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Abstract

Image classification is a highly significant field in machine learning (ML), especially
when applied to address longstanding and challenging issues in the biological sciences.
In this study, we present the development of a hybrid deep learning-based tool suitable
for deployment on mobile devices. This tool is aimed at processing and classifying
three-dimensional samples of endemic lizard species from the Amazon rainforest. The
dataset used in our experiment was collected at the Museu Paraense Emı́lio Goeldi
(MPEG), Belém-PA, Brazil, and comprises three species: a) Anolis fuscoauratus; b)
Hoplocercus spinosus; and c) Polychrus marmoratus. We compared the effectiveness of
four artificial neural networks (ANN) for feature extraction: a) MobileNet; b)
MobileNetV2; c) MobileNetV3Small; and d) MobileNetV3Large. Additionally, we
evaluated five classical ML models for classifying the extracted patterns: a) Support
Vector Machine (SVM); b) GaussianNB (GNB); c) AdaBoost (ADB); d) K-Nearest
Neighbors (KNN); and e) Random Forest (RF). Our most effective model,
MobileNetV3-Small + Linear SVM, achieved an accuracy of 0.948 and a f1-score of
0.955. Notably, it not only proved to be the least complex model among all
combinations but also demonstrated the best performance after a statistical comparison.
These results indicate that the combination of deep learning (DL) models with less
complex classical ML algorithms, which have a lower error propensity, emerges as a
viable and efficient technique for classifying three-dimensional lizard species samples.
Such an approach facilitates taxonomic identification work for professionals in the field
and provides a tool adaptable for integration into mobile data recording equipment,
such as smartphones.

Author summary

The taxonomic classification of lizards requires an exceptional level of knowledge and
attention to minute details beyond the ordinary to accurately categorize specimens.
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Such tasks impose significant mental and visual costs on humans, unlike computer
vision algorithms capable of extracting visual patterns from images imperceptible to the
human eye. In this research, we utilized a dataset from the herpetarium of the Emı́lio
Goeldi Museum in Belém-PA, Brazil. The data were self-captured, with each sample
comprised of three photos: dorsal, lateral, and ventral views of each specimen. The
sample size was constrained by the quality and abundance of preserved specimens,
necessitating the application of a data augmentation method on the pre-separated
training and validation sets. This augmentation led to a considerable increase in the
number of samples per species, from a few dozen to several hundred. Our experimental
approach involved utilizing pre-trained neural networks to extract 3D sample
characteristics, subsequently classified using classical machine learning algorithms. This
hybrid strategy was adopted due to the nature of data collection and synthetic data
augmentation. Our method enables specimen identification through three-dimensional
representations, allowing for a more comprehensive utilization of morphological
information by the model.

Introduction 1

In the Squamata order, which comprises species that, among other characteristics, have 2

their bodies covered by scales, the classification of lizards is based on multiple 3

morphological features [1]. According to [2], these morphological characteristics are 4

referred to as microornamentations and are most prominent in the dorsal scales of the 5

head, trunk, and tails of each individual. Modern biodiversity data collection 6

equipment, such as sound recorders, camera traps, and other imaging methods, allow 7

the measurements of many parameters that make possible the extraction of vast 8

amounts of information in a relatively inexpensive manner. This technology has become 9

increasingly popular among scientists and helps to answer questions such as: a) Which 10

species occur in a given area?; b) What are their activities/behaviour?; and c) How 11

many individuals inhabit the region? [3]. The success in inventorying and monitoring 12

forest lizard species relies on robust monitoring and sampling and currently represents 13

one of the most complex tasks in the field of herpetological conservation [4]. 14

