

MODELAGEM DA IRRADIAÇÃO SOLAR GLOBAL MÉDIA HORÁRIA MENSAL (Hg^h) PARA QUATRO LOCALIDADES DE ALAGOAS/BRASIL

Cícero Manoel dos SANTOS^{1*}, José Leonaldo de SOUZA², Érico Tadao TERAMOTO¹, Chigueru TIBA³, Rinaldo Oliveira de MELO³

¹Departamento de Engenharia Rural, Universidade Estadual Paulista, Botucatu, São Paulo, Brasil. ²Instituto de Ciências Atmosféricas, Universidade Federal de Alagoas, Maceió, Alagoas, Brasil. ³Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil. *E-mail: <u>ciceromanoel@fca.unesp.br</u>

Recebido em janeiro/2014; Aceito em abril/2014.

RESUMO: Sete modelos empíricos (M1 a M7) baseados na temperatura do ar, foram ajustados e avaliados para estimar a irradiação solar global média horária mensal (H_g^h) em quatro localidades do Estado de Alagoas, Brasil. Os dados foram medidos em estações solarimetricas automáticas situadas em Arapiraca (9°47'54,8"S e 37°36'23,4"W), Palmeira dos Índios (9°24'19,9"S e 36°39'22,7"W), Maceió (10°01'29,1"S e 36°16'29,1"W) e Coruripe (9°28'29,1"S e 35°49'43,6"W), entre 2007 e 2009. Para indicar o desempenho dos modelos utilizaram-se os indicativos estatísticos: desvio das médias (MBE), raiz quadrada do desvio quadrático médio (RMSE), "d" de Willmott e teste-t. Os coeficientes ajustados ($\beta_1 e \beta_2$) dos modelos foram dependentes da região e dos efeitos climáticos locais. Os coeficientes β_2 dos M1, M2 e M3 foram significativos a 5%, enquanto que, o coeficiente β_1 de M4 e M5 resultaram em comportamentos semelhantes. Os coeficientes $\beta_1 e \beta_2$ de M6 e M7 apresentaram elevadas oscilações. Com RMSE médio de 0,29 ± 0,15 MJ m⁻²h⁻¹, o melhor ajuste para região de Arapiraca foi com M7. O melhor ajuste para as condições climáticas nas regiões de Palmeira dos Índios, Maceió e Coruripe foi com M4. Estes resultados mostram a eficiência dos modelos empíricos em prever H_g^h .

Palavras-chave: Modelos empíricos, Bristow e Campbell, Hargreaves e Samani, condições climáticas.

MODELLING OF MONTHLY HOURLY GLOBAL SOLAR IRRADIATION (H^h_g) TO FOUR SITES IN ALAGOAS/BRAZIL

ABSTRACT: In this paper was used seven empirical models (M1 to M7) based on temperature of air and they were fitted and validated to estimating the monthly hourly of global solar irradiation (H_g^h) in four sites in Alagoas State, Brazil. The data were measured in automatic solarimetric stations situated in Arapiraca (9°47'54.8"S and 37°36'23.4"W), Palmeira dos Índios (9°24'19.9"S and 36°39'22.7"W), Maceió (10°01'29.1"S and 36°16'29.1"W) and Coruripe (9°28'29.1"S and 35°49'43.6"W), from 2007 to 2009. To indicate the models performance were used: Mean Bias Error (MBE), Root Mean Square Error (RMSE), "d" of Willmott and t-test. The fitted coefficients (β_1 and β_2) of models were dependents of region and local climatic effects. The coefficients β_2 of M1, M2 and M3 were significantly different at the level of 5%. The β_1 coefficient of M4 and M5 resulted in similar oscillations. The β_1 and β_2 coefficients of M6 and M7 presented high oscillations. With RMSE average of 0.29±0.15 MJ m⁻² h⁻¹, the best fitted model for the Arapiraca region was M7. The best fitted model for the climatic conditions in the region of Palmeira dos Índios, Maceió and Coruripe were M4. The M4 generated the best result among the evaluated models. These results showed the efficiency of the empirical models to predict H_g^h . **Keywords:** Empirical models, Bristow and Campbell, Hargreaves and Samani, Climatic conditions.

1. INTRODUÇÃO

A radiação solar (Rg) é de fundamental importância em estudos ecológicos, ambientais, meteorológicos, climáticos, engenharia e arquitetura (aquecimento e iluminação natural de ambientes), na agricultura (disponibilidade hídrica e produtividade potencial) e utilização como recursos energéticos renováveis (conversão em energia elétrica ou aquecimento natural) (SOUZA et al., 2005). No clima da terra a Rg é a principal forçante climática e alvo de inúmeras pesquisas recentes, sendo o principal fator condicionante da temperatura do ar, do solo e oceanos. Na conversão energética, a Rg apresenta-se com destaque na atualidade por ser uma fonte limpa, renovável, abundante e gratuita. A quantificação da Rg é fundamental para o dimensionamento de sistemas geradores de energia solar fotovoltaica e energia térmica. Na agricultura, a Rg é responsável pelo processo fotossintético, que corresponde na conversão de energia radiante em energia química, na forma de carboidratos que é relacionada com a produção potencial da cultura (LIZASO et al., 2005). Outra utilização da radiação solar na agricultura é na determinação da evapotranspiração, variável importante na definição do uso de água pela planta e consequentemente na produtividade (ALLEN, 1996).

crescente Atualmente, 0 uso de modelos computacionais que visam predizer o crescimento e a produtividade de culturas agrícolas requer como variável de entrada dados de irradiação solar (Hg) em diferentes partições de tempo. Estas são ferramentas poderosas que possibilitam estimar o potencial produtivo da cultura para determinada região. Destaque também para os sistemas de concentradores solares, aquecedores e modelos que simulam o potencial energético (REIKARD, 2009). Todavia, pela escassez de informações solarimétricas confiáveis, ocasionada pelo elevado custo de manutenção e calibração dos sensores em determinadas regiões, para diferentes aplicações e estudos diversos, a modelagem empírica torna-se uma ferramenta importante para corrigir dados históricos e suprir a demanda existente (LIU et al., 2009). A Hg pode ser facilmente estimada a partir da insolação, através do modelo de Ångström - Prescott, que tem sido amplamente utilizado. Por conseguinte, dentre as variáveis meteorológicas, a temperatura do ar é a mais observada em estações quando comparada com a Hg. Assim como, as informações de insolação não estão disponíveis na maioria das estações meteorológicas. Por isso, modelos empíricos têm sido sugeridos para prever com boa acurácia a Hg com base na temperatura do ar (BRISTOW; CAMPBELL, 1984; HARGREAVES; SAMANI, 1982; ANNANDALE et al., 2002; HUNT et al., 1998) e a partir dessas informações efetivar-se-á melhor seu uso, principalmente, em modelagem de sistemas de energia solar e culturas agrícolas. Globalmente a relação entre as estações de observações de Hg e as que observam a temperatura do ar é em torno de 1:500. No Estado de Alagoas os modelos empíricos ainda não foram avaliados para quantificar e qualificar o grau de confiabilidade da estimativa horária ou as suas aplicabilidades. Nesse sentido, a avaliação de modelos empíricos, para as condições climáticas locais são de extrema importância para utilizações como alternativas.

Na literatura diversas pesquisas relatam a avaliação de modelos empíricos na partição horária para a irradiação solar global (PANDEY; SOUPIR, 2012). Contudo, não se encontram avaliações disponíveis para o Estado de Alagoas. Diante do exposto e da importância de estudos e aplicações atuais, o presente trabalho objetiva ajustar, validar e comparar sete modelos baseados na temperatura do ar para a irradiação solar global média horária (Hg^h) em quatro locais de micro-clima diferentes no Estado de Alagoas. E ainda, gerar os coeficientes locais e analisar a influência das condições climáticas.

2. MATERIAL E MÉTODOS

2.1. Local e dados

Os dados meteorológicos de temperatura do ar e irradiação solar global média horária (H_g^h) utilizados neste trabalho foram obtidos em estações solarimétricas automáticas localizadas na região de Arapiraca (9°47'54,8" S; 37°36'23,4" W e 239m), Palmeira dos

Índios (9°24'19,9" S; 36°39'22,7" W e 328m), Maceió (10°01'29,1" S; 36°16'29,1" W e 127m) e Coruripe (9°28'29,1" S; 35°49'43,6" W e 108,7m) no Estado de Alagoas/Brasil, entre 2007 e 2009 (Figura 1). O Estado de Alagoas é dividido em seis regiões microclimáticas: Litoral, Zona da Mata, Agreste, Sertão, Sertão do São Francisco e Baixo São Francisco. As estações de Maceió e Coruripe localizam-se no litoral alagoano, enquanto Palmeira dos Índios e Arapiraca no Agreste do Estado de Alagoas.

Figura 1. Localização das estações solarimétricas.

A caracterização climática dos locais pode ser observada na Tabela 1, sendo que, em Maceió ocorrem 69% da chuva esperada no ano inteiro entre os meses de abril e agosto, já em Coruripe 66% da chuva esperada no ano ocorre neste período.,

Tabela 1. Classificação climática das regiões em estudo (metodologia de Thornthwaite; Mather, 1955).

Locais	Tipo	Clima	P(mm)	T(°C)
Arapiraca	C1A's2w	Subúmido seco,	889,8	25,5
		Megatérmico, com grande		
		deficiência de água no		
		verão e excesso de água		
		moderada no inverno.		
Palmeira	DA's2d	Semiárido, Megatérmico,	869,6	25,3
dos		com grande deficiência de		
Índios		água no verão e excesso		
		de água nulo no inverno.		
Maceió	B1A'sw2	Úmido, Megatérmico,	1817,6	25,4
		com deficiência de água		
		moderada no verão e		
		grande excesso de água no		
		inverno.		
Coruripe	C2A'sw2	Subumido, Megatérmico,	1563,1	26,1
		com deficiência de água		
		moderada no verão e		
		grande excesso de água no		
		inverno.		

P = precipitação média anual; T = temperatura do ar média anual.

2.2. Descrição dos Modelos empíricos

Na literatura existem duas classes de modelos empíricos relacionados com a temperatura do ar: a primeira classe é de modelos baseados somente na temperatura do ar e a segunda classe direciona-se aos modelos baseados na temperatura do ar e em outras variáveis meteorológicas. Os modelos descritos neste trabalho são exclusivamente pertencentes à primeira classe e com dependência das características geográficas da região (latitude, longitude e altitude). Os modelos empíricos baseados na temperatura do ar são fundamentados na relação entre o saldo de radiação e o calor sensível. Em geral, estes modelos estimam a transmissividade atmosférica da radiação solar e assumem que a temperatura máxima do ar vai diminuir com a redução da transmissividade, enquanto a temperatura mínima vai aumentar devido à emissividade das nuvens. Outra conotação importante, é que poucas nuvens aumentam a temperatura máxima do ar devido à maior radiação solar de onda curta incidente na superfície, enquanto a temperatura mínima do ar diminui devido à menor transmissão da radiação solar ocasionado pela maior nebulosidade na atmosfera, por isso a diferença entre a temperatura máxima e mínima do ar tornar-se um indicador de nebulosidade (ALMOROX et al., 2013).

