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This study evaluates the estimation of hourly and daily normal direct irradiation (Hb) using machine
learning techniques (ML): Artificial Neural Network (ANN) and Support Vector Machine (SVM). Time ser-
ies of different meteorological variables measured over thirteen years in Botucatu were used for training
and validating ANN and SVM. Seven different sets of input variables were tested and evaluated, which
were chosen based on statistical models reported in the literature. Relative Mean Bias Error (rMBE),
Relative Root Mean Square Error (rRMSE), determination coefficient (R2) and ‘‘d” Willmott index were
used to evaluate ANN and SVM models. When compared to statistical models which use the same set
of input variables (R2 between 0.22 and 0.78), ANN and SVM show higher values of R2 (hourly models
between 0.52 and 0.88; daily models between 0.42 and 0.91). Considering the input variables,
atmospheric transmissivity of global radiation (kt), integrated solar constant (Hsc) and insolation ratio
(n/N, n is sunshine duration and N is photoperiod) were the most relevant in ANN and SVM models.
The rMBE and rRMSE values in the two time partitions of SVMmodels are lower than those obtained with
ANN. Hourly ANN and SVM models have higher rRMSE values than daily models. Optimal performance
with hourly models was obtained with ANN4h (rMBE = 12.24%, rRMSE = 23.99% and ‘‘d” = 0.96) and
SVM4h (rMBE = 1.75%, rRMSE = 20.10% and ‘‘d” = 0.96). Optimal performance with daily models was
obtained with ANN2d (rMBE = �3.09%, rRMSE = 18.95% and ‘‘d” = 0.97) and SVM2d (rMBE = 0.60%,
rRMSE = 19.39% and ‘‘d” = 0.97). ANN and SVM models improved Hb estimations as compared with other
results from the literature. SVM has better performance than ANN to estimate Hb, and it should be the
first option of choice.

� 2016 Elsevier Ltd. All rights reserved.
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Nomenclature

ANN Artificial Neural Network
CosZ cosine of the zenith angle
‘‘d” Willmott index
Hsc integrated solar constant at the top of the atmosphere

(MJ m�2)
H0 solar irradiation at the top of the atmosphere (MJ m�2)
Hb Normal direct irradiation (MJ m�2)
I0 solar constant (W m�2)
ktb transmitted fraction
kt atmospheric transmissivity of global irradiation
kD diffuse fraction
ML machine learning
mr optical mass of the air
MLP MultiLayer Perceptron
N photoperiod
n Sunshine duration
RBF Radial Basis Function
rMBE Relative Mean Bias Error (%)
rRMSE Relative Root Mean Square Error (%)
R2 Determination coefficient

r0 insolation ratio (n/N)
SACZ South Atlantic Convergence Zone
SVM Support Vector Machine
Tmax maximum air temperature (�C)
Tmin minimum air temperature (�C)
wij hidden layer with linked weights
WEKA Waikato Environment for Knowledge Analysis
xij input layer
yi output layer
u latitude (in degrees)
d solar declination angle (in degrees)
xs half day length (in degrees)
C, c and e RBF parameters
hi bias of neuron i

Subscripts
h hourly
d daily
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1. Introduction

Recent studies have shown the importance of reliable measure-
ments of normal direct irradiation (Hb) for applications, such as
calibration of satellites, study on thermal comfort and natural
lighting of buildings and simulation of performance in concen-
trated solar technologies (CST) [1–3]. Because of competitive prices
in the energy market and cost reduction in recent years, concen-
trated and photovoltaic solar energy has become the major alter-
native energy sources for the future. Therefore, long-term Hb

measures are essential for financial planning, performance analysis
and development of solar power system technologies.

Although there are sets of data on solar radiation and various
solarimetric maps worldwide, they are generally not detailed
enough to be used for determining solar energy available in small
areas [4]. In addition, solar maps and Hb measurements are not
readily available in most places of the world. Hb measurements
are obtained through pyrheliometers. The major problem found
for obtaining Hb measurements is the high cost for acquiring the
sensor, tracking systems, adjacent devices and the need for regular
maintenance to ensure measurement accuracy [5]. Without these
sensors, studies have been conducted to recover historical series
and provide estimates in places where measurements are not per-
formed or not readily available. Estimates are typically obtained
using models based on radiative transfer (sophisticated computer
codes) or using decomposition models. Models based on radiative
transfer are considered complex, require availability of a large
number of input variables, and are useful only in clear-sky condi-
tions [1]. Decomposition models are empirical in nature, locally
adjusted and calculate Hb. They correlate the fractions of Hb com-
ponents (transmitted fraction, ktb), atmospheric transmissivity
(kt), diffuse fraction (kD) or insolation ratio (r0 = n/N, n is duration
of solar brightness and N is the photoperiod) [6].

