3.74 –

Li et al. (2011) 4 (China) 29°40′ – 32°30′ N – 0.57–1.25 – 1.1–1.64 0.89–0.98
Benghanem and Mellit

(2010)
Al-Madinah (Saudi
Arabia)

24°33′ N – – – 0.0002 0.97

Pereira et al. (2010) Pedra Azul (Brazil) 15°14′40′′ S – – – 2.83 –

Torres et al. (2010) Canavieiras (Brazil) 15°40′ S – – – 1.72 –

Andrade Júnior et al.
(2012)

Parnaíba (Brazil) 03°05′ S – – – 0.08 –

Li et al. (2012) 15 (China) 26°34′48′′ – 32°0′ N – – – 1.81–3.39 –

Chen et al. (2013) 3 (China) 38°54′ – 41°44′ N – – 14.90–19.40 1.99–2.28 –

Sabzipavar et al. (2013) 15 (Iran) 28°58′48′′ – 38°04′
48′′ N

– (−0.15)–0.07 – 1.66–3.25 –

Zhao et al. (2013) 9 (China) 23°07′ – 45°45′ N – (−0.04)–0.09 – 1.72–5.24 –

Martim et al. (2014) Sinop (Brazil) 11°58′48′′ S – −0.02 – 1.85 –

Berusky et al. (2015) Ponta Grossa (Brazil) 25°05′12′′ S – 1.58 – 1.64 –

Manzano et al. (2015) 25 (Spain) 36°30′ – 43°29′24′′ N – (−1.32)–0.30 – 1.11–3.37 –

Mohammadi et al.
(2015a)

Isfahan (Iran) 32°39′41′′ N – – 13.9 2.67 –

Park et al. (2015) 22 (South Korea) 33°30′34′′ – 37°52′
29′′ N

– – – 0.47–2.73 –

Souza et al. (2016) 3 (Brazil) 9°15′ – 9°44′24′′ S – (−0.91)–0.22 – 1.95–2.98 –

Present study (2016)a Botucatu (Brazil) 22°53′ S −3.0 −0.52 13.1 2.28 0.94
Present study (2016)b Botucatu (Brazil) // 1.1 0.19 15.7 2.69 0.94

N° = Number of location; – Not informed by the authors; // Repetition of term.
a Typical year.
b Atypical year.

Table 4
Input variables for SVM and ANN combinations.

Model SVM ANN Input variable

combination l SVM1 ANN1 HO, n/N
combination 2 SVM2 ANN2 HO, Tmax, Tmin, n/N
combination 3 SVM3 ANN3 HO, Tmax, Tmin, P, n/N
combination 4 SVM4 ANN4 HO, Tmax, Tmin, P, RH, n/N

HO = solar radiation at the top of the atmosphere, n/N = fractional daily sunshine, Tmax
= maximum air temperature, Tmin=minimum air temperature, P = Precipitation and
RH=relative humidity.
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Fig. 5. (a-h). Correlations between values estimated by ML models and measured H values.

Fig. 6. (a-m). Statistical indicators rMBE (%), rRMSE (%) and d Willmott in the validation.
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Values of r obtained for the four models (Fig. 5) in both conditions
of validation show that as of the second combination, the other ones
can estimate H with equal or similar accuracy. Therefore, for compar-
isons between the Angstrom-Prescott model and SVM and ANN
techniques, SVM4 and ANN4 combinations were chosen.

Statistical indicatorsMBE, RMSE and dWillmott obtained from the
comparison of estimated and measured H values, respectively for
typical and atypical years, are shown in Fig. 6(a-m).

For combination 1, rMBE values (Fig. 6a) of validation with typical and
atypical years, respectively, show that rMBEt

ANN1 = −14.1% and
rMBEa

ANN1 = −10.7%. The rRMSE values (Fig. 6b) were rRMSEt
SVM1 =

10.5% andrRMSEa
SVM1 = 13.9%, while rRMSEt

ANN1 = 20.3% and
rRMSEa

SVM1 = 19.9%, indicating that on average, rRMSESVM1 values are
7.9% lower than rRMSEANN1 values. The d Willmott concordance index
(Fig. 6c) for SVM1 was superior in the sequence for dt = 0.98 and da = 0.97
(average of 0.975±0.007), whereas for ANN1dt = 0.91 and da = 0.93
(average of 0.92±0.014), respectively.