Como o calor sensível é responsável pela variação da temperatura do ar, que está inteiramente ligado com a irradiação solar global incidente, Bristow; Campbell (1984) sugeriram uma relação empírica que relaciona a irradiação solar global diária (H_g^d) como função da irradiação solar diária no topo da atmosfera (H_o^d) e da diferença entre a temperatura máxima e mínima do ar (ΔT , °C), com coeficientes β_1 , β_2 e β_3 a ajustados

localmente. Estes coeficientes possuem interpretação física. sendo que o β_1 representa a máxima transmissividade esperada para um dia de céu claro, com dependência das condições atmosféricas do local, enquanto que os coeficientes β_2 e β_3 controlam a taxa na qual o β_1 varia com a amplitude térmica (ΔT). Outros autores modificaram o modelo no intuito de melhorar o seu desempenho. Meza; Varas (2000) fixaram os coeficientes $\beta_1 = 0,75$ e $\beta_3 = 2$ (Equação 1 – M1); Weiss et al. (2001) fixaram os coeficientes ($\beta_1 = 0,75$ e $\beta_3 = 2$) adicionando a irradiação solar ao topo da atmosfera (Ho) como correção (Equação 2 - M2); Abraha; Savage (2008) fixaram ($\beta_1 = 0,75$ e $\beta_3 = 2$) e acrescentaram a amplitude térmica média (ΔT_m) (Equação 3 – M3) (Tabela 2). Baseada na suposição de que a diferença entre a temperatura diária do ar máxima e mínima fornece um indicativo geral de nebulosidade, Hargreaves; Samani (1982) propuseram a estimativa da irradiação solar global diária (Hgd) em função da irradiação solar global diária que chega ao topo da atmosfera (H_0^d) e da diferença entre a temperatura do ar máxima e mínima diária ($\Delta T(^{\circ}C)$) (Equação 4 - M4).

Tabela 2. Modelos empíricos de estimativa da irradiação solar global horária avaliados.

Modelo		Coeficiente	Equação
M1	$\frac{\mathrm{H}_{\mathrm{g}}^{\mathrm{h}}}{\mathrm{H}_{\mathrm{0}}^{\mathrm{h}}} = 0,75 \Big[1 - \exp\left(-\beta_{2} (\Delta \mathrm{T})^{2}\right) \Big]$	β_2	(1)
M2	$\frac{\mathrm{H}_{\mathrm{g}}^{\mathrm{h}}}{\mathrm{H}_{\mathrm{0}}^{\mathrm{h}}} = 0.75 \left[1 - \exp\left(-\beta_{2} \frac{\left(\Delta T\right)^{2}}{\mathrm{H}_{\mathrm{0}}^{\mathrm{h}}}\right) \right]$	β_2	(2)
M3	$\frac{\mathrm{H}_{\mathrm{g}}^{\mathrm{h}}}{\mathrm{H}_{\mathrm{0}}^{\mathrm{h}}} = 0.75 \left[1 - \exp\left(-\beta_{2} \frac{\left(\Delta T\right)^{2}}{\Delta T_{\mathrm{m}}}\right) \right]$	β_2	(3)
M4	$\frac{H_{\underline{s}}^{h}}{H_{0}^{h}} = \beta_{1} (\Delta T)^{1/2}$	β_1	(4)
M5	$\frac{\mathrm{H}_{\mathrm{g}}^{\mathrm{h}}}{\mathrm{H}_{\mathrm{0}}^{\mathrm{h}}} = \beta_{\mathrm{l}} (1 + 2.7 \times 10^{-5} \times \mathrm{altitude}) (\Delta \mathrm{T})^{1/2}$	β_1	(5)
M6	$\frac{\mathbf{H}_{g}^{h}}{\mathbf{H}_{0}^{h}} = \left(\beta_{1} \left(\Delta \mathbf{T}\right)^{1/2} + \beta_{2}\right)$	$\beta_1 e \beta_2$	(6)
M7	$rac{\mathbf{H}_{\mathrm{g}}^{\mathrm{h}}}{\mathbf{H}_{\mathrm{0}}^{\mathrm{h}}}=eta_{1}ig(\Delta\mathbf{T}ig)^{1/2}+rac{eta_{2}}{\mathbf{H}_{\mathrm{0}}^{\mathrm{h}}}$	$\beta_1 e \beta_2$	(7)

 H_g^h é a irradiação solar global média horária, H_o^h é a irradiação solar global média horária que chega ao topo da atmosfera, ΔT é amplitude térmica horária, ΔT_m é a amplitude térmica média, $\beta_1 \in \beta_2$ os coeficientes a serem ajustados para cada local.

Devido a sua simplicidade e precisão, o modelo de Hargreaves; Samani é amplamente utilizado e recomendado no boletim da FAO-56 (ALLEN, 1995). Posteriormente o modelo foi modificado por outros autores, sendo que Annandale et al. (2002) introduziram a altitude como fator de correção (Equação 5 – M5); Hargreaves et al. (1985) (Equação 6 – M6) e Hunt et al. (1998) (Equação 7 – M7) inseriram um novo coeficiente β_2 como correção (Tabela 2). Foi adicionado o índice h sobrescrito em H_g e H₀, para indicar que os modelos serão avaliados na partição horária.

Para obtenção dos coeficientes dos modelos, foram utilizados os dados de 2007 a 2008, e para validação

foram usados dados de 2009. A irradiação solar global que chega ao topo da atmosfera $(H_0^{\ h})$ (Equação 8) foi obtida em função da constante solar $(H_{sc} = 4921 \ \text{KJ m}^{-2} \ \text{h}^{-1})$, da excentricidade do eixo da Terra (E_0) (Equação 9), da latitude local (ϕ), da declinação solar horária (δ) (Equação 11) e do ângulo horário solar (ω_s) (Equação 12), descritas em (ESCOBEDO et al., 2014):

$$\mathbf{H}_{0}^{h} = \mathbf{H}_{sc} \mathbf{E}_{0} \left[(\sin \delta \sin \phi) + (\cos \delta \cos \phi \sin \omega_{s}) \right]$$
 (Equação 8)

 $E_0 = 1,00011 + 0,034221\cos\Gamma + 0,00128\sin\Gamma + 0,000719\cos2\Gamma + 0,00077\sin2\Gamma$ (Equação 9)

$$\Gamma = 2\pi \left[\left(\text{DJ} - 1 \right) / 365 \right]$$
(Equação 10)

$$\delta = 23,45 \sin[(360/365)*(DJ+284)]$$
(Equação 11)

$$\omega_{\rm s} = \cos^{-1} (-\tan \delta \tan \varphi)$$
 (Equação 12)

O ângulo diário (Γ) (Equação 10) é calculado em função do Dia Juliano (DJ), sendo 1 de janeiro (DJ = 1) e 31 de dezembro (DJ = 365). Os coeficientes ajustados foram obtidos com o método dos mínimos quadrados.. A amplitude térmica do ar horária foi obtida da seguinte relação (Equação 13):

$$\Delta T = T_{max}(i) - T_{min}(i)$$
(Equação 13)

Em que: ΔT é a variação horária da temperatura do ar (°C); T_{max}(i) e T_{min}(i) a temperatura máxima e mínima do ar (°C) da hora (i), respectivamente.

2.3. Índices estatísticos

d =

Para verificar o desempenho dos modelos foram utilizados alguns índices estatísticos para medidas de erros e avaliação de variação como sugeridos por (WILLMOTT, 1982; SPOKAS; FORCELLA, 2006), tais como: o desvio das médias (MBE, MJ m⁻²h⁻¹) (Equação 14), raiz quadrada do desvio quadrático médio (RMSE, MJ m⁻²h⁻¹) (Equação 15) e "d" de Willmott (Equação 16), descritos abaixo:

$$MBE = \frac{\sum_{i=1}^{N} (P_{i} - O_{i})}{N}$$
(Equação 14)
$$RMSE = \left[\frac{\sum_{i=1}^{N} (P_{i} - O_{i})^{2}}{N}\right]^{1/2}$$
(Equação 15)
$$1 - \frac{\sum_{i=1}^{N} (P_{i} - O_{i})^{2}}{\sum_{i=1}^{N} (|P'_{i}| - |O'_{i}|)^{2}}$$
(Equação 16)

Em que: P_i representa os valores estimados, O_i os valores medidos, $|P'_i|$ o valor absoluto da diferença $P_i - \overline{O}_i$, onde \overline{O}_i representa a média de O_i, $|O'_i|$ representa o valor absoluto da diferença $O_i - \overline{O}_i$ e N o número de observações.

Os valores positivos para MBE mostram superestimativas, enquanto que valores negativos representam subestimativas. Quanto menor o valor absoluto de MBE, melhor será o desempenho do modelo testado. Este indicativo fornece informações sobre o desempenho de longo prazo. Uma desvantagem do teste é que a superestimativa de uma observação individual irá cancelar uma subestimativa. O RMSE fornece informações sobre o desempenho de curto prazo das correlações e ajuda a conhecer como está o espalhamento

ou ajustamento das estimativas em relação aos dados medidos. O RMSE, sempre apresentara valores positivos, embora mostre valor igual a zero caso não ocorra variações, tem-se que menores valores são desejados. Os índices MBE e RMSE perfazem em estimativas sobre o erro, mas não fornecem informações sobre o tamanho relativo da diferença de média e a natureza das diferenças comprometedoras (WILLMOTT, 1982). O índice de concordância "d" expressa o ajustamento entre os valores medidos e estimados. O índice "d" varia de 0,0 a 1,0, onde um valor calculado de 1 indica concordância perfeita e 0,0 representa nenhuma concordância. A utilização dos índices MBE, RMSE e d são adequadas para validação de modelos, permitindo analisar o desvio médio (subestimativa ou superestimativa), espalhamento e ajustamento de modelos com relação às medidas (ALADOS et al., 2000). O coeficiente de correlação e o teste-t também foram levados em consideração na análise dos modelos. O coeficiente de correlação é utilizado para determinar a relação linear entre os valores medidos e estimados. O teste-t permite a comparação entre modelos e, ao mesmo tempo indica se a estimativa é significativa ou não, ao nível de 95% de confiança. O modelo é considerado estatisticamente significativo quando o valor t calculado for menor do que o valor de t tabelado (MAGHRABI, 2009).