When many input variables are used, decomposition models
become complicated, time consuming and using multiple linear
regression becomes inadequate [7]. However, these designs have
inherent uncertainties that make their use limited. Therefore, esti-
mating Hb is not so simple. Thus, new approaches are needed when
the existing ones become limited or inefficient for some situations.

In the last 20 years, machine learning techniques (ML) have
been tested and used to estimate solar radiation and have shown
to be a good tool [8–11]. Using ANN and comparing it with empir-
ical models, Soares et al. [8] estimated diffuse solar radiation in São
Paulo city. The authors obtained RMSE from 0.193 to 0.121 MJ m�2,
with better performance for ANN than the empirical models. In
Ghardaïa (Argelia), Belaid and Mellit [9] estimated daily and
monthly global solar radiation using SVM. The authors combined
different input variables amounting to 42 models. The results
revealed good concordance among measures, and estimates with
RMSE ranged from 2.727 to 2.807 MJ m�2. There are several ML
models and the Artificial Neural Network (ANN) and Support Vec-
tor Machine (SVM) are the most widely used [12–16]. Yadav and
Chandel [13] reviewed the main studies in the literature using
ANN to estimate solar radiation. The study reveals that ANNs esti-
mate solar radiation more accurately than conventional methods.
Raghavendra and Deka [14] reviewed SVM studies on hydrology
and pointed out many examples of successful SVMs applications
for modeling different hydrological processes. In Isfahan city,
Mohammadi et al. [16] used support vector regression (SVR) to
estimate global solar radiation using n and N as input variables.
The authors compared the performance of SVR with that of empir-
ical models and obtained RMSE = 2.004 MJ m�2 for daily estimates
and RMSE = 0.450 MJ m�2 for monthly estimates with SVR, which
shows better performance for ML. Considering both ML and SVM,
the latter has better performance solving classification and regres-
sion problems due to its better generalization ability [9,17]. There
are several studies assessing estimates of solar radiation data using
ML and most of them analyzed estimates of daily global radiation
[18,19]. Applying Support Vector Machine (SVM), Chen et al. [18]
estimated global solar radiation for three places in Liaoning, China.



Table 1
Set of input variables that define ANN and SVM models.

Partition ANN SVM Set of input variables

Hourly Hb
h ANN1h SVM1h HG

ANN2h SVM2h kt
ANN3h SVM3h kt and Hsc

ANN4h SVM4h kt and mr

ANN5h SVM5h Kt and CosZ
ANN6h SVM6h kt, Hsc, mr and CosZ

Daily Hb
d ANN1d SVM1d HG

ANN2d SVM2d kt
ANN3d SVM3d kt and Hsc

d

ANN4d SVM4d kt and r0

ANN5d SVM5d kt, Hsc
d and r0

ANN6d SVM6d Tmax and Tmin

Hb is the normal direct irradiation (MJ m�2); kt is atmospheric transmissivity; Hsc:
integrated solar constant at the top of the atmosphere (4.921 MJ m�2); mr is the
optical mass of the air; CosZ is the cosine of the zenith angle; HSC

d is the daily direct
irradiation at the top of the atmosphere (MJ m�2), r0 is the insolation ratio (n/N),
Tmax is the maximum air temperature, Tmin is the minimum air temperature.
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The authors used seven different combinations for input variables
of SVM and compared the results with empirical models. They
highlighted the supremacy of SVM (RMSE ranging from 1.789
and 2.380 MJ m�2) over empirical models (RMSE ranging from
1.975 to 2.729 MJ m�2).