For combination 2 (Fig. 6d), rMBE values show rMBEt
SVM2 = −3.3%

and rMBEa
SVM2 = 2.3%, while rMBEt

ANN2 = −11.6% and rMBEa
ANN2 =

−6.3%. The rRMSE values and (Fig. 6e) were equal to: rRMSEt
SVM2 =

10.2% andrRMSEa
SVM2 = 13.5% (average of 11.85 ± 2.33), while

rRMSEa
ANN2 = 15.1% and rMSEa

ANN2 = 15.0% (average of 15.05 ±
0.071). The d Willmott concordance index (Fig. 6f) with SVM2 was
superior in sequence for dt=0.98 and da = 0.97, while for ANN2dt =
0.96 and da = 0.97, respectively.

For combination 3, rMBE values (Fig. 6g) show rMBEt
SVM3 = −3.1%

and rMBEa
SVM3 = 2.2%, while for rMBEa

ANN3 = −13.0% and rMBEa
ANN3 =

−7.0%. The rMBESVM3 values are close to zero. The rRMSE values (Fig. 6h)
were: rRMSEt

SVM3 = 9.7% and rRMSEa
SVM3 = 13.0% while for

rRMSEt
ANN3 = 16.3% andrRMSEa

ANN3 = 15.6%. On average,
rRMSESVM3 value was 4.6% lower than rRMSEANN3. The d Willmott
concordance index (Fig. 6i) with SVM3 was equal for dt = 0.98 and da =
0.98, while for ANN1 dt = 0.95 and da = 0.97, respectively.

For combination 4, rMBE values (Fig. 6j) show SVM4: rMBEt
SVM4 =

−2.7% and rMBEa
SVM4 = 1.6%, while for ANN4: rMBEt

ANN4 = −13.2%
and rMBEa

ANN4 = −8.1%. The rRMSE values (Fig. 6l) were:

rRMSEt
SVM4 = 9.5% and RMSEa

SVM4 = 12.5%, while rRMSEt
ANN4 =

16.6% and rRMSEa
ANN4 = 15.6% (average of 16.1 ± 0.707). The d

Willmott concordance index (Fig. 5m) with SVM4 was equal to dt =
0.98 and da = 0.98 (average of 0.98 ± 0), while for ANN1 dt = 0.95 and
da = 0.96 (average of 0.955 ± 0.007), respectively.

The comparison of r, rMBE, rRMSE and d statistical indicators of
the training validation of ML techniques with that of A-Pt model shows
that the SVM1 combination has approximately the same performance
as that of the A-Pt model, and higher than that of ANN1 in the two
validation conditions. On the other hand, the A-Pt has better perfor-
mance than that of ANN1 in the two validation conditions. In practical
use, the choice between the A-P method and ANN1 combination should
be for the statistical model, whose indexes are more favorable for H
estimates. Concerning the A-P model and the SVM1 combination, the
choice is at the discretion of the user. The statistical method is the most
preferable, as it is more practical. However, computational software
techniques have been used because of their good performance and
continuous upgrade.

The rMBE values obtained with SVM (below 4.0%) are more
statistically significant than those of ANN (below 14.0%), with better
results for models 2, 3 and 4 (ANN and SVM). Similarly, rRMSE values
obtained with the SVM technique (below 15.0%) were also statistically
more significant than those with ANN (below 20.0%), with better
results for models 2, 3 and 4. The dWillmott values obtained with SVM
are closer to 1 than ANN values, with better results for models 2, 3 and
4. In general, statistical indicators rMBE, rRMSE and d Willmott
obtained for the four models (Fig. 6) show that from SVM2 and ANN2,
models can also estimate H values with precision and accuracy, thus
justifying the choice of SVM4 and ANN4 models to compare with the
Angstrom-Prescott model.

3.4. Performance of models (SVM and ANN) and comparison with
literature

Table 5 shows a comparison of the statistical indicators MBE (MJ
m−2 day−1), rMBE (%), RMSE (MJ m−2 day−1), rRMSE (%) r or r2

Fig. 7. (a-f). Statistical indicators rMBE, rRMSE, d Willmott, r and r2 for typical and atypical years.
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obtained in both validation conditions, typical and atypical years,
between measures and estimates with SVM4 and ANN4 in Botucatu,
and in various locations in the world. The studies listed in Table 5
estimate H based on ANN and SVM using different meteorological
variables as input parameters.