3. RESULTADOS E DISCUSSÃO

3.1. Coeficientes ajustados localmente

Os coeficientes gerados pelos modelos (Tabela 3) mostraram dependência com a região de estudo e condições climáticas locais. Este resultado é um indicativo da anormalidade dos coeficientes para o período chuvoso (abril a agosto) e período seco (setembro a março). O coeficiente β_2 de M1, M2 e M3, e β_1 de M4 e M5 foram significativos a 5%. Por outro lado os coeficientes β_1 e β_2 do M6 e β_1 do M7, foram não significativos para Arapiraca e Palmeira dos Índios, enquanto β_2 do M7 é significativo a 5% para Arapiraca, Palmeira dos Índios e Maceió. O coeficiente β_2 dos M1, M2 e M3 controla a taxa na qual o β_1 varia com a amplitude térmica.

Neste sentido, observou-se grande variabilidade dos coeficientes locais. Menores valores são observados no outono/inverno (elevada precipitação e teoricamente baixa temperatura) e maiores valores na primavera/verão (baixa precipitação e elevação da temperatura). Na região de Palmeira dos Índios o coeficiente β_1 do M4 indicou máximo de 0,56 no mês de novembro e mínimo de 0,39 no mês de fevereiro. O coeficiente β_1 do M5 foi diferente entre as regiões de Arapiraca e Palmeira dos Índios. Os coeficientes β_1 e β_2 dos M6 e M7 apresentaram valores com discrepâncias, para a região de Palmeira dos Índios β_1 e β_2 do M7 foram positivos, enquanto o M6 não resultou no mesmo padrão, com elevada oscilação.

Esse comportamento pode estar relacionado com as condições da atmosfera local, devido à irregularidade da precipitação. Embora Maceió e Coruripe sejam situadas no litoral, β_2 dos M1, M2 e M3 resultou em valores diferentes, maiores para Maceió que Coruripe. O mais provável é que este efeito seja causado pela queima de cana-de-açúcar, entre os meses de setembro e março na região de Coruripe e localidades adjacentes. A queima de

biomassa eleva a emissão e a concentração de materiais particulados (aerossóis) na atmosfera e consequentemente, altera a cobertura de céu local.

Estes resultados mostram que M1, M2 e M3 são mais sensíveis a alterações na dinâmica da atmosfera quando comparado com os demais modelos. Estes coeficientes são diferentes dos obtidos por Liu et al. (2009) e Almorox et al. (2011), que avaliaram os modelos na partição diária. Comparando os resultados obtidos para três regiões de Minas Gerais/Brasil, Silva et al. (2012) identificaram coeficientes diferentes dos existentes na literatura. Os coeficientes locais são diferentes por se tratar de uma analise horária. Provavelmente, na partição diária seriam similares ou diferentes, indicando a necessidade do ajuste local.

Os valores encontrados para β_1 de M4 para região de Maceió, geraram poucas variações no decorrer dos meses (18,18%), apresentando valor mínimo (0,45) para maio e máximo (0,55) em abril, com nenhum padrão. Os coeficientes encontrados para M5, que possui a altitude como fator de correção, não diferiram estatisticamente dos obtidos com M4, para todas as localidades. Encontrou-se diferença de 45,35% entre o máximo de 0,56 no mês de novembro para a região de Maceió e o mínimo de 0,31 no mês de fevereiro para a região de Coruripe. A correção com a altitude no M5 não interferiu no valor do coeficiente gerado, concordando com Liu et al. (2009). Hargreaves; Samani (1982) e Allen et al. (1998) propuseram para o M4 valor fixo de $\beta_1 = 0.19$ para regiões costeiras e $\beta_1 = 0,16$ para regiões no interior (distantes de grandes porções de água). Para Hargreaves; Samani (1982) regiões costeiras são locais situados próximos a uma grande porção de água.

A variabilidade e o padrão encontrados para os coeficientes horários diferem do coeficiente fixo indicado pelos autores, isto pode ser justificado pelo uso diferente da escala temporal para o estudo local e a necessidade de ajuste com dados locais. Estes autores propuseram o coeficiente para ser usado com dados diários, no ajuste local utilizaram-se dados médios horários. Desse modo, a hipótese de utilizar β_1 fixo no modelo original de Hargreaves; Samani (1982) (M4) tem que ser avaliada cuidadosamente, quando forem empregados intervalos de tempos em escalas diferentes (horário, diário, mensal e anual).

Os coeficientes gerados pelos M6 e M7 apresentaram grandes oscilações. Os coeficientes $\beta_1 e \beta_2$ dos M6 e M7 apresentaram valores com discrepâncias entre algumas regiões, em Coruripe $\beta_1 e \beta_2$ do M7 foram positivos, enquanto que, na região de Maceió, β_2 foi negativo em janeiro. Por sua vez, o coeficiente β_2 de M6 apresentou padrão negativo, principalmente para a estação seca na região de Maceió. Foram encontrados valores negativos de β_1 do M6 nos meses de maio e julho, na região de Maceió. Enquanto que, valores negativos de β_2 de M6 foram observados nos meses de abril, agosto, setembro, outubro, novembro e dezembro. De maneira geral, todos os coeficientes gerados não apresentaram nenhum padrão anual para as regiões estudadas.

Tais divergências podem ser explicadas pelas variações locais e sazonais de nebulosidade, que decorre das alterações periódicas da dinâmica atmosférica (ALMOROX et al., 2013). Para as regiões de Maceió e

Coruripe, os coeficientes β_1 e β_2 do M6 indicaram não ser significativo a 5%. Observou-se que existe significância nos coeficientes β_1 dos meses de outubro e dezembro em Maceió e outubro em Coruripe. Enquanto o coeficiente β_2 mostrou ser significativo a 5% no mês de março em Coruripe. O coeficiente β_1 do M7 nas regiões em estudo, foram não significativos, enquanto β_2 mostrou significância, exceto no mês de outubro para Coruripe. Devido a problemas técnicos, os dados do mês de agosto em Coruripe, foram excluídos na analise. Chen et al. (2004), em 48 estações na China, destacaram que o coeficiente β_1 do M6, em escala diária, variou de 0,10 a 0,29, com média de 0,19, enquanto o coeficiente β_2 variou de -0,41 até 0,24 com média de 0,13.

Estes resultados diferem dos encontrados localmente, pois decorre das condições climáticas adversas e da escala de tempo utilizada. Ajustando o M6 para a região de Mossoró, Melo (2009) identificou que os coeficientes gerados variaram durante o ano, com máximo de ($\beta_1 =$ 0,214) no mês de abril e mínimo de ($\beta_1 =$ 0,007) para novembro, não gerando padrão nos coeficientes ajustados. O modelo de Allen et al. (1998), modificado do original de Hargreaves; Samani (1982), produziu em Mossoró valores de β_1 em um intervalo distinto [0,184-0,206] dos encontrados para as demais regiões de Alagoas. O coeficiente β_1 encontrado para M7 nas regiões de Maceió e Coruripe não apresentou nenhum padrão para as estações chuvosa e seca.

Devido às diferenças entre os coeficientes ajustados em diferentes locais do globo, o ajuste com dados locais pode ser determinante no seu desempenho. Apesar da forte relação entre as nuvens e a temperatura do ar, além da radiação solar outros fatores meteorológicos como a velocidade do vento, vapor d'água, precipitação, umidade, sistemas meteorológicos frontais, evaporação, aerossóis, altitude, latitude, afetam os níveis de temperatura do ar que por sua vez, também afetam os coeficientes ajustados localmente (SAMANI, 2000).

3.2 Desempenho estatístico dos modelos

A Figura 2 (a, b, c, d) mostra a comparação entre H_g^h medida e estimada pelos modelos empíricos e os valores obtidos para R² e a dispersão dos pontos que melhor estimaram nas regiões (equações geradas). A linha sólida com ângulo de 45° apresenta a concordância entre os valores medidos e estimados, sendo a ideal de comparação. A baixa dispersão dos dados foi observada, embora aos pontos que estão mais afastados da reta podem ser atribuidos a atenuação da irradiação solar nos dias nublados, parcialmente nublados sem precipitações ou claros, elevada concentração de material particulado na atmosfera ou no aumento dos níveis de umidade do ar. O aumento de nuvens reduz significativamente a irradiação solar direta (Hb). Este aspecto está ligado à variação diária da radiação com o ângulo de incidência e pela mudança de posição do sol durante o ano (SPOKAS; FORCELA, 2006).

Em geral, houve boa concordância entre os valores medidos e estimados, acompanhando bem a variabilidade temporal. Em 13 locais da América do Norte, Ball et al. (2004), encontraram R^2 entre 0,53 e 0,97 para a radiação diária utilizando o M4, M5 e modificações do modelo de Bristow-Campbell.