One of the most used data types in problems involving biodiversity conservation 15

with specialized image models is camera trap images [5]. The aim of remote monitoring 16

can range from species identification to inferring the abundance and distribution of 17

important conservation animals, but these motivations typically share a common goal - 18

to classify target species [6]. This interest in remote monitoring is accompanied by 19

several challenges in large-scale identification [6]. 20

The most recent research in automated identification of animal species can be 21

divided into two distinct types: laboratory-based investigation (LBI), and field-based 22

investigation (FBI) [7]. For LBI, a pre-established image acquisition protocol must be 23

followed to standardize the sampling and use of specimens, which are typically handled 24

by a specialized biologist. This contrasts significantly with FBI, where a mobile device 25

or camera is usually employed for the image acquisition process of the individuals [7]. 26

In studies of insect classification, for instance, LBI is the most commonly used 27

method due to the highly manual handling of specimens [40]. On the other hand, the 28

identification of mammals and fish is typically accomplished using field-recorded images, 29

while automated recognition of plant species can benefit from both the controlled 30

environment of a laboratory and field conditions [8]. These studies focus on the use of 31

Machine Learning (ML) with Convolutional Neural Networks (CNN), which are models 32

specialized in image processing that extracts high-level abstractions from data and are 33

considered the state-of-the-art for tasks involving image classification [9]. 34

The most common type of algorithm learning used for image classification is 35
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supervised learning, where input data (samples) are fed into the model along with their 36

corresponding labels (class names), and the algorithms are trained to map the input 37

information to the output label, such as the name of a species, for example [16]. 38

Before the emergence of computer vision (CV) models and artificial intelligence (AI) 39

algorithms in general, the process of identifying and conserving animal species was and 40

still is, in some places, carried out manually with a high dependence on human 41

activities, which imposes several limitations on the task [15]. These limitations, mainly 42

physical and cognitive, hinder the understanding of species distribution and diversity. 43

For instance, counting of colonies of seabirds and cave-dwelling bats conducted by 44

humans tends to significantly underestimate the actual number of individuals [15]. This 45

scenario of limitations and uncertainties changed with the advent of large-scale 46

AI-driven automation of these tasks. 47

With recent advances in automated image classification and information gathering, 48

new approaches have become possible [40]. Several existing examples demonstrate the 49

applications of automatic classification based on deep learning (DL) using taxonomic 50

data from different species [9]. Table 1 summarizes recent studies where CV algorithms 51

were employed to perform automated species identification [8, 10–12,15]. 52

Table 1. Recent studies where computer vision algorithms were employed for species classification in
different taxonomic groups.

Samples Architecture Accuracy Study
Reptiles 386,006 Vision Transformer (ViT) 0.962 Bhardwaj, Manish, et al. (2023)
Reptiles 82,601 EfficientNet 0.870 Durso, Andrew M., et al. (2021)
Reptiles & Amphibians 2,700 VGG16 0.870 Binta Islam, Sazida, et al. (2023)
Fishes 1,080 Image Processing + SVM 0.942 Sharmin, Israt, et al. (2019)
Mammals 326 Mask R-CNN + ResNet101 0.980 Gray, Patrick C., et al. (2019)

As can be seen in table 1, most studies used pre-trained models. This is the case 53

because when pre-trained networks are employed either as feature extractors or 54

efficiently optimized for the new dataset, there exists a strong correlation between the 55

high accuracy achieved by the model on its original pre-training phases with its score in 56

the new training demand [14]. Thus, incremental or transfer learning only requires the 57

pre-trained model to generalize an additional predictive pattern that might be present 58

in the dataset while retaining its previous optimal weights often gathered on ImageNet 59

Large-Scale Visual Recognition Competition (ILSVRC) [11]. 60

In this study, we have developed an open-source system for the automatic 61

classification of three-dimensional samples of Amazonian lizard species, adapted for 62

deployment on mobile equipment such as smartphones. We employed state-of-the-art 63

