Mendel University in Brno

COST Action FP1407 2nd Conference

Innovative production technologies and increased wood products recycling and reuse

Brno, Czech Republic 29 – 30th September 2016

Editors: Andreja Kutnar, Matthew Schwarzkopf, Michael Burnard, Václav Sebera, Eva Troppová

Mendel University in Brno

COST Action FP1407

Understanding wood modification through an integrated scientific and environmental impact approach (ModWoodLife)

Innovative production technologies and increased wood products recycling and reuse

Second COST Action FP1407 International Conference Brno, Czech Republic $29-30^{\rm th}$ September 2016

9

Editors: Andreja Kutnar, Matthew Schwarzkopf, Michael Burnard, Václav Sebera, Eva Troppová

Center for Industrial Research Techlab, s.r.o. Brno, 2016 Proceedings of the 2nd COST Action FP1407 International Conference – Innovative production technologies and increased wood products recycling and reuse

Edited by ■ Andreja Kutnar, Matthew Schwarzkopf, Michael Burnard, Václav Sebera, Eva Troppová Organizer ■ Centrum průmyslového výzkumu Techlab s.r.o.
Support ■ Mendel University in Brno

All papers have been reviewed. Cover design ■ Eva Troppová, Václav Sebera

Published by ■ Mendel University in Brno, Zemědělská 1, Brno, 613 00 Print ■ Vydavatelství Mendelovy university v Brně.

Print-run ■ 125 copies

COST Action FP1407. International Conference (2016; Brno)
Innovative production technologies and increased wood products recycling and reuse / Second COST Action FP1407 International Conference Brno, Czech Republic 29 – 30 September 2016; [organizer Center for Industrial Research Techlab with the support of Mendel University in Brno]; editors Andreja Kutnar ... [et al.] – Brno, 2016

The organizers would like to acknowledge the scientific committee of the second COST Action FP1407 International Conference, *Innovative production technologies and increased wood products recycling and reuse:*

Andreja Kutnar – Slovenia
Dennis Jones – Sweden
Dick Sandberg – Sweden
Robert Németh – Hungary
Christelle Ganne-Chedeville – Switzerland
Lars Tellnes - Norway
Callum Hill – The United Kingdom
Ana Dias – Portugal
Edo Kegel – Netherlands
Michael Burnard – Slovenia
Lauri Rautkari – Finland

Poster Session

ŽLAHTIČ M. & HUMAR M. Surface properties of thermally wood after artificial and natural weathering
Surface properties of thermally wood after artificial and natural weathering
AKBAS S., TEMIZ A. & ALMA M.H. Wood plastic composites made of recycled and remediated creosote treated wood - aspects on screw withdrawal properties
AOUES Y., RIAHI H., HAMDI S.E., MOUTOU PITTI R. & BASTIDA E. Optimal and reliable design of timber beams for a maximum breaking load considering thermal and hydrological effects
SILVIA da SILVA H.F., PATRICIA dos SANTOS S.B., GATTO D.A. & LABIDI J. Liquefaction of craft lignin using different solvents
GURAU L., CAMPEAN M. & ISPAS M. The influence of the heat treatment duration on the surface roughness of beech processed by planing
HAMADA J., BO-JHIH LIN, PÉTRISSANS A., WEI-HSIN CHEN, GÉRARDIN P. & PÉTRISSANS M. Effect of silver fir forest management on radial density distribution, thermal behaviour and final quality of the heat treated wood
HERRERA R., GORDOBIL O., LLANO-PONTE R. & LABIDI J. Esterified lignin as hydrophobic agent for use on wood products
ODOUNGA B., MOUTOU PITTI R., TOUSSAINT E. & GRÉDIAC M. Mode I fracture of tropical species using the grid method in constant environments: experimental results
SALAN T. & HAKKI ALMA M. A preliminary study on the delignification of the wood blocks via microwave assisted atmospheric organosolv method for the production of hemicellulosic scaffolds
SALCA E.A. & HIZIROGLU S Evaluation of hardness of heat treated yellow poplar wood
SCHNABEL T., HAAS R., HUBER H. & PETUTSCHNIGG A. Surface modification using infrared radiation
SILVEIRA E.A., PÉTRISSANS A., CALDEIRA-PIRES A., ROUSSET P. & PÉTRISSANS M. Wood thermal degradation: Prediction of process parameters, solid mass yield, by two mathematical models 89
SVRZIĆ S. & MANDIĆ M. Abrasive water jet cutting (AJWC): Wood material – Jet interaction
ALMA M.H. & SALAN T. Phenolation of wood and its applications for the production of engineered polymeric materials
TURUNEN H., PAAJANEN O. & PEURA J. Development of wood modification – High melting point wax and hot oil treatments
BURAWSKA I. & ZBIEC M. Enhancement of low grade timber with synthetic materials

LIQUEFACTION OF CRAFT LIGNIN USING DIFFERENT SOLVENTS

Silvia H. F. da Silva¹, Patricia S. B. dos Santos², Darci A. Gatto³, Jalel Labidi⁴

¹ University of Basque Country, Plaza Europa 1 - Spain
 ² Federal University of Pelotas, Félix da Cunha, 809 - Brazil
 ³ Federal University of Pelotas, Félix da Cunha, 809 - Brazil
 ⁴ University of Basque Country, Plaza Europa 1 - Spain jalel.labidi@ehu.eus

Keywords: renewable resource, polyol, industrial waste

Pulp and kraft paper accounts for about 80 % of the world paper market. As a result, a tremendous amount of black liquor is produced as a waste product of the process. Some chemicals and dissolved lignin are present in the liquor which are in part burned to generate power.