Arapiraca											Palm	eira dos	Índios					
Modelos	M1	M2	M3	M4	M5	M6		M7		M1	M2	M3	M4	M5	M6		M7	
Mês\Coef.	β2	β2	β2	β1	β1	β1	β2	β1	β2	β2	β2	β2	β1	β1	β1	β2	β1	β2
Janeiro	$0,60^{*}$	2,68*	0,99*	0,45*	0,45	0,23**	0,29**	0,46**	-0,04*	0,72*	2,95	1,12*	$0,48^{*}$	$0,48^{*}_{}$	0,46**	0,03**	0,48**	$0,02^{*}$
Fevereiro	0,53	2,24	0,85	0,43	0,43	0,21**	0,29**	0,44**	-0,03	0,52*	1,75	0,69	0,39	0,38	$0,68^{**}$	-0,34**	0,38 ^{**}	0,02
Março	0,64	2,58	0,99*	0,46	0,46 [*]	0,53**	-0,09**	0,46**	-0,01*	0,71*	3,04*	1,08	$0,48^{*}$	0,48	0,31**	0,22**	0,47**	$0,02^{*}$
Abril	$0,70^{*}$	2,36	1,06	$0,48^{*}$	$0,48^{*}$	$1,08^{**}$	-0,73**	0,43**	0,15	0,83*	3,14	$1,18^{*}$	0,51*	$0,50^{*}$	0,85**	-0,41**	0,45**	$0,14^{*}$
Maio	0,67	1,61	0,82*	0,42*	0,42*	-0,07**	0,55**	0,35**	0,16	0,66	1,66	$0,78^{*}$	0,41*	0,41	-0,23***	$0,70^{**}$	0,35**	0,13
Junho	$0,68^{*}$	1,65	0,94*	0,45	$0,45^{*}$	0,47**	-0,01**	0,38**	0,13	0,73*	1,75	0,86	0,44	0,44*	0,05**	0,43**	$0,40^{**}$	0,09*
Julho	0,51	1,19*	0,79	0,41*	0,41*	0,02**	$0,50^{**}$	0,38**	$0,08^{*}$	$0,68^{*}$	1,66	0,87	0,44	0,44*	0,16**	0,32**	0,41**	$0,07^{*}$
Agosto	$0,52^{*}$	$1,40^{*}$	$0,78^{*}$	0,42*	0,42*	0,43**	-0,02**	0,36**	0,14	$0,88^{*}$	1,94	1,07	0,47	0,46	-0,13**	$0,66^{**}$	0,29**	$0,40^{*}$
Setembro	$0,58^{*}$	$2,10^{*}$	0,94	0,46	0,46 [*]	1,28**	-1,04**	0,34**	0,34 [*]	1,02*	3,36	1,09*	$0,48^{*}$	0,48	0,32**	0,17**	0,42**	$0,15^{*}$
Outubro	0,51	1,55 [*]	0,91*	0,47	$0,47^{*}$	2,43**	-2,63**	0,21**	0,87	0,94	3,46	1,35	$0,52^{*}$	$0,52^{*}$	0,55**	-0,03**	$0,40^{**}$	0,38
Novembro	$0,50^{*}$	2,38	0,98	0,45	0,45	0,56 ^{**}	-0,15***	0,38**	0,25	1,24	4,88	1,80	0,56	0,56	0,40 ^{**}	0,19**	0,44 ^{**}	$0,40^{*}$
Dezembro	$0,\!47^{*}$	$1,65^{*}$	$0,85^{*}$	$0,44^{*}$	$0,44^{*}$	$1,30^{**}$	-1,17**	0,33**	$0,41^{*}$	$0,78^{*}$	3,02*	$1,19^{*}$	$0,\!49^{*}$	$0,\!49^{*}$	$0,17^{**}$	$0,40^{**}$	0,43**	$0,22^{*}$
							Maceió											
				Macei	ó									Corurip	e			
Modelos	M1	M2	M3	Macei M4	ó M5	N	16	N	17	M1	M2	M3	M4	Corurip M5	e N	16	Μ	[7
Modelos Mês\Coef.	M1 β ₂	M2 β ₂	M3 β ₂	Macei M4 β1	ό M5 β1	Ν β1	16 β ₂	Ν. β1	17 β ₂	<u>M1</u> β ₂	M2 β ₂	M3 β ₂	M4 β1	Corurip M5 β1	e Ν β1	16 β ₂	Μ β1	[7 β ₂
Modelos Mês\Coef. Janeiro	$\frac{M1}{\beta_2}\\0,94^*$	M2 β_2 $4,16^*$	M3 $β_2$ 1,35 [*]	Macei M4 β ₁ 0,52 [*]	$ \frac{\mathbf{\acute{0}}}{\mathbf{M5}} $ $ \frac{\mathbf{\beta}_{1}}{0,51^{*}} $	Ν β ₁ 0,50 ^{***}	$\frac{16}{\mathbf{\beta}_2}$	<u>β</u> ₁ 0,52 ^{**}	$\frac{\beta_2}{-0,01^*}$	$\frac{\mathbf{M1}}{\mathbf{\beta}_2}$	M2 β_2 $1,88^*$	M3 β_2 $0,88^*$	M4 β_1 $0,42^*$	$\frac{\text{Corurip}}{M5}$ $\frac{\beta_1}{0,41}$	$\frac{\mathbf{P}}{\mathbf{P}}$ $\frac{\mathbf{P}}{\mathbf{P}}$ $\frac{\mathbf{P}}{\mathbf{P}}$	$\frac{\mathbf{\beta}_2}{0,09^{**}}$	Μ β ₁ 0,40 ^{**}	$\frac{\beta_2}{0,05^*}$
Modelos Mês\Coef. Janeiro Fevereiro	$\frac{M1}{\beta_2}\\0,94^*\\0,84^*$	M2 β ₂ 4,16 [*] 3,42 [*]	$\frac{M3}{\beta_2} \\ 1,35^* \\ 1,20^* \\ \end{bmatrix}$	Macei M4 β ₁ 0,52 [*] 0,49 [*]		β ₁ 0,50 ^{**} 0,47 ^{**}	$\frac{\mathbf{\beta}_2}{0,03^{**}}\\0,02^{**}$	β ₁ 0,52 ^{**} 0,49 ^{**}	$\frac{\beta_2}{-0.01^*}_{0.02^*}$	$\frac{M1}{\beta_2}\\0,47^*\\0,37^*$	$\frac{M2}{\beta_2}\\ 1,88^*\\ 1,40^*$	M3 β ₂ 0,88 [*] 1,06 [*]		Corurip M5 β ₁ 0,41 [*] 0,31 [*]	$\frac{\mathbf{\beta}_{1}}{0,35^{**}}$	$\frac{\beta_2}{0,09^{**}}\\0,46^{**}$	β ₁ 0,40 ^{**} 0,28 ^{**}	$\frac{\beta_2}{0,05^*}_{0,12^*}$
Modelos Mês\Coef. Janeiro Fevereiro Março	$\begin{array}{c} \textbf{M1} \\ \textbf{\beta}_2 \\ 0,94^* \\ 0,84^* \\ 0,91^* \end{array}$	$\begin{array}{c} \mathbf{M2} \\ \mathbf{\beta}_2 \\ 4,16^* \\ 3,42^* \\ 3,60^* \end{array}$	M3 β ₂ 1,35 [*] 1,20 [*] 1,21 [*]	Macei M4 β ₁ 0,52 [*] 0,49 [*] 0,49 [*]		β ₁ 0,50 ^{**} 0,47 ^{**} 0,39 ^{**}		$\frac{\beta_1}{0,52^{**}}\\0,49^{**}\\0,44^{**}$	$\frac{\beta_2}{-0,01^*}_{0,02^*}_{0,15^*}$	<u>M1</u> <u>β2</u> 0,47 [*] 0,37 [*] 0,60 [*]	$\begin{array}{c} \textbf{M2} \\ \hline \textbf{\beta}_2 \\ 1,88^* \\ 1,40^* \\ 2,64^* \end{array}$	M3 β ₂ 0,88 [*] 1,06 [*] 0,98 [*]	$\begin{array}{c} \mathbf{M4} \\ \mathbf{\beta_1} \\ 0,42^* \\ 0,31^* \\ 0,43^* \end{array}$	Corurip M5 β ₁ 0,41 [*] 0,31 [*] 0,43 [*]	$ \frac{\beta_1}{0,35^*}_{0,05^{**}}_{0,06^{**}}_{0,16^{*}}_{0,16$		<u>β</u> 1 0,40 ^{**} 0,28 ^{**} 0,33 ^{**}	$\frac{\beta_2}{0,05^*}$ 0,12 [*] 0,33 [*]
Modelos Mês\Coef. Janeiro Fevereiro Março Abril	M1 β ₂ 0,94 [*] 0,84 [*] 0,91 [*] 1,17 [*]	$ M2 \beta_2 4,16* 3,42* 3,60* 3,56* 3,56* $	M3 β ₂ 1,35 [*] 1,20 [*] 1,21 [*] 1,56 [*]	Macei M4 β ₁ 0,52 [*] 0,49 [*] 0,49 [*] 0,55 [*]		β ₁ 0,50 ^{**} 0,47 ^{**} 0,39 ^{**} 0,65 ^{**}	16 β ₂ 0,03 ^{**} 0,02 ^{**} 0,12 ^{**} -0,11 ^{**}	β ₁ 0,52 ^{**} 0,49 ^{**} 0,44 ^{**} 0,41 ^{**}	$\frac{\beta_2}{0,02^*}$	<u>M1</u> <u>β</u> ₂ 0,47 [*] 0,37 [*] 0,60 [*] 0,82 [*]	$\begin{array}{c} \textbf{M2} \\ \textbf{\beta}_2 \\ 1,88^* \\ 1,40^* \\ 2,64^* \\ 2,76^* \end{array}$	$\begin{array}{c} \textbf{M3} \\ \hline \textbf{\beta_2} \\ 0,88^* \\ 1,06^* \\ 0,98^* \\ 1,17^* \end{array}$	$\begin{array}{c} \mathbf{M4} \\ \mathbf{\beta_1} \\ 0,42^* \\ 0,31^* \\ 0,43^* \\ 0,50^* \end{array}$	Corurip M5 β ₁ 0,41 [*] 0,43 [*] 0,43 [*] 0,50 [*]	e <u>β</u> 1 0,35 ^{**} 0,05 ^{**} -0,16 ^{**} 0,83 ^{**}	$ \begin{array}{r} \underline{\beta_2} \\ 0,09^{**} \\ 0,46^{**} \\ 0,77^* \\ -0,39^{**} \end{array} $	β1 0,40° 0,28* 0,33** 0,40°**	$ \begin{array}{r} \underline{\beta_2} \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,24^* \end{array} $
Modelos Mês\Coef. Janeiro Fevereiro Março Abril Maio	M1 β ₂ 0,94 [*] 0,84 [*] 0,91 [*] 1,17 [*] 0,79 [*]	$\begin{array}{c} M2\\ \hline \beta_2\\ 4,16^*\\ 3,42^*\\ 3,60^*\\ 3,56^*\\ 1,94 \end{array}$	M3 β ₂ 1,35 [*] 1,20 [*] 1,21 [*] 1,56 [*] 0,92 [*]	Macei M4 0,52 [*] 0,49 [*] 0,49 [*] 0,55 [*] 0,45 [*]	<u>ό</u> <u>M5</u> 0,51 [*] 0,49 [*] 0,49 [*] 0,55 [*] 0,45 [*]	β ₁ 0,50 ^{**} 0,47 ^{**} 0,39 ^{**} 0,65 ^{**} -0,55 ^{**}	$\begin{array}{c} \underline{\beta_2} \\ 0,03^{**} \\ 0,02^{**} \\ 0,12^{**} \\ -0,11^{**} \\ 1,09^{**} \end{array}$	$\begin{array}{c} & \mathbf{N} \\ \hline \mathbf{\beta_1} \\ 0,52^* \\ 0,49^* \\ 0,44^* \\ 0,41^{**} \\ 0,32^{**} \end{array}$	$\frac{\beta_2}{0,02^*}$ -0,01 [*] 0,02 [*] 0,15 [*] 0,35 [*] 0,26 [*]	<u>M1</u> <u>β2</u> 0,47 [*] 0,37 [*] 0,60 [*] 0,82 [*] 0,68 [*]	$\begin{array}{c} \textbf{M2} \\ \textbf{\beta}_2 \\ 1,88^* \\ 1,40^* \\ 2,64^* \\ 2,76^* \\ 1,56^* \end{array}$	$\begin{array}{c} M3\\ \hline \beta_2\\ 0,88^*\\ 1,06^*\\ 0,98^*\\ 1,17^*\\ 0,86 \end{array}$	$\begin{array}{c} \mathbf{M4} \\ \hline \mathbf{\beta_1} \\ 0,42^* \\ 0,31^* \\ 0,43^* \\ 0,50^* \\ 0,44^* \end{array}$	Corurip <u>M5</u> <u>β1</u> 0,41 [*] 0,43 [*] 0,50 [*] 0,43 [*]	e <u>β1</u> 0,35 ^{**} 0,05 ^{**} -0,16 ^{**} 0,83 ^{**} 0,54 ^{**}	$\begin{array}{c} \underline{\beta_2} \\ 0,09^{**} \\ 0,46^{**} \\ 0,77^{*} \\ -0,39^{**} \\ -0,12^{**} \end{array}$	β1 0,40* 0,28* 0,33** 0,40* 0,33** 0,40*	$ \begin{array}{r} \underline{\beta_2} \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,24^* \\ 0,20^* \\ \end{array} $