Despite successful application in many areas, studies related to
application of SVM to estimate Hb are rare, and those using ANN
are also few [20–22]. In South America, including Brazil, measured
data of Hb are scare or inexistent. Therefore, estimating Hb is essen-
tial for recovery and development of reliable historical series. Appli-
cations of ANN and especially SVM on renewable energy areas have
beenminimal [23]. Thus, themain aims of this study are: 1 – to ana-
lyze stability, accuracy and to exploit the potential of ANN and SVM
to estimate Hb compared to classical statisticalmodels; 2 – to inves-
tigate the key input variables in Hb modeling; 3 – to compare and
indicate the best technique for Hb modeling. For a more extensive
analysis, the models are evaluated in hourly and daily partitions.

The results serve as a case study because the Brazilian govern-
ment has increased interest in using new renewable energy to
meet current energy matrix (hydroelectric power plant). Brazil is
the fifth largest country in the world; only a few research centers
perform routine Hb measurements, however. Thus, there is a need
for new methods to map Hb of a location and expand it to the
whole territory. The study is divided into sections. Section 2 briefly
shows the statistical models, ANN and SVM techniques used, the
input variables and the validation indexes. The place and data set
characteristic of modeling are given in Section 3. Section 4 dis-
cusses the results. The study is completed in Section 5.
2. Description of the methods used

The first part corresponds to generation of statistical models to
estimateHb, the second one, to estimateHb using ANN, and the third
one, to estimate Hb using SVM. Some concepts of eachmethodology
are explained, and for more details, reading studies taken as refer-
ence is recommended. The location chosen for the case study is
Botucatu, a city in the inner State of São Paulo/Brazil. Botucatu is
the unique city in the Midwestern region of São Paulo State which
has a 10 year-measurement Hb database. Because of technical prob-
lems in the pyrheliometer, monitoring of Hb ceased in 2009. In this
case, the estimating of Hb is important to the completion of the tem-
poral series in Botucatu. To estimate Hb, organizing the data set and
choosing the appropriate algorithm are highly important. The
description of the site and data used is presented in Section 3.

2.1. Statistical models

The statistical models were developed according to the same
input variables of ANN and SVM models (Table 1), and were sepa-
rated into hourly and daily partitions. The first model, in hourly
partition, uses the relationships between Hb and HG, the second
model correlates Hb with kt and the third model correlates Hb with
kt and Hsc. The statistical models in the daily partition follow the
same structure of the hourly models, altering the input variables
to find the best correlations to estimate Hb. The statistical models
were adjusted by polynomial regression. Following that sequence
of input variables, if the statistical models show determination
coefficient (R2) lower than that of ANN and SVM models of the
same structure, they will be rejected and the results will be devel-
oped as a function of estimates of Hb using ANN and SVM.

2.2. Artificial neural network

ANN is a computer system for processing information that con-
sists of an interconnected group of artificial neurons based on the
structure, processing method and the brain learning ability [24].
ANN is able of storing knowledge and understanding the complex
non-linear relationship between output and input data, covering
regression problems, forecasting models and other applications
in different fields [25–27].

The ANN adopted in this paper is the MultiLayer Perceptron
(MLP). MLP is an information processing system massively parallel
and distributed, and applied successfully to a model for many non-
linear problems [28,29]. The basic structure of the MLP is an input
layer (xij), hidden layer with linked weights (wij), and an output
layer (yi) [30]:

yi ¼
Xg
j¼1

wi;jxi;j þ hi ð1Þ

where xi,j is the input signal from the j-th neuron (for input layer),
wi,j is the weight of the direct connection of neuron j to neuron i
(in the hidden layer), and hi is the bias of neuron i. The output of
neurons is calculated by applying an activation function. The activa-
tion function used is typically standard sigmoid (Eq. (2)).

f ðxÞ ¼ 1
½1þ expð�xÞ� ð2Þ

In this study, MLP was trained using the Backpropagation train-
ing algorithm and the termmomentum [24,31]. The weight adjust-
ment at the iteration depends on the learning rate and momentum.
The learning rate during each iteration controls the size of weight
and bias changes, while the momentum helps the search for the
global minimum on the error surface, preventing the system from
converging to a local minimum or saddle point [32].

2.3. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a machine learning method
derived from the statistical learning theory introduced by [17].
SVM has gained prominence in many fields of knowledge to solve
complex problems of pattern recognition, classification, regression
analysis and forecasting [33–35].