DL and ML techniques for image processing and classification using the family of CNNs 64

known as MobileNets [26–28], together with classical ML models, which demonstrated 65

exceptional efficiency in similar tasks. Despite the widespread use of CNNs in 66

taxonomic databases [8, 10–12,15], our reviews revealed no applications of these models, 67

or hybrids of these models, to three-dimensional specimens of Amazonian lizards. We 68

validated our model using synthetic data generated from the previously separated 69

training and test sets, as well as original images from the collection at Museu Paraense 70

Emı́lio Goeldi (MPEG). 71
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Results 72

Dataset complexity & model performance 73

We processed one copy of the image dataset with each variant of the MobileNet network, 74

and it proved to be a crucial strategy in determining the optimal classifier. The 75

complexity of each dataset played a fundamental role in the performance of classical ML 76

algorithms. Figure 1 below illustrates the difference in the clustering for each dataset as 77

revealed by t-distributed Stochastic Neighbor Embedding (t-SNE) [33]. 78

Fig 1. The t-SNE analysis of each full-features dataset. (a) MobileNet (b)
MobileNetV2 (c) MobileNetV3-Large (d) MobileNetV3-Small.

Analyses (a) and (c) exhibit good spacing between clusters, but the samples are 79

more dispersed among themselves. Analysis (b) shows a more apparent class overlap, 80

despite each cluster being relatively well concentrated. Analysis (d), obtained from the 81

data extracted with MobileNetV3-Small, presents the best trade-off between cluster 82

separation and sample concentration, with little to no apparent class overlap. Based on 83

the analysis using t-SNE, as expected, the impact of the complexity of each dataset is 84

determinant for the model performance. Table 2 presents the top-performing models 85

trained with all features extracted by the variants of the MobileNet. 86

Table 2. Classic ML models performances on each full-features dataset
generated by each MobileNet variant.

Best Model Average F1-Score Average Accuracy
MobileNetV3-Small Linear SVM 0.973 0.974
MobileNetV2 Linear SVM 0.970 0.963
MobileNet (V1) Linear SVM 0.961 0.970
MobileNetV3-Large Linear SVM 0.942 0.953

The combination of MobileNetV3-Small + Linear SVM produced a model that 87

outperformed the others trained with all features. Table 3 shows the same comparison 88

for the models trained with the 20 top-ranked features only. 89

Table 3. Classic ML models performances on each 20 top-ranked features
dataset generated by each MobileNet variant.

Best Model Average F1-Score Average Accuracy
MobileNetV3-Small Linear SVM 0.955 0.948
MobileNetV3-Large Random Forest 0.926 0.916
MobileNet (V1) RBF SVM 0.917 0.889
MobileNetV2 Linear SVM 0.792 0.700

Models’ performance statistical evaluation 90

The McNemar’s statistical test, which compares the confusion matrix of two algorithms 91

with paired samples [39] was conducted on the MobileNetV3-Small + Linear SVM 92

models for both full-features and 20 top-ranked features datasets, and resulted in a 93

Chi-squared value of 9.0 and a p-value of 1.0, which suggests that both models have 94

statistically the same performance. This ensures the safe utilization of the least complex 95

one. The Figure 2 shows the confusion matrix of the best model trained with the 20 96

top-ranked features, evaluated on it’s validation set. 97
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Fig 2. Model’s normalized confusion matrix. The confusion matrix for the best
performing MobileNetV3-Small + Linear SVM model trained on the 20 top-ranked
features dataset.

The performance in species classification by class proved to be highly efficient, as 98

illustrated in Figure 5. Consequently, this ensures reliability in both accuracy and 99

f1-score metrics. Furthermore, it is worth noting that there was little to no difference 100

between these two metrics for the best model. 101

Materials and methods 102

Collection of 3D data samples 103

Data was collected at MPEG, located in Belém, Para, Brazil. MPEG is the 104

second-oldest scientific research institution in Brazil, founded in 1866, and it houses a 105

local herpetological collection with approximately 100,000 specimens of amphibians and 106

reptiles [17]. Three species were selected for collection, namely: a) Anolis fuscoauratus; 107

b) Hoplocercus spinosus; and c) Polychrus marmoratus ; all species found in the Amazon 108

region [18–20]. Figure 3 below shows pictures of individuals from each species. 109

Fig 3. The three species selected for this study. (a) Anolis fuscoauratus (b)
Hoplocercus spinosus (c) Polychurs marmoratus.