Modelos Mês\Coef. Janeiro Fevereiro Março Abril Maio Junho	M1 β ₂ 0,94 [*] 0,84 [*] 0,91 [*] 1,17 [*] 0,79 [*] 0,90 [*]	$\begin{array}{c} M2\\ \hline \beta_2\\ 4,16^*\\ 3,42^*\\ 3,60^*\\ 3,56^*\\ 1,94^*\\ 1,90^* \end{array}$	M3 β ₂ 1,35 [*] 1,20 [*] 1,21 [*] 1,56 [*] 0,92 [*] 1,10 [*]	Macei M4 0,52 [*] 0,49 [*] 0,49 [*] 0,55 [*] 0,45 [*] 0,48 [*]	ό M5 β1 0,51* 0,49* 0,49* 0,55* 0,45* 0,45* 0,48*	β1 0,50* 0,47** 0,39** 0,65** -0,55** 0,09**	16 β ₂ 0,03 ^{**} 0,02 ^{**} 0,12 ^{**} -0,11 ^{**} 1,09 ^{**} 0,44 ^{**}	$\begin{array}{c} & \mathbf{N} \\ \hline \mathbf{\beta_1} \\ 0.52^{**} \\ 0.49^{**} \\ 0.44^{**} \\ 0.41^{**} \\ 0.32^{**} \\ 0.35^{**} \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ \hline 0,01^* \\ 0,02^* \\ 0,15^* \\ 0,35^* \\ 0,26^* \\ 0,24^* \end{array}$	$\begin{array}{c} \mathbf{M1} \\ \underline{\boldsymbol{\beta}_2} \\ 0,47^* \\ 0,37^* \\ 0,60^* \\ 0,82^* \\ 0,68^* \\ 0,66^* \end{array}$	M2 β ₂ 1,88 [*] 1,40 [*] 2,64 [*] 2,76 [*] 1,56 [*] 1,63 [*]	$\begin{array}{c} \textbf{M3} \\ \hline \textbf{\beta_2} \\ 0,88^* \\ 1,06^* \\ 0,98^* \\ 1,17^* \\ 0,86^* \\ 0,95^* \end{array}$	$\begin{array}{c} M4\\ \hline \beta_1\\ 0,42^*\\ 0,31^*\\ 0,43^*\\ 0,50^*\\ 0,44^*\\ 0,47^* \end{array}$	Corurip <u>M5</u> <u>β1</u> 0,41 [*] 0,43 [*] 0,43 [*] 0,50 [*] 0,43 [*] 0,43 [*] 0,43 [*] 0,47 [*]	e <u>β1</u> 0,35 ^{**} 0,05 ^{**} -0,16 ^{**} 0,83 ^{**} 0,54 ^{**} 1,33 ^{**}	$\begin{array}{c} \underline{\beta_2} \\ 0,09^{**} \\ 0,46^{**} \\ 0,77^{*} \\ -0,39^{**} \\ -0,12^{**} \\ -1,04^{**} \end{array}$	β1 0,40* 0,28** 0,33** 0,40** 0,33** 0,33** 0,33** 0,35**	$\begin{array}{c} \underline{\beta_2} \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,24^* \\ 0,20^* \\ 0,20^* \end{array}$
Modelos Mês\Coef. Janeiro Fevereiro Março Abril Maio Junho Junho Julho	M1 β ₂ 0,94 [*] 0,84 [*] 0,91 [*] 1,17 [*] 0,79 [*] 0,90 [*] 0,84 [*]	$\begin{array}{c} \textbf{M2} \\ \textbf{\beta_2} \\ 4,16^* \\ 3,42^* \\ 3,60^* \\ 3,56^* \\ 1,94^* \\ 1,90^* \\ 1,96^* \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta_2}\\ 1,35^*\\ 1,20^*\\ 1,21^*\\ 1,56^*\\ 0,92^*\\ 1,10^*\\ 1,07^* \end{array}$	Macei M4 0,52 [*] 0,49 [*] 0,49 [*] 0,55 [*] 0,45 [*] 0,45 [*] 0,48 [*] 0,47 [*]	ό M5 β ₁ 0,51 [*] 0,49 [*] 0,49 [*] 0,55 [*] 0,45 [*] 0,45 [*] 0,48 [*] 0,47 [*]	$\begin{array}{c} & & \\ \hline \beta_1 \\ 0.50^{**} \\ 0.47^{**} \\ 0.39^{**} \\ 0.65^{**} \\ -0.55^{**} \\ 0.09^{**} \\ -0.13^{**} \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ 0.03^{**} \\ 0.02^{**} \\ 0.12^{**} \\ -0.11^{**} \\ 1.09^{**} \\ 0.44^{**} \\ 0.68^{**} \end{array}$	β1 0,52* 0,49* 0,41** 0,32** 0,35** 0,38***	$\begin{array}{c} \underline{\beta_2} \\ -0,01^* \\ 0,02^* \\ 0,15^* \\ 0,35^* \\ 0,26^* \\ 0,24^* \\ 0,17^* \end{array}$	$\begin{array}{c} \textbf{M1}\\ \hline \textbf{\beta}_2\\ 0,47^*\\ 0,37^*\\ 0,60^*\\ 0,82^*\\ 0,68^*\\ 0,66^*\\ 0,50^*\\ \end{array}$	$\begin{array}{c} \textbf{M2} \\ \hline \textbf{\beta}_2 \\ 1,88^* \\ 1,40^* \\ 2,64^* \\ 2,76^* \\ 1,56^* \\ 1,63^* \\ 1,25^* \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 0,88^*\\ 1,06^*\\ 0,98^*\\ 1,17^*\\ 0,86^*\\ 0,95^*\\ 0,81^* \end{array}$	$\begin{array}{c} M4\\ \hline \beta_1\\ 0,42^*\\ 0,31^*\\ 0,43^*\\ 0,50^*\\ 0,44^*\\ 0,47^*\\ 0,43^* \end{array}$	Corurip M5 β1 0,41 [*] 0,43 [*] 0,4	e <u>β</u> 1 0,35 ^{**} 0,05 ^{**} -0,16 ^{**} 0,83 ^{**} 0,54 ^{**} 1,33 ^{**} 0,66 ^{**}	$\begin{array}{c} \underline{\beta_2} \\ 0.09^{**} \\ 0.46^{**} \\ 0.77^{*} \\ -0.39^{**} \\ -0.12^{**} \\ -1.04^{**} \\ -0.30^{**} \end{array}$	β1 0,40* 0,28* 0,33** 0,40** 0,33** 0,40** 0,33** 0,35** 0,36**	$\begin{array}{c} \hline \beta_2 \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,24^* \\ 0,20^* \\ 0,20^* \\ 0,12 \end{array}$
Modelos Mês\Coef. Janeiro Fevereiro Março Abril Maio Junho Junho Julho Agosto	M1 β ₂ 0,94 [*] 0,84 [*] 0,91 [*] 1,17 [*] 0,79 [*] 0,90 [*] 0,84 [*] 0,72 [*]	$\begin{array}{c} M2\\ \hline \beta_2\\ 4,16^*\\ 3,42^*\\ 3,60^*\\ 3,56^*\\ 1,94^*\\ 1,90^*\\ 1,96^*\\ 1,86^*\\ \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 1,35^*\\ 1,20^*\\ 1,21^*\\ 1,56^*\\ 0,92^*\\ 1,10^*\\ 1,07^*\\ 0,97\end{array}$	Macei M4 β ₁ 0,52 [*] 0,49 [*] 0,49 [*] 0,45 [*] 0,45 [*] 0,45 [*] 0,48 [*] 0,47 [*] 0,46		$\begin{array}{c} & \mathbf{N} \\ \hline \boldsymbol{\beta_1} \\ 0,50^{**} \\ 0,47^{**} \\ 0,39^{**} \\ 0,65^{**} \\ -0,55^{**} \\ 0,09^{**} \\ -0,13^{***} \\ 0,55^{***} \\ \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ 0,03^{**} \\ 0,02^{**} \\ 0,12^{**} \\ -0,11^{**} \\ 1,09^{**} \\ 0,44^{**} \\ 0,68^{**} \\ -0,11^{**} \end{array}$	β1 0,52** 0,49* 0,44** 0,32** 0,35** 0,38** 0,36**	$\begin{array}{c} \underline{17} \\ \underline{\beta_2} \\ -0,01^* \\ 0,02^* \\ 0,15^* \\ 0,35^* \\ 0,26^* \\ 0,24^* \\ 0,17^* \\ 0,23^* \end{array}$	M1 β ₂ 0,47 [*] 0,37 [*] 0,60 [*] 0,82 [*] 0,68 [*] 0,66 [*] 0,50 [*]	$\begin{array}{c} \textbf{M2} \\ \textbf{\beta}_2 \\ 1,88^* \\ 1,40^* \\ 2,64^* \\ 2,76^* \\ 1,56^* \\ 1,63^* \\ 1,25^* \end{array}$	$\begin{array}{c} M3\\ \hline \beta_2\\ 0,88^*\\ 1,06^*\\ 0,98^*\\ 1,17^*\\ 0,86^*\\ 0,95^*\\ 0,81^*\\ \end{array}$	$\begin{array}{c} M4 \\ \hline \beta_1 \\ 0,42^* \\ 0,31^* \\ 0,43^* \\ 0,50^* \\ 0,44^* \\ 0,47^* \\ 0,43^* \end{array}$	Corurip M5 β1 0,41 0,31 0,43 0,50 0,43 0,47 0,43 	e <u>β1</u> 0,35 ^{**} 0,05 ^{**} -0,16 [*] 0,83 ^{**} 0,54 ^{**} 1,33 ^{**} 0,66 ^{**}	$\begin{array}{c} \underline{\beta_2} \\ 0.09^{**} \\ 0.46^{*} \\ 0.77^{*} \\ -0.39^{**} \\ -0.12^{**} \\ -1.04^{**} \\ -0.30^{**} \end{array}$	β1 0,40* 0,28* 0,33** 0,40 0,33** 0,35** 0,36**	$\begin{array}{c} \hline \beta_2 \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,24^* \\ 0,20^* \\ 0,20^* \\ 0,12 \\ \hline \end{array}$
Modelos Mês\Coef. Janeiro Fevereiro Março Abril Maio Junho Junho Julho Agosto Setembro	M1 β ₂ 0,94 [*] 0,84 [*] 0,91 [*] 1,17 [*] 0,79 [*] 0,90 [*] 0,84 [*] 0,72 [*] 0,93 [*]	$\begin{array}{c} \textbf{M2} \\ \textbf{\beta}_2 \\ 4,16^* \\ 3,42^* \\ 3,60^* \\ 3,56^* \\ 1,94^* \\ 1,90^* \\ 1,96^* \\ 1,86^* \\ 3,81 \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 1,35^*\\ 1,20^*\\ 1,21^*\\ 1,56^*\\ 0,92^*\\ 1,10^*\\ 1,07^*\\ 0,97^*\\ 1,24^* \end{array}$	$\begin{tabular}{ c c c c } \hline Macei & M4 \\ \hline M4 & 0,52^* \\ 0,49^* & 0,49^* \\ 0,49^* & 0,45^* \\ 0,45^* & 0,45^* \\ 0,46^* & 0,46^* \\ 0,52^* & 0,52^* \end{tabular}$	$\begin{array}{c} \acute{6} \\ \hline \mathbf{M5} \\ \hline \mathbf{\beta_1} \\ 0,51^* \\ 0,49^* \\ 0,49^* \\ 0,45^* \\ 0,45^* \\ 0,45^* \\ 0,46^* \\ 0,46^* \\ 0,52^* \\ \end{array}$	Ν 0,50 0,47* 0,39** 0,65** -0,55*** 0,09** -0,13*** 0,55*** 0,90**	$\begin{array}{c} \underline{\beta_2} \\ 0,03^{**} \\ 0,02^{**} \\ 0,12^{**} \\ -0,11^{**} \\ 1,09^{**} \\ 0,44^{**} \\ 0,68^{**} \\ -0,11^{**} \\ -0,45^{**} \end{array}$	$\begin{array}{c} & \textbf{N} \\ \hline \textbf{\beta_1} \\ 0.52^{**} \\ 0.49^{*} \\ 0.44^{**} \\ 0.41^{**} \\ 0.32^{**} \\ 0.35^{**} \\ 0.38^{**} \\ 0.36^{**} \\ 0.41^{**} \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ -0,01^* \\ 0,02^* \\ 0,15^* \\ 0,26^* \\ 0,24^* \\ 0,17^* \\ 0,23^* \\ 0,28^* \\ 0,28^* \\ \end{array}$	$\begin{array}{c} \mathbf{M1} \\ \underline{\boldsymbol{\beta}_2} \\ 0,47^* \\ 0,37^* \\ 0,60^* \\ 0,68^* \\ 0,68^* \\ 0,66^* \\ 0,50^* \\ \hline 0,55^* \end{array}$	$\begin{array}{c} \textbf{M2} \\ \textbf{\beta}_2 \\ 1,88^* \\ 1,40^* \\ 2,64^* \\ 2,76^* \\ 1,56^* \\ 1,63^* \\ 1,25^* \\ \hline \\ 2,12^* \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 0,88^*\\ 1,06^*\\ 0,98^*\\ 1,17^*\\ 0,86^*\\ 0,95^*\\ 0,81^*\\ \hline \\ 0,99^*\\ \end{array}$	$\begin{array}{c} \mathbf{M4} \\ \mathbf{\beta_1} \\ 0,42^* \\ 0,31^* \\ 0,43^* \\ 0,50^* \\ 0,44^* \\ 0,47^* \\ 0,43^* \\ \hline 0,44^* \\ 0,44^* \\ \end{array}$	Corurip M5 β1 0,41 0,31 0,43 0,43 0,43 0,43 0,47 0,43 0,44	e <u>β1</u> 0,35 ^{***} 0,05 ^{***} -0,16 ^{**} 0,54 ^{***} 1,33 ^{***} 0,66 ^{***} 0,34 ^{***}	$\begin{array}{c} \underline{\beta_2} \\ 0.09^{**} \\ 0.46^{*} \\ 0.77^{*} \\ -0.39^{**} \\ -0.12^{**} \\ -1.04^{**} \\ -0.30^{**} \\ 0.13^{**} \end{array}$	β1 0,40** 0,28* 0,33** 0,40** 0,33** 0,35** 0,36**	$\begin{array}{c} \hline \textbf{\beta}_2 \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,24^* \\ 0,20^* \\ 0,20^* \\ 0,12 \\ \hline 0,22^* \\ 0,22^* \end{array}$