Comparison of indexes for typical and atypical years shows that
SVM4 presents more statistically significant results than ANN4, i.e., it
has better performance estimating H. rMBEt

SVM4 = −2.7% and
rMBEa

SVM4 = 1.6% values are smaller than rMBEt
ANN4 = (−13.2%)

and rMBEa
ANN4 = (−8.16%); values rRMSEt

SVM4 = 9.4% and rRMSEa

= 12.5% are smaller than rRMSEt
ANN4 = 15.6% and rRMSEa

ANN4 =
16.6%; the d Willmott values dtSVM4 = 0.98 and daSVM4 = 0.98 are
greater than those of dtANN4 = 0.95 and daANN4 = 0.96; and the rtSVM4 =
0.970 and raSVM4 = 0.918 values are greater than rtANN4 = 0.95 and
raANN4 = 0.96 values and (r2)tSVM4 = 0.941 and (r2)aSVM4 = 0.842
values are greater than (r2)aANN4 = 0.90 and (r2)aANN4 = 0.92.

MBE, RMSE, r and r2 values obtained in this study (Table 5) with
the SVM4 and ANN4 techniques are inferior or at the same order of
magnitude as, or superior to the results of SVM and ANN obtained in
other locations in the North and South hemispheres. Many factors,
such as technique training, types of ML programming and validation
process of techniques influenced the variability of the statistical
indicators (mainly rRMSE, common to all studies in Table 5) obtained
with the SVM4 and ANN4 techniques and SVM and ANN techniques
for other locations. In the training of ML techniques, the input of
different variables (meteorological and astronomical) provide different
estimates by the models. Also, the time duration of the data base used
in the technique training is important in the modeling process, because
a more extended data base provides more details about the influence of
the local climate on measures, and improves the ML model perfor-
mance. The types of ML models cause variation in the estimates
because the computational programs can operate with different algo-
rithms and mathematical functions. Many studies (Table 5) used
different algorithms and mathematical functions in the SVM and
ANN techniques (Landeras et al., 2012; Chen et al., 2013; Lyra et al.,
2015; Mohammadi et al., 2015b; Urraca et al., 2015). Similar to the
process of technique training, the technique validation is also a factor
which affects RMSE variability. The validation depends on the criterion
and time duration of the data base of the measures to be compared with
the estimates of SVM and ANN techniques. In this study, the criterion
used for the validation by two bases, typical and atypical years, differs
from the methodologies adopted in the studies of Table 5.

3.5. Comparison of the performance of the A-P Model and ML (SVM
and ANN) in Botucatu and other locations

Fig. 7(a-f) shows the comparison of statistical indicators rMBE,
rRMSE, d Willmott, r and r2 of the A-P, ANN and SVM models
obtained in Botucatu.

The comparison among validation indicators shows that the
statistical performance of SVM4 is superior to that of the A-P model.
MBEt

SVM4 = −2.7% and MBEa
SVM4 = 1.6% values are at the same order

of magnitude as MBEt
A-P = −3.0% and MBEa

A-P = 1.1% values
(Fig. 7a); the RMSEt

SVM4 = 9.4% and RMSEa
SVM4 = 12.5% values are

smaller than RMSEt
A-P = 13.1% and RMSEa

A-P values in both valida-
tion bases (Fig. 7b); d Willmott values dtSVM4 = 0.98 and daSVM4 = 0.98
are greater than dtA-P = 0.95 and daA-P = 0.96 values (Fig. 7c); rtSVM4 =
0.970 and raSVM4 = 0.958 values are greater than rtA-P = 0.942 and raA-
P = 0.939 values, respectively (Fig. 7d) and (r2)tSVM4 = 0.941 and
(r2)aSVM4 = 0.918 values are greater than (r2)tA-P = 0.887 and (r2)aA-P =
0.882 values (Fig. 7e).