All specimens were preserved in alcohol, and the preservation conditions of each 110

sample were a determining factor in selecting both the individuals and species chosen 111

for this study. The selected individuals were then placed on a black cloth, and 112

positioned on the collection bench to mitigate any visual noise that could interfere with 113

identification. This simple strategy can be easily replicated in any environment, as in 114

field data collection routines. 115

In recent studies using three-dimensional samples for species classification, the 116

extensive use of Light Detection and Ranging (LiDAR), and Spectral Imaging (SI) are 117

commonly used, particularly in studies using plants as specimens [21–23]. However, 118

these technologies are costly and require highly specialized expertise, making them 119

impractical for everyday use by experts in both laboratory and field settings. 120

Furthermore, using not practical solutions such as LiDAR and SI makes it almost 121

impossible to safely and easily reproduce the results, especially in areas where research 122

funding is unstable. 123

As a solution, we adopted smartphone-based image capture from the dorsal, lateral, 124

and ventral points of view to compose our samples. The use of smartphones offers a 125

cost-effective alternative, enabling broader accessibility and usability for species 126

classification. As can be seen in figure 4, three photos of each individual were taken, 127

where each set of three images constitutes a single sample. 128

Fig 4. A sample comprised of the three points of view. A (a) dorsal, (b) lateral,
and (c) ventral view of a Polychurs marmoratus, comprising one sample.

It was necessary to remove images due to poor quality, a total of 80 129

three-dimensional samples, totaling 240 unique images, remained. Among these, there 130

were 49 samples of Anolis fuscoauratus, 22 samples of Hoplocercus spinosus, and 9 131

samples of Polychrus marmoratus. 132
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Data samples processing 133

The first processing step was the organization of the samples with one image per RGB 134

color channel, where dorsal = R, lateral = G, and ventral = B. Subsequently, all 135

samples were resized to dimensions of 224 x 224 and standardized for the input layer of 136

our CNN. The dataset was then divided into training and validation sets following an 137

80%-20% division, respectively, ignoring an additional hold-out validation set in favor of 138

using cross-validation. We used TensorFlow’s (TF) image data generator module [24] 139

for data augmentation, where random modifications such as Flip, Crop, Translate, etc., 140

were applied to the samples without altering their fundamental characteristics, thus 141

generating new synthetic samples in our dataset [25]. The outcome of data 142

augmentation resulted in an increase from 80 initial three-dimensional samples to 3900 143

and 1790 in the training and testing sets, respectively. 144

Deep learning models selection 145

We selected the class of MobileNet models for developing our species identification 146

system. This class consists of highly efficient algorithms for mobile CV applications and 147

embedded systems [26]. There are three main MobileNet models: a) MobileNet; b) 148

MobileNetv2; and c) MobileNetV3, with the latter having two variants, namely: Large 149

and Small [26–28]. 150

The first model (MobileNet) is based on depth wise separable convolutions, which 151

are a form of factorized convolutions that transform a regular convolution operation into 152

depth wise, which significantly reduces both computational cost and model size [26]. 153

The second model (MobileNetV2) introduces the new inverted residual with a linear 154

bottleneck module [27], which expands to a higher dimension a compressed 155

low-dimensional representation of the input data and then filters it using a lightweight 156

depth wise convolution, reducing the memory requirements of the model. The third 157

model (MobileNetV3) features an efficient redesign of the network architecture, coupled 158

with a segmentation decoder that optimizes resource consumption for both of its 159

variants, the Large, for devices with greater availability of resources, and the Small, for 160

scenarios with more limited processing power [28]. 161

We used and compared the performance of all available MobileNet network variants 162

as feature extractors only. We did not retrain the models, and we appended a Global 163