The performance and learning capacity of SVM in regression are
attributable to the use of the Kernel function set, which diagrams
the information to a higher dimensional space [36], which makes
the SVM a feasible choice to address several solar radiation studies
on non-linear nature [37]. In this study, the Kernel Radial Basis
Function (RBF) is considered for SVM regression. The best estimate
function f(v) may be expressed as an expansion of support
vectors [38]:
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f ðvÞ ¼
XT
i¼1

bikðvi;vjÞ þ b ð3Þ

where kðvi;vjÞ ¼ expð�0:5� kv� vik2=r2Þ is RBF, the value of the
kernel function kðvi;vjÞ equals to the intern product of two vectors
vi and vj in the feature space uðviÞ and uðvjÞ respectively; the mul-
tiplicators bi 2 ½�C;C�, for i = 1, . . . , T are the solutions for the prob-
lem of double optimization in SVM regression. The points vi with
multiples different from zero bi are called Support Vectors (SVs).
The scalar b is estimated by minimizing the sum of the empirical
risk following by introduction of positive slack variables [33].

To allow greater flexibility in the application of RBF, it is neces-
sary to properly adjust the parameters C, c and e. Parameters C and
c are mutually dependent on each other, low C values produce
machine learning with poor approach, and high C values generate
more complex learning machine [14]. In this study, c and C values
are tested by trial method and those with the best accuracy for
cross-validation are chosen. Parameter e is used to adjust the train-
ing data.

The SVM used is the integrated LibSVM compilation for classifi-
cation of support vectors, regression and distribution estimate
[39,40]. A brief introduction to the theory of SVM is presented in
[18].

2.4. Software and models

The ANN models were trained and validated using Waikato
Environment for Knowledge Analysis (WEKA). WEKA is a set of
ML algorithms for data mining tasks [41]. Providing the user with
a Java programming, WEKA contains tools for data pre-processing,
classification, regression, clustering, association rules, and visual-
ization. WEKA has the option of choosing the percentage of data
for training and validation, defined as Percentage Split. The choice
of data from this tool is at random, with no tendency in modeling.
Seventy percent of the series were used for training and 30% of
them for validation and testing. Algorithm J48 is used to classify
the most relevant input variables to estimate Hb. The algorithm
J48 (implemented in WEKA) is widely used to construct a decision
tree [42,43]. It is used for rules of classification and represents the
knowledge based on the tree. Moreover, it consists of a great num-
ber of branches, a root, some knots and leaves. A branch is a chain
of ganglions from the root to the leaves, and each knot involves one
variable. The occurrence of one variable in one tree supplies infor-
mation on the importance of the associated variable. Therefore,
selection of the most relevant variables to estimate Hb is per-
formed using the decision tree method.

The correlations between Hb and other input variables are
shown in Table 1. The input data for ANN and SVM models consist
of independent and dependent variables. Different combinations
with input variables were formed in hourly and daily partitions.
The input variables were selected because of their correlation with
Hb and they are more easily monitored and available in stations
than other atmospheric parameters (aerosols and water vapor,
for example). In hourly and daily partitions: HG choice is justified
because Hb at the horizontal is one of their components. Selection
of kt and the insolation rate (r0 = n/N) is explained by the similarity
to Liu & Jordan and Ångström methodologies, respectively. Hsc is
justified due to its relationship with Hb, and mr because it is a vari-
able which reduces the incidence of Hb. The cosZ is justified by the
increase in Hb with elevation of the zenithal angle and vice versa.
Tmax and Tmin input variables are evaluated to test them regarding
the estimate of Hb, as well because of simplicity of measurement
and low cost of the devices used. The models trained with Multi-
Layer Perceptron and with Support Vector Machine are repre-
sented as ANN and SVM, respectively. Abbreviations of models:
Solar irradiation at the top of the atmosphere (H0) was calcu-

lated according to the equations described in [44,45], which is a
function of solar constant (I0), Julian day, latitude (u, in degrees),
solar declination angle (d, in degrees) and half day length (xs, in
degrees). The photoperiod (N) was calculated according to Eq. (4):

N ¼ 2
15

�xs ð4Þ

Daily direct irradiation at the top of atmosphere (Hsc
d , MJ m�2) is

obtained bymultiplying the integrated solar constant (Hsc = 4.921 -
MJ m�2) by the photoperiod (Eq. (5)):

Hd
sc ¼ 4:921� N ð5Þ
Optical relative mass (mr) was calculated according to [46].