Modelos Mês\Coef. Janeiro Fevereiro Março Abril Maio Junho Junho Julho Agosto Setembro Outubro	$\begin{array}{c} \textbf{M1} \\ \textbf{\beta_2} \\ 0,94^* \\ 0,84^* \\ 0,91^* \\ 1,17^* \\ 0,79^* \\ 0,90^* \\ 0,90^* \\ 0,84^* \\ 0,72^* \\ 0,93^* \\ 0,73^* \\ 0,73^* \\ \end{array}$	$\begin{array}{c} \textbf{M2} \\ \textbf{\beta}_2 \\ 4,16^* \\ 3,42^* \\ 3,60^* \\ 3,56^* \\ 1,94^* \\ 1,90^* \\ 1,96^* \\ 1,86^* \\ 3,81^* \\ 3,02^* \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 1,35^*\\ 1,20^*\\ 1,21^*\\ 1,56^*\\ 0,92^*\\ 1,10^*\\ 1,07^*\\ 0,97^*\\ 1,24^*\\ 1,10^*\\ \end{array}$	$\begin{tabular}{ c c c c } \hline Macei & M4 \\ \hline M4 & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{array}{r} \bullet \\ \hline M5 \\ \hline \beta_1 \\ 0,51^* \\ 0,49^* \\ 0,49^* \\ 0,45^* \\ 0,45^* \\ 0,45^* \\ 0,46^* \\ 0,52^* \\ 0,51^* \\ \end{array}$	Ν β1 0,50"* 0,47" 0,39"* 0,65"* -0,55"* 0,09"* -0,13"* 0,55"* 0,90"* 1,41" -	$\begin{array}{c} \underline{\beta_2} \\ 0.03^{**} \\ 0.02^{**} \\ 0.12^{**} \\ -0.11^{**} \\ 1.09^{**} \\ 0.44^{**} \\ 0.68^{**} \\ -0.11^{**} \\ -0.45^{**} \\ -1.11^{**} \end{array}$	$\begin{array}{c} & & \\ \hline \beta_1 \\ 0,52^{**} \\ 0,49^{**} \\ 0,44^{**} \\ 0,41^{**} \\ 0,32^{**} \\ 0,35^{**} \\ 0,38^{**} \\ 0,36^{**} \\ 0,41^{**} \\ 0,38^{**} \\ 0,38^{**} \\ \end{array}$	$\begin{array}{c} \underline{17} \\ \underline{\beta_2} \\ -0,01^* \\ 0,02^* \\ 0,15^* \\ 0,35^* \\ 0,26^* \\ 0,24^* \\ 0,17^* \\ 0,23^* \\ 0,28^* \\ 0,39^* \\ 0,39^* \\ \end{array}$	$\begin{array}{c} \mathbf{M1} \\ \underline{\beta_2} \\ 0,47^* \\ 0,37^* \\ 0,60^* \\ 0,82^* \\ 0,68^* \\ 0,66^* \\ 0,50^* \\ 0,55^* \\ 0,49^* \end{array}$	$\begin{array}{c} \textbf{M2}\\ \hline \textbf{\beta}_2\\ 1,88^*\\ 1,40^*\\ 2,64^*\\ 2,76^*\\ 1,56^*\\ 1,63^*\\ 1,25^*\\ \hline \textbf{-}\\ 2,12^*\\ 1,52^*\\ 1,52^*\\ \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 0,88^*\\ 1,06^*\\ 0,98^*\\ 1,17^*\\ 0,86^*\\ 0,95^*\\ 0,81^*\\ \hline \\ -\hline \\ 0,99^*\\ 0,74^*\\ \end{array}$	$\begin{array}{c} \textbf{M4}\\ \hline \textbf{\beta_1}\\ 0,42^*\\ 0,31^*\\ 0,43^*\\ 0,50^*\\ 0,44^*\\ 0,47^*\\ 0,43^*\\ \hline 0,44^*\\ 0,40^*\\ \end{array}$	Corurip M5 β ₁ 0,41 [*] 0,43 [*] 0,43 [*] 0,43 [*] 0,43 [*] 0,43 [*] 0,44 [*] 0,44 [*] 0,40 [*]	$\begin{array}{c} \mathbf{e} \\ \hline \mathbf{N} \\ \hline \mathbf{\beta_1} \\ 0,35^{**} \\ 0,05^{**} \\ 0,05^{**} \\ 0,83^{**} \\ 0,54^{**} \\ 1,33^{**} \\ 0,66^{**} \\ \hline 0,34^{**} \\ 0,64^{*} \\ 0,64^{*} \\ \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ 0.09^{**} \\ 0.46^{*} \\ 0.77^{*} \\ -0.39^{**} \\ -0.12^{**} \\ -1.04^{**} \\ -0.30^{**} \\ \hline 0.13^{**} \\ -0.30^{**} \end{array}$	β1 0,40** 0,28* 0,33** 0,40** 0,33** 0,35** 0,36** 0,36** 0,32**	$\begin{array}{c} \hline \beta_2 \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,20^* \\ 0,20^* \\ 0,12 \\ \hline 0,22^* \\ 0,22^* \\ 0,25^{**} \end{array}$
Modelos Mês\Coef. Janeiro Fevereiro Março Abril Maio Junho Junho Julho Agosto Setembro Outubro Novembro	$\begin{array}{c} \textbf{M1}\\ \hline \textbf{\beta}_2\\ 0,94^*\\ 0,84^*\\ 0,91^*\\ 1,17^*\\ 0,79^*\\ 0,90^*\\ 0,90^*\\ 0,84^*\\ 0,72^*\\ 0,93^*\\ 0,73^*\\ 1,05^*\\ \end{array}$	$\begin{array}{c} \textbf{M2} \\ \hline \textbf{\beta}_2 \\ 4,16^* \\ 3,42^* \\ 3,60^* \\ 3,56^* \\ 1,94^* \\ 1,90^* \\ 1,96^* \\ 1,86^* \\ 3,81^* \\ 3,02^* \\ 5,22^* \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 1,35^*\\ 1,20^*\\ 1,21^*\\ 1,56^*\\ 0,92^*\\ 1,10^*\\ 1,07^*\\ 0,97^*\\ 1,24^*\\ 1,10^*\\ 1,49^*\\ \end{array}$	$\begin{tabular}{ c c c c } \hline Macei & M4 \\ \hline M4 & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{array}{r} \bullet \\ \hline M5 \\ \hline \beta_1 \\ 0,51^* \\ 0,49^* \\ 0,49^* \\ 0,55^* \\ 0,45^* \\ 0,45^* \\ 0,46^* \\ 0,52^* \\ 0,51^* \\ 0,56^* \\ \end{array}$	$\begin{array}{c} & & \\ \hline \beta_1 \\ 0,50^{**} \\ 0,47^{**} \\ 0,39^{**} \\ 0,65^{**} \\ -0,55^{**} \\ 0,09^{**} \\ -0,13^{**} \\ 0,55^{**} \\ 0,90^{**} \\ 1,41^{*} \\ 1,02^{**} \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ 0,03^{**} \\ 0,02^{**} \\ 0,12^{**} \\ -0,11^{**} \\ 1,09^{**} \\ 0,44^{**} \\ 0,68^{**} \\ -0,11^{**} \\ -0,45^{**} \\ -1,11^{**} \\ -0,55^{**} \end{array}$	$\begin{array}{c} & \textbf{N} \\ \hline \textbf{\beta_1} \\ 0,52^{**} \\ 0,49^{**} \\ 0,44^{**} \\ 0,41^{**} \\ 0,32^{**} \\ 0,35^{**} \\ 0,35^{**} \\ 0,38^{**} \\ 0,36^{**} \\ 0,41^{**} \\ 0,38^{**} \\ 0,47^{**} \\ 0,47^{**} \\ \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ \hline 0,01^* \\ 0,02^* \\ 0,15^* \\ 0,35^* \\ 0,26^* \\ 0,24^* \\ 0,17^* \\ 0,23^* \\ 0,28^* \\ 0,39^* \\ 0,29^* \\ 0,29^* \\ \end{array}$	$\begin{array}{c} \textbf{M1} \\ \hline \textbf{\beta}_2 \\ 0,47^* \\ 0,37^* \\ 0,60^* \\ 0,82^* \\ 0,68^* \\ 0,66^* \\ 0,50^* \\ \hline \textbf{0},55^* \\ 0,49^* \\ 0,65^* \\ \end{array}$	$\begin{array}{c} \textbf{M2}\\ \hline \textbf{\beta}_2\\ 1,88^*\\ 1,40^*\\ 2,64^*\\ 2,76^*\\ 1,56^*\\ 1,63^*\\ 1,25^*\\ \hline \textbf{-}\\ 2,12^*\\ 1,52^*\\ 3,60^*\\ \end{array}$	$\begin{array}{c} \textbf{M3}\\ \hline \textbf{\beta}_2\\ 0,88^*\\ 1,06^*\\ 0,98^*\\ 1,17^*\\ 0,86^*\\ 0,95^*\\ 0,81^*\\ \hline \\ -\\ 0,99^*\\ 0,74^*\\ 1,24^*\\ \end{array}$	$\begin{array}{c} \mathbf{M4} \\ \hline \boldsymbol{\beta_1} \\ 0,42^* \\ 0,31^* \\ 0,43^* \\ 0,50^* \\ 0,44^* \\ 0,47^* \\ 0,43^* \\ \hline \\ 0,44^* \\ 0,40^* \\ 0,48^* \\ \end{array}$	Corurip M5 β ₁ 0,41 [*] 0,43 [*] 0,43 [*] 0,43 [*] 0,43 [*] 0,43 [*] 0,44 [*] 0,44 [*] 0,40 [*] 0,48 [*]	$\begin{array}{c} \mathbf{e} \\ \hline \mathbf{N} \\ \hline \mathbf{\beta_1} \\ 0,35^{**} \\ 0,05 \\ -0,16^{**} \\ 0,83^{**} \\ 0,54^{**} \\ 1,33^{**} \\ 0,66^{**} \\ 0,34^{**} \\ 0,64^{*} \\ 0,60^{**} \end{array}$	$\begin{array}{c} \underline{\beta_2} \\ 0.09^{**} \\ 0.46^{**} \\ 0.77^{*} \\ -0.39^{**} \\ -0.12^{**} \\ -1.04^{**} \\ -0.30^{**} \\ 0.13^{**} \\ -0.30^{**} \\ -0.17^{**} \\ \end{array}$	β1 0,40** 0,28** 0,33** 0,40** 0,33** 0,35** 0,36** 0,36** 0,32** 0,40**	$\begin{array}{c} \hline \beta_2 \\ 0,05^* \\ 0,12^* \\ 0,33^* \\ 0,24^* \\ 0,20^* \\ 0,20^* \\ 0,12 \\ \hline 0,22^* \\ 0,25^{**} \\ 0,29^* \\ \end{array}$