As a natural, aromatic biopolymer, lignin has a tridimensional structure with various functional groups. Among them are phenolic compounds that make lignin a strong candidate to replace petrochemical-based polyols. However, due to the complex structure of lignin it has a low reactivity [1], requiring modification to make it more reactive.

Liquefaction is a thermochemical conversion technique in which lignin is directly converted into a black liquid which is more reactive and can be used as a replacement of fossil-based polyols (e.g. phenolic resin) used in synthesis.

In this study, kraft lignin was precipitated by acidification with sulfuric acid at pH 6 and used without further modification. Polyethylene glycol (PEG) and glycerol (G), or ethylene glycol (EG) and G were using as liquefaction solvents in a solvent:solvent ratio of 80:20 or 90:10 for both combinations of solvents. Liquefaction was carried out putting an appropriate amount of combined solvents in a flask under reflux and heated to 160 °C. Then, 15 % of lignin was added and reacted for 1 h. The influence of different organic solvents, different ratios, liquefaction yield, and the hydroxyl number of the liquefied lignin were investigated.

The results showed that the lowest yield occurred with PEG + G with a ratio of 90:10 and the lowest hydroxyl number was obtained with PEG + G in both ratios (80:20 and 90:10).

Figure 1: Liquefied lignin with different solvents and solvent ratios. Reaction conditions are 15 % lignin relation solvents, without catalyst, at 160 °C to 60 min.

The authors would like to thank CNPq-Brazil for a PhD scholarship DGE (207252/2014-9), the Coordination for the Improvement of Higher Level Personnel (CAPES 014/2012), and the University of the Basque Government for financially supporting this research.

References

[1] Doherty W O S, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products 33(2): 259-276.

LIQUEFACTION OF KRAFT LIGNIN USING DIFFERENT SOLVENTS

Silvia H. F. da Silva^{1,} Patrícia S. B. Dos Santos², <u>Darci A. Gatto</u>², Jalel Labidi¹.

¹ Chemical and Environmental Engineering Department, University of the Basque Country, Plaza Europa 1- 20018 San Sebastian, Spain - silviahfuente@hotmail.com;
² Engineering Center, Federal University of Pelotas, Pelotas, Brazil

Introduction

Lignin is a natural aromatic biopolymer more abundant with various functional groups in its structure. Among them, phenolic compounds that make of lignin a strong candidate to replace petrochemical-based polyols. However, due to the complex structure of lignin has a low reactivity so that some modifications are necessary to make it more reactive.

In this study the kraft lignin was thermochemically converted by liquefaction under reflux in a black liquid much more reactive which can be used without further alterations in the replacement of fossil-based polyols in synthesis such as phenolic resin. Yield, hydroxyl number, viscosity and pH of liquefied lignins were analysed.

Materials and methods

Polyethylene glycol (PEG) or ethylene glycol (EG) and glycerol (G) were using as liquefaction solvents in solvent:solvent (PEG:G or EG:G) ratio to 80:20 or 90:10. The liquefaction was carried out with an appropriate amount of combined solvents and 15% of lignin in a flask under reflux and heating at 160 °C with control temperature for 1h. After cooling in water bath with ice, the liquefied lignin was washed with acetone and filtered under vacumm. Acetone was removed using a rotary evaporator. Yield, hydroxyl number (ASTM D4274), viscosity and pH of liquefied lignins were analysed.

Results and discussion

The influence of different polyhydric alcohols solvents, and different ratios, in the properties of liquefied lignins are shown in Fig 1 and Table 1. The lowest yield was verified in P80 (PEG:G=80:20) and the highest in E90 (EG:G=90:10) with 82.31 and 87.35% respectively (Fig 1).

The hydroxyl number was affected by type of solvent, showing the lowest values with P80 and P90 with 280.12 and 442.65 mg KOH.g⁻¹ (Fig 1).

In Table 1 we observe that the polyols with EG:G have the lowest viscosity values than those with PEG:G. However, the different solvents and the different ratios didn't had influence on the pH of the polyols that shown values around 5.

Figure 1: Liquefied lignins with different solvents and different ratio. Reaction conditions are 15 wt% of lignin in relation solvents, without catalyst, at 160 $^{\circ}\mathrm{C}$ to 60 min.

Table 1: Effect of different solvents and ratio in the viscosity and pH of liquefied

SAMPLE	VISCOSITY (mPs.s)	pH .
PBD	167.0	56
EBO	20.4	5.04
P90	66.1	8.80
600	197	130

Conclusion

Liquefied lignins with PEG:G as solvents have the lowest values of yield and hydroxyl number and higher viscosity tha those with EG:G

The solvent:solvent ratio has more influence on e yield and viscosity.

The type of solvent or the ratio had influence on the pH of the liquefied lignins.

ACKNOWLEDGEMENTS