2.5. Validation and evaluation of models

Various statistical indexes can be used to evaluate the perfor-
mance of models to estimate Hb. Some indexes are used here to
evaluate ANN and SVM models: Relative Mean Bias Error (rMBE),
Relative Root Mean Square Error (rRMSE), determination coeffi-
cient (R2) and ‘‘d” Willmott index [47]. The definitions of those
indexes are given by the following equations:

rMBEð%Þ ¼ 100�
PX

i¼1
HE�HMð Þ
X

X
ð6Þ

rRMSEð%Þ ¼ 100�

PX

i¼1
HE�HMð Þ2
X

� �1
2

X
ð7Þ

R2 ¼
PX

i¼1ðHM �HMÞ2 �
PX

i¼1ðHE �HEÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPX
i¼1ðHM �HMÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPX
i¼1ðHE �HEÞ2

q
0
B@

1
CA

2

ð8Þ

d ¼ 1�
PX

i¼1ðHE �HMÞ2PX
i¼1ðjH0

Ej þ jH0
MjÞ2

ð9Þ

where HE represents the estimated values, HM the measured
values, H0

E

�� �� the absolute value of the HM �HM and HE difference,

in which HM represents the average of HM, H0
M

�� �� represents the

absolute value of the HM �HM difference and HE the average of
the estimated values. X ¼ 1

x

Px
i¼1HM

� �
is the average value of the

measurement and x is the number of observations. The rMBE index
describes the average trend of estimated values to overestimate
(positive values) or underestimate (negative values) the measures.
The optimal rMBE value is 0. rRMSE and R2 indexes are often used.
The optimal rRMSE value is 0. Good models should have low rRMSE
and rMBE values. The R2 value ranges from 0 to 1 and the higher its
value, the better the model fits. The Willmott ‘‘d” concordance
index indicates how close the estimates are from the measures of
the comparison line 1:1. The ‘‘d” value equal to 1 corresponds to
a perfect match. To find out which model can have a consistently
high performance, Gueymard and Ruiz-Arias [48] elaborated a set
of criteria for evaluation of Hb models. Different rRMSE intervals
are defined to evaluate the accuracy of the models [49,50]:

Excellent if rRMSE < 10%;
Good if 10% 6 rRMSE < 20%;
Fair if 20% 6 rRMSE < 30%;
Poor if rRMSEP 30%.



Table 2
Determination coefficient (R2) obtained using ANN and SVM models.

Hourly Daily
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In this work, these intervals serve as parameters to assess the
accuracy of models to estimate Hb and define the most recom-
mended one. This work considered low errors for |rMBE| < 10%.
ANN R2 SVM R2 ANN R2 SVM R2

ANN1h 0.53 SVM1h 0.52 ANN1d 0.49 SVM1d 0.55
ANN2h 0.87 SVM2h 0.87 ANN2d 0.87 SVM2d 0.87
ANN3h 0.87 SVM3h 0.87 ANN3d 0.88 SVM3d 0.86
ANN4h 0.88 SVM4h 0.87 ANN4d 0.88 SVM4d 0.89
ANN5h 0.88 SVM5h 0.87 ANN5d 0.91 SVM5d 0.91
ANN6h 0.88 SVM6h 0.87 ANN6d 0.42 SVM6d 0.43
3. Study site and database

Data used in this study were measured in the Radiometric Sta-
tion located at the College of Agricultural Sciences in Botucatu -
FCA/UNESP (22.85�S; 48.45�W and 786 m altitude) (Fig. 1). The
region has high altitude gradient between 400 and 500 m in the
lower region (peripheral depression) and between 700 and 900
in the mountain region (Western Highlands). With Savanna and
Atlantic Forest biome, it has warm temperate (mesothermal), hot
and wet summer with high precipitation and dry winter [47]. With
annual average air temperature of 20.46 ± 2.21 �C, the hottest
month is February (23.216 ± 1.20 �C) and the coldest month is July
(17.16 ± 1.33 �C). Relative humidity ranges from 62.61 ± 8.88%
(August) to 76.26 ± 8.24% (February). Accumulated annual average
precipitation is 1,494.10 mm. The rainiest season is from October
to March and the driest season is from April to September. During
the rainy season, precipitation is mainly caused by the South Atlan-
tic Convergence Zone (SACZ) and frontal systems. In the dry sea-
son, rainfall originates from the meeting of cold and dry air
masses coming from the southern region with warm and moist
masses from the southeastern region [51].