Tabela 3. Coefficientes horários mensais dos modelos para Arapiraca, Palmeira dos Índios, Maceió e Coruripe, com uso de ΔT . *Table 3. Monthly hourly coefficients of the models to Arapiraca, Palmeira dos Índios, Maceió and Coruripe, with use of* ΔT .

*significativo a 95% **não significativo a 95%

84

Figura 2. Comparação entre H_g^h medida e estimada pelos modelos empíricos que melhor ajustaram. a) Arapiraca (M7), b) Palmeira dos Índios (M4), c) Maceió (M4) e Coruripe (M4).

Evrendilek; Ertekin (2008) comparam 78 modelos empíricos e obtiveram R^2 médio de 0,898. Na região centro-sul do Chile, Álvarez et al. (2011) estimaram a radiação mensal e obtiveram R^2 entre 0,86 e 0,90. Estes resultados são similares aos obtidos localmente, onde observa valor médio, máximo e mínimo de R² iguais a $0,841 \pm 0,019, 0,864 = 0,818$, respectivamente. Os valores de R² indicam que as estimativas estão próximas das medidas. O menor R² encontrado em Coruripe pode estar associado às condições adversas de céu e principalmente, à maior concentração de sujeira na atmosfera, como já destacado. A quantidade de água precipitável pode ser outro fator determinante nos resultados obtidos para Maceió e Coruripe, pois sua concentração na atmosfera tem efeito considerável sobre a radiação solar e ΔT , especialmente nas regiões úmidas.

Os indicativos estatísticos de validação RMSE e d (Figura 3a, b) e MBE (Figura 4) para os modelos que melhor se ajustaram em cada local, resultou em menores valores de RMSE no período chuvoso e picos maiores para o período seco, isto pode ser ocasioado pela menor incidência de irradiação solar neste período e condições de céu (material particulado na atmosfera). Embora a maior precipitação no estado de Alagoas ocorra no inverno, o verão é caracterizado pela atuação dos Vortices Ciclônicos em Altos Niveis (VCAN), que favorece a ocorrência de chuvas acima da média, principalmente quando associado a persistência do fenômeno climático de La Ninã sobre o Pafício Equatorial (INSTITUO NACIONAL DE PESQUISAS ESPACIAIS - INPE, 2009). Como os dados utilizados para validação foram coletados em 2009, o efeito do VCAN é significativo nos meses em que atuou.

Os modelos ajustados na região de Arapiraca acompanharam bem a variabilidade anual, contudo o M4 (Figura 3) foi o que mostrou melhor eficiência em prever H_g^h . Os índices de concordância variaram de 0,69 a 0,99, com pior desempenho em dezembro e melhor em janeiro (Figura 3b). No período chuvoso foi identificado para MBE valor máximo de 0,22 MJ m⁻² h⁻¹ e mínimo em módulo de 0,15 MJ m⁻² h⁻¹ (Figura 4), com RMSE

variando de 0,16 a 0,66 MJ m⁻² h⁻¹ (Figura 3a). De maneira geral, o modelo teve tendência de superestimar. Nos meses de maio, julho, novembro e dezembro houve subestimativa (MBE < 0). O teste t indicou não haver diferença significativa (t = 1,013 < t_{0.05}).

Figura 3. a) RMSE e b) "d" de Willmott para Arapiraca (M7), Palmeira dos Índios (M4), Maceió (M4) e Coruripe (M4).

Figura 4. MBE para Arapiraca (M7), Palmeira dos Índios (M4), Maceió (M4) e Coruripe (M4).

Na região de Palmeira dos Índios, M4 foi o melhor que se ajustou as condições climáticas locais, superestimando nos meses de fevereiro, março, maio e setembro, não apresentando nenhum padrão para estação seca ou chuvosa (Figura 3a). A superestimativa nos dias secos e úmidos é afetada pela influência na cobertura de nuvens (dias parcialmente nublados sem precipitação e aerossóis) (SPOKAS; FORCELA, 2006). Os índices de concordância "d" ficaram compreendidos entre 0,90 e 0,99. O RMSE resultou em amplitude de 0,35 MJ m⁻² h⁻¹ entre o máximo de 0,48 MJ m⁻² h⁻¹ em fevereiro e mínimo de 0,13 MJ m⁻² h⁻¹ em julho. O teste-t avaliado para o nível de significância de 5% indicou que os dados estimados não diferem estatisticamente dos observados. Estes resultados são similares aos obtidos por Koussa et al. (2009), ao encontrarem baixos valores para MBE com predominância de subestimativa em diferentes locais da Argélia.

A variabilidade da irradiação em função da temperatura na região de Maceió foi mais representativa com o M4. Observa-se subestimativas nos meses de fevereiro (-0,06 MJ m⁻² h⁻¹), março (-0,04 MJ m⁻² h⁻¹) e dezembro ($-0,05 \text{ MJ m}^{-2} \text{ h}^{-1}$) e superestimativa nos demais períodos do ano. A superestimativa para dias secos e úmidos são afetadas através da influência na cobertura de nuvens. Os índices de concordância "d" ficaram entre 0,73 e 0,99. O valor mínimo coincide com maior RMSE $(0,79 \text{ MJ m}^{-2} \text{ h}^{-1})$ e MBE $(0,71 \text{ MJ m}^{-2} \text{ h}^{-1})$ em maio. A dispersão média foi de RMSE foi igual a 0,29±0,16 MJ m 2 h⁻¹, com destaque para o mínimo de 0,17 MJ m⁻² h⁻¹ encontrado nos meses de julho e agosto. O M4 mostrou elevada concordância entre os valores observados e medidos, representando a eficiência em prever a irradiação solar, todavia, a 5% de significancia não existe diferença estatistica.

Na região de Coruripe, o M4, gerou o melhor ajuste para as condições climaticas locais. O índice de concordância de Willmott foi elevado e compreendido entre 0.74 e 0.98, com média anual de 0.94 ± 0.07 . Com o M4 foi verificado o valor médio anual de RMSE, sendo igual a 0,33 \pm 0,18 MJ m⁻² h⁻¹, com máximo 0,81 MJ m⁻² h^{-1} em fevereiro e mínimo de 0,17 MJ m⁻² h⁻¹ em julho. Observaram-se subestimativas nos meses de fevereiro $(0,71 \text{ MJ m}^{-2} \text{ h}^{-1})$, março $(0,17 \text{ MJ m}^{-2} \text{ h}^{-1})$, maio (0,17 MJ $m^{-2}h^{-1}$), julho (0,07 MJ $m^{-2}h^{-1}$), outubro (0,25 MJ $m^{-2}h^{-1}$), novembro (0,19 MJ $m^{-2} h^{-1}$) e dezembro (0,07MJ $m^{-2} h^{-1}$), com superestimativa nos demais. Em geral, ocorre maior predominância de superestimativas. Estes resultados diferem dos encontrados por Borges et al. (2010) em Cruz das Almas, e ainda, das observações de Silva et al. (2012) em Minas Gerais. Todavia, os resultados gerados localmente são similares aos obtidos por Pandey; Soupir (2012), em locais dos Estados Unidos, quando propuseram um modelo empiríco baseado na latitude e longitude.