Average Pooling 2D layer at the end of each model for dimensionality reduction, and 164

then we replaced their classification layers with classical ML algorithms. We adopted 165

this hybrid approach because, there is evidence that using pre-trained models, such as 166

MobileNets as feature extractors, can transfer their high accuracies acquired on 167

ILSVRC to the new models they compose, without the need for computationally 168

expensive retraining [14,29,30]. Moreover, the composition of a hybrid model with a 169

classical algorithm serving as the final classifier drastically reduces the likelihood of the 170

model presents overfitting [30]. 171

Machine learning models selection 172

The selection of classical ML algorithms was based on the criteria that it has to be 173

commonly applied in research with biological databases [31], and pre-implemented in 174

Scikit-learn (SKL) [32]. The chosen models were a) Support Vector Machine (SVM) 175

with linear, rbf, poly kernels; b) K-Nearest Neighbors (KNN); c) Random Forest (RF); 176

d) GaussianNB (GNB); and e) AdaBoost (ADB). 177
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Feature extraction process 178

From the original dataset we generated four new datasets of features, each one 179

extracted with a different variation of MobileNet (V1, V2, V3-Large, and V3-Small), we 180

call these full-features datasets. 181

High-dimensional feature visualization 182

We applied the t-SNE on the full-features datasets. The t-SNE is a method which 183

compresses a high-dimensional data on a two- or three-dimensional map [33], allowing 184

us to understand the complexity of high-dimensional data visually. 185

Dimensionality reduction process 186

We used the RF algorithm to compute a feature importance rank for each full-features 187

dataset [34], then we used an importance score of 0.01 as a threshold to select the 188

top-ranked features only, which amounted 20 columns for each full-features dataset. Now 189

we have a 20 top-ranked features dataset for each corresponding full-features dataset. 190

Machine learning models training & evaluation 191

For comparison, we first trained our ML models on each full-features dataset, and then 192

on each 20 top-ranked features dataset. All datasets were normalized with 193

MinMaxScaler [35]. It was a cross-validated training, with the k-fold and random state 194

parameters set to 4, and 42, respectively. The models’ Accuracy and F1-Score were used 195

for performance evaluation. We also used the McNemar’s statistical test for paired 196

statistical model performance comparison [39]. 197

Best machine learning model optimization 198

We used a Bayesian Optimization (BO) process to improve the best ML model’s 199

hyperparameters even further. By using BO, a surrogate for the model’s objective 200

function is created, and a Gaussian Regressor quantifies the uncertainty for the 201

surrogate [36]. The formula below shows the acquisition function Expected 202

Improvement (EI), adopted in this study. 203

EIn(x) := En

[
[f(x)− f∗

n]
+
]

(1)

EI is popular due to its multi-modal nature and effective balance between 204

exploration and exploitation of the search space for the best set of hyperparameters that 205

will produce the lowest error on the model [37]. 206

Pipeline development & assembling 207

Our entire pipeline is open-source, and was developed using Python [38], the TF DL 208

framework [24], and the SKL ML framework [32]. For image acquisition, we employed a 209

replaceable smartphone HTC One M8, 32GB, Quad-Core 2.3GHz, with a 4MPx 210

2688x1520 440 ppi camera. The inference pipeline consists of five main stages: a) 211

capturing a dorsal photo of the specimen; b) capturing a lateral photo of the specimen; 212

c) capturing a ventral photo of the specimen; d) composing a three-dimensional sample 213

from the aforementioned images; e) classifying the lizard species. Figure 5 below 214

visually represents the pipeline sequence. 215
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Fig 5. Classification pipeline for 3D representation of amazonian lizards. (a)
take a photo of dorsal view (b) take a photo of lateral view (c) take a photo of ventral
view (d) the three images are put together into one 3D sample (e) the model infers to
what class that lizard belongs to.
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