Hb was measured by an Eppley NIP pyrheliometer coupled to an
Eppley ST3 solar tracker, HG by Eppley PSP pyranometer, and sun-
shine duration by a conventional Campbell-Stokes sunshine recor-
der. Measurements of maximum and minimum air temperatures
were performed using a mercury thermometer and alcohol ther-
mometer, respectively. All meteorological variables were mea-
sured during the period from February 1996 to December 2008.
The sensors are daily checked for replacement whenever neces-
sary. Irradiance measurements were taken every minute, storing
the average every 1 min. Irradiance (Wm�2) is integrated at speci-
fic time intervals to obtain radiation (MJ m�2) from programs for
radiation analysis [52]. Radiometers are annually assessed for dif-
ferent sky covers by the comparative method suggested by the
World Meteorological Organization [53]. As there is no definitive,
ideal or widely accepted procedure for better quality control of
irradiation data, each research center typically adopts its own
method, which implies that some may be more accurate than
others [48].
Fig. 1. Radiometric Station located at the College of A
4. Results and discussion

In ANN models, the following values were considered: learning
rate = 0.3; momentum = 0.2 and number of iterations = 500. Hid-
den layers were tested and ranged from 1 to 10, but the standard
value of WEKA was adopted by the best fit found. In WEKA, the
standard of hidden layers is defined as ‘‘a” = [(Input variables
+ classes)/2]. In the SVM training, selection and proper use of the
Kernel function have great accuracy on the modeled data and on
SVM models [54]. The three RBF parameter set were: C, c and e.
In their selection, the e value was set at 0.005 and many assays
were performed with different C and c combinations. So, the best
values were: C = 50, c = 0.2 and e = 0.005. Two combinations of
RBF parameters suggested for HG were tested: C = 100; c = 0.3;
e = 0.001 [37] and C = 400; c = 0.01; e = 0.4 [16], but the R2 values
generated for models with these parameters were lower than those
obtained in this study for Hb (Table 2).

Models with the lowest R2 Willmott values are highlighted in
bold. The smallest R2 value (0.42) was obtained using the ANN6d

and the highest R2 values (0.91) were obtained using two models
(ANN5h and SVM5d). In general, the similarity in the R2 values
between ANN and SVM and the efficiency in modeling gain promi-
nence, especially when parameters are properly adjusted and good
measures are used [27].

Fig. 2(a, b, c and d) shows the correlations Hb � HG and Hb � kt
in hourly and daily time partition with adjusted equations of their
correlations. Data were analyzed through a dispersion curve and
after exclusion of inconsistent values. In the adjusted polynomial
equation, values of R2 were low when compared to those from
the ML models (Table 3). Only ANN and SVM models will be com-
pared with each other due to low R2 values shown by the statistical
models.
gricultural Sciences from Botucatu - FCA/UNESP.



0 1 2 3 4 5 6
0

1

2

3

4

5

6
 Polynomial Fit(a)

H
bh  (M

Jm
-2
)

HG
h (MJm-2)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
 Polynomial Fit(b)

H
bh  (M

Jm
-2

)

(kt)h

0 8 16 24 32 40
0

9

18

27

36

45
 Polynomial Fit(c)

H
bd  (M

Jm
-2
)

HG
d (MJm-2)

0.0 0.2 0.4 0.6 0.8 1.0
0

9

18

27

36

45
 Polynomial Fit(d)

H
bd  (M

Jm
-2

)

(kt)d

Fig. 2. Hourly and daily adjusted statistical models: (a) Hb
h � HG

h correlation, (b) Hb
h � kth correlation, (c) Hb

d � HG
d correlation and (d) Hb

d � ktd correlation.

Table 3
Adjusted statistical models.
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h: (a) rMBE, (b) rRMSE and (c) ‘‘d” Willmott index.
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In addition to checking the best machine learning technique,
this study also identified the input climate variables that are
important for determination of Hb. For that purpose, the WEKA
J48 algorithm was used as classifier, as the most relevant input
variables kt and Hsc were obtained in hourly models; kt and inso-
lation ratio (r0 = n/N) were obtained in daily models. The best R2

values are found for models with the addition of these variables.
kt and mr as the most relevant input variables in the Hb modeling
are highlighted in the study by [7].

4.1. Performance analysis of hourly models

Because of lack of studies using ML to estimate Hb [13], the
results in this study are limited to a few comparisons with those
from the literature, but there is a need for exploring and validating
new methodologies to estimate Hb to meet the global demand for
solarimetric information for different applications, including cali-
bration of satellites, solarimetric mapping and retrieving historical
series.

In assessing the results with models (ANNh and SVMh), valida-
tion indexes (rMBE, rRMSE and d) were used (Fig. 3a, b, c). All mod-
els overestimated the measures (rMBE > 0). The ANNh models
estimated the measures (rMBE > 10.0%). The rMBE values obtained
with ANNh are on average 12.68% higher than those obtained with
SVM. The rRMSE and ‘‘d” results obtained with SVM models are
lower and higher, respectively than those generated using ANN
models. SVM1h (rRMSE = 50.05%) and ANN1h (rRMSE = 52.79%)
showed poor accuracy in estimating Hb

h. The rMBE values (20.16%
with ANN1h and 3.51% with SVM1h) and ‘‘d” (0.82 with ANN1h

and 0.85 with SVM1h) were the highest and the lowest in the
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hourly models, respectively. The result proves that only HG
h as input

variable is not recommended for estimating Hb
h. Temporal variation

of Hb as compared to HG is higher [55], therefore, the more difficult
to model, the lower the correlation between the two components.
So, new input variables are presumably necessary to generate bet-
ter models and estimates for Hb [56]. Therefore, the following mod-
els of new variables were added. With the addition of kth in ANN2h

and SVM2h models, there was an improvement in rMBE, rRMSE
and ‘‘d” values. Thus, ANN2h and SVM2h models estimated Hb

h with
rRMSE = 26.85% and rRMSE = 20.55%, respectively, and overesti-
mated measures with rMBE = 16.00% and rMBE = 1.40% for ANN2h

and SVM2h, respectively. SVM2h has better ‘‘d” (0.97) than ANN2h

(d = 0.96). The use of kth as input variable is interesting because it
is indicative of cloudy sky conditions, eliminates astronomical
effects and points out climate effects.

In ANN3h and SVM3h models, the addition of Hsc in the set of
input variables did not improve the performance of the models.
The insertion of mr (ANN4h) improved rRMSE by �2.86% when
compared to ANN2h and by �2.35% with respect to ANN3h. ANN5h

and ANN6h models have results similar to ANN4h. The best perfor-
mance among network models is for ANN6h: rMBE = 11.45%,
rRMSE = 23.58% and d = 0.97. With the inclusion of new variables,
there was a gradual improvement in neural network models. How-
ever, no significant difference was found in rRMSE and ‘‘d” values
for ANN4h–ANN6h models. Except for ANN1h, combinations of
input variables of neural network models may be used to estimate
Hb

h.
In SVM models (SVM2h – SVM6h), the addition of new input

variables did not significantly improve the estimate of Hb
h. In these

models, rMBE values were between 1.40 and 3.51%; rRMSE
between 19.78 and 20.55%; d > 0.96. Therefore, SVM shows better
stability than ANN in modeling Hb

h. Some modifications in the
parameters of the RBF function (C and c) were performed to deter-
mine whether estimation for models improved when performed
separately. Since there was no gain in modeling, the values already
highlighted remain fixed. Thus, stability occurs when the value of
parameter C is properly defined and then the discrepant values
of parameters are easily supplied. Therefore, the results confirm
that SVM is able to produce accurate results [57], has higher gen-
eralization capacity and potential to track historical data to
improve future forecasting series [58].

The results of this study are similar to those found by [10], who
used ANN to estimate Hb

h by satellite image and obtained
rRMSE = 26.