As relações entre o valores medidos e estimados de H_g^h são verificados para cada mês através do desvio relativo médio (SD) (BOLAND, et al, 2008). A porcentagem do desvio relativo médio de cada mês é definida na Equação 17.

A Figura 5 mostra a comparação o desvio relativo médio (SD), entre as medidas e estimativas dos modelos que melhor se ajustaram em cada local. Observa-se que alguns pontos excedem \pm 15%. Estes valores estão associados a períodos com o aumento da nebulosidade e aerossóis na atmosfera (Coruripe).

$$SD = \left(\frac{H_{g,e}^{h} - H_{g,m}^{h}}{H_{g,m}^{h}}\right) \times 100 \qquad (Equação 17)$$

Em que: $H_{g,e}^h$ é a irradiação solar global média horária estimada e $H_{g,m}^h$ é a irradiação solar global média horária medida.

Os valores positivos indicam que, em média, as medidas foram inferiores às estimativas e vice-versa. Coruripe e Palmeira dos Índios foram os locais de maior oscilação. Na partição mensal a porcentagem do SD entre -10% e 10% é considerada dentro do limite aceitável (ERTEKIN; YALDIZ, 1999). Na partição horária, a dinâmica da atmosfera numa escala de tempo menor pode ser mais variável, por isso SD maiores pode ser encontrado. Como é observado em Maghrabi (2009), que encontrou SD entre -3,20% e 3,60% ao estabeler um modelo mensal para Tabouk, Arábia Saudita. Neste sentido, a escolha dos modelos depende fortemente das características climáticas do local considerado em comparação com aqueles em que a sua aplicação está sendo considerada (KOUSSA et al., 2009).

Figura 5. Comparação do desvio relativo médio entre as medidas e estimativas para Arapiraca (M7), Palmeira dos Índios (M4), Maceió (M4) e Coruripe (M4).

4. CONCLUSÕES

Os modelos foram ajustados e acompanharam bem a variabilidade temporal e sazonal da irradiação solar global média horária. Os coeficientes ajustados são dependentes das condições e sazonalidade climáticas locais. Na região de Coruripe os coeficientes são fortemente influenciados pela emissão de aerossóis oriundos da queima de cana-de-açúcar e marinho. Na região de Arapiraca o melhor ajuste foi encontrado com o M7. O M4 resultou em melhor desempenho nas regiões de Palmeira dos Índios, Maceió e Coruripe. Os valores subestimados e superestimados foram ocasionados pelo aumento da nebulosidade no período chuvoso. A modelagem da Hg com modelos que

fazem o uso de várias variáveis meteorológicas possibilitam de explicar a variabilidade temporal e espacial. Todavia, por apresentar maior simplicidade os modelos que utilizam a temperatura do ar, principalmente o M4, são mais atrativos para aplicação.

Embora os modelos empíricos sejam propostos para prever a irradiação solar global na escala diária ou mensal, todos os modelos analisados nos locais de Alagoas foram capazes de prever na partição horária com elevada precisão e baixos erros. Neste sentido, os modelos empíricos têm grande potencial em estimar com base em dados horários, para isso, recomenda-se a utilização dos modelos com coeficientes ajustados localmente ou ajustados em regiões com variabilidade climática semelhante onde foram aplicadas. Os modelos ajustados apresentam grande potencial em prever a irradiação solar global horária nos demais locais do semiárido nordestino. Neste sentido, com desenvolvimento de novas tecnologias solares a utilização destes modelos será de grande importância em projetos no presente e no futuro para instalações de usinas solarimetricas e térmicas na região.

5. AGRADECIMENTOS

Os autores agradecem ao CNPq, CAPES, FAPEAL e ELETROBRAS pelo financiamento do projeto e bolsas concebidas.

6. REFERÊNCIAS

ABRAHA, M. G.; SAVAGE, M. J. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. **Agricultural and Forest Meteorology**, v.148, n.3, p.401-416, mar. 2008.

ALADOS, I. et al. Estimation of photosynthetically active radiation under cloudy conditions. **Agricultural and Forest Meteorology**, v.102, n.1, p.39-50, abr. 2000.

ALLEN, R. et al. **Crop evapotranspiration-Guidelines for computing crop water**. Rome: FAO, 1998 300p. (Irragation and drainage paper, n.56, 1998)

ALLEN, R. Evaluation of procedures of estimating mean solar radiation from air temperature. Rome: FAO, 1995. 120p.

ALLEN, R. G. Assessing integrity of weather data for reference evapotranspiration estimation. **Journal of Irrigation and Drainage Engineering**, v. 122, n. 2, p.97-106, mar. 1996.

ALMOROX, J. et al. Estimation of daily global solar radiation from measured temperature ate Cañada de Luque, Córdoba, Argentina. **Renewable Energy**, v.60, p.382-387, dez. 2013.

ALMOROX, J. et al. Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). **Applied Energy**, v.88, n.5, p. 1703-1709, maio 2011.

ÁLVAREZ, J. et al. Estimating monthly solar radiation in south central Chile. **Chilean Journal of Agricultural Research**, Chillan, v.71, n.2, p.601-6-9, oct./dec. 2011.

ANNANDALE, J. G. et al. Software for missing data error analysis of Penman–Monteith reference evapotranspiration. **Irrigation Science**, v.21, n.2, p.57-67, mar. 2002.

BALL, R. et al. Evaluation of solar radiation prediction models in North America. **Agronomy Journal**, Madison, v.96, n.5, p. 391-397, set. 2004.

BOLAND, J. et al. Models of diffuse solar radiation. **Renewable Energy**, v.33, n.4, p.575-584, abr. 2008.

BORGES, V. P. et al. M. Avaliação de modelos de estimativa da radiação solar incidente em Cruz das Almas, Bahia. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v.14, n.1, p.74-80, jan. 2010.

BRISTOW, K. L.; CAMPBELL, G. S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. **Agricultural and Forest Meteorology**, v.31, n.2, p.159-166, maio 1984.

CHEN, R. et al. Validation of five models with measured daily data in China. **Energy Conversion and Management**, v.45, n.11-12, p.1759-1769, jul. 2004.

ERTEKIN, C.; YALDIZ, O. Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey). **Renewable Energy**, v.17, n.1, p.95-102, maio 1999.

ESCOBEDO, J. F. et al. An assessment of the diffuse radiation models for prediction on hourly global radiation in tilted surface. **Nativa**, Sinop, v.2, n.1, p.23-31, jan./mar. 2014.

EVRENDILEK, F.; ERTEKIN, C. Assessing solar radiation models using multiple variables over Turkey. **Climate Dynamics**, v.31, n.2-3, p.31-149, ago. 2008.

HARGREAVES, G. L. et al. Irrigation water requirement for Senegal River Basin. Journal of Irrigation and Drainage Engineering, v.111, n.3, p.265-275, set.1985.

HARGREAVES, G. L; SAMANI, Z. A. Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering, v.108, n.3, p.225-230, set. 1982.

HUNT, L. A. et al. Estimation of solar radiation for use in crop modeling. **Agricultural and Forest Meteorology**, v.91, n.3-4, p.293-300, jun. 1998.

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE). Climanálise. **Boletim de Monitoramento e Análise Climática**, Cachoeira Paulista, v.24, n.2, p.1-47, fev. 2009.

KOUSSA, M. et al. Statistical comparison of monthly mean hourly and daily diffuse and global solar irradiation models and a Simulink program development for various Algerian climates. **Energy Conversion and Management**, v.50, n.5, p.1227-1235, maio 2009.

LIU, X. et al. Evaluation of temperature-based global solar radiation models in China. **Agricultural and Forest Meteorology**, v.149, n.9, p.1433-1446, set. 2009.

LIZASO, J. L. et al. Development of a leaf – level canopy assimilation model for CERES – Maize. Agronomy Journal, Madison, v.97, n.3, p.722-733, maio 2005.

MAGHRABI, A. H. Parameterization of a simple model to estimate monthly global solar radiation based on meteorological variables, and evaluation of existing solar radiation models for Tabouk, Saudi Arabia. **Energy Conversion and Management**, v.50, n.11, p. 2754-2760, nov. 2009.

MELO, S. B. **Modelagem da irradiação solar global para a região de Mossoró – RN**. 2009. 106f. Dissertação (Mestrado em Meteorologia Agrícola) – Universidade Federal de Viçosa, 2009.

MEZA, F.; VARAS, E. Estimation of mean monthly solar global radiation as a function of temperature. **Agricultural and Forest Meteorology**, v.1 00, n.2-3, p.231-241, fev. 2000.

PANDEY, P. K.; SOUPIR, M. L. A new method to estimate average hourly global solar radiation on the horizontal surface. **Atmospheric Research**, v. 114-115, n.1, p.83-90, out. 2012.

REIKARD, G. Predicting solar radiation at high resolutions: A comparison of time series Forecasts. **Solar Energy**, v.83, n.5, p.342-349, mar. 2009.

SAMANI, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of Irrigation and Drainage Engineering, v.126, n.4, p.265-267, jul. 2000.

SILVA, C. R. et al. Radiação solar estimada com base na temperatura do ar para três regiões de Minas Gerais. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v.16, n.3, p.281-288, mar. 2012.

SOUZA, J. L. et al. Global solar radiation measurements in Maceió, Brazil. **Renewable Energy**, v.30, n.8, p.1203-1220, jul. 2005.

SPOKAS, K.; FORCELA, F. Estimating hourly incoming solar radiation from limited meteorological data. **Weed Science**, Washington D.C., v.54, n.1, p.182-189, jan. 2006.

THORNTHWAITE, C. W., MATHER, J. R. **The water balance.** Centerton: Drexel Institute of Technology, 1995. 104p. (Publications in Climatology, v.8, n.1, 1955).

WEISS, A. et al. Incorporating bias error in calculating solar irradiance: implications for crop yield simulations. **Agronomy Journal**, Madison, v.93, n.6, p.1321–1326, nov./dez. 2001.

WILLMOTT, C. J. Some comments on the evaluation of model performance. **Bulletin American Meteorological Society**, Boston, v.63, n.11, p.1309-1313, nov. 1982.