Statistical indicators obtained in the SVM4 validation, superior to
those of the A-P model, show that meteorological input variables in the
machine learning technique are likely to improve the performance of H
estimates, which is the function of the artificial intelligence model.
Several recent studies in the literature have shown that when the A-PT
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statistical model is modified through the introduction of new meteor-
ological variables (multiple regressions), it may have better perfor-
mance than that of the SVM technique obtained in this study
(Amororox, 2011b; Adeala et al., 2015; Kutty et al., 2015; Coulibaly
and Quedraogo, 2016).

The results of statistical indicators rMBE, rRMSE, d Willmott, r
and r2 in the comparison between SVM and A-P models obtained in
this study are similar to those by Benghanem and Mellit (2010) in Al-
Madinah (Saudi Arabia); Chen et al. (2013) in China; Mohammadi
et al. (2015a) and Piri et al. (2015), both in Iran (Table 6). In all studies
(Table 6), SVM showed better performance than that of the A-P model.

rRMSE value in Botucatu was lower than that by Chen et al. (2013)
in China, and it was at the same order of magnitude as those by
Mohammadi et al. (2015a) and Piri et al. (2015) in Iran. It was superior
to that by Benghanem and Mellit (2010) in Al-Madinah (Saudi Arabia).
The r value in Botucatu was lower than that by Benghanem and Mellit
(2010) in Al-Madinah (Saudi Arabia). The results for the indicators
obtained in this study are in accordance with and at the same order of
magnitude as those by Wan et al. (2008) in 41 cities in China.

Box graphs show residues (H estimated – H measured, MJ m−2

day−1) obtained for A-P, SVM and ANN models, in the validation bases
of typical (Fig. 8a) and atypical years (Fig. 8b). In each case, the central
points are average values of all values and the center line is the median.
By default, the box is determined by percentiles 25 and 75.

Narrower boxes show the models with better performance.
Accordingly, the sequencing of SVM combinations (SVM1, SVM2,
SVM3 and SVM4) corroborates the best performance of SVM4 among
the models A-P, SVM and ANN. The performance of the models
observed using the Box Plot technique is similar to that of the models
A-P, SVM and ANN when analyzed using MBE and RMSE statistical
indexes.

4. Conclusions

The results presented and discussed in this study conclude that
results of the A-P model in Botucatu/SP, Brazil, with r2=0.806 are
similar to those found in other locations in the country. Values of the
statistical indicators in conditions of typical and atypical validation:
rMBE lower than 3.0%; rRMSE lower than 15.68%; d Willmott higher
than 0.95 reveal that the A-P can be used to estimate H with precision
and accuracy. It would be of great importance that further studies in
Botucatu analyze the performance of the model A-P by testing new
meteorological variables measured in the earth and atmospheric sur-
face as input variables in multiple regression models.

The ML models (SVM and ANN) evaluated in this study corrobo-
rated the results already observed concerning the efficiency of both

techniques to estimate H: the combination 1 (SVM1 and ANN1) and
the model A-P, which used the same input variables HO and (n/N),
showed through values of statistical indicators r , rMBE, rRMSE, d
Willmott that the SVM1 technique estimates H at the same order of
magnitude as the A-P model, whereas the A-P model estimates H with
better accuracy and precision than the ANN1 technique.

The statistical indicators obtained from the combinations 2–4 also
confirmed that the input of new variables in the training of techniques
improve the performance of the ML model: the combination 2 (SVM2
and ANN2) in relation to combination 1 had better performance by
adding the temperatures (T, Tmax and Tmin). Similarly, for H
estimation, the combination 3 (SVM3 and ANN3) had improved
performance by adding precipitation; the combination 4 (SVM4 and
ANN4) had improved performance by adding the relative humidity.

The comparison of values of the statistical indicators rMBE,
rRMSE, d Willmott, r and r2 obtained in the validation of the A-P
models and the combination 4 (SVM4 and ANN4) showed that the
SVM4 technique has better performance than that of the A-P model in
estimating H; the SVM4 combination has better performance than that
of the ANN4 in estimating H; the A-P model has better performance
than that of the combination ANN4 in estimating H.

The conclusion about the comparative performance between A-P
models and the techniques of machine learning SVM and ANN is valid
only for the study location (Botucatu/SP/Brazil). A broader conclusion
would require further studies to be held in different locations with
several climate conditions and new input variables (astronomical,
geographic variables) and atmospheric constituents (clouds, aerosols,
water vapor, ozone and other gases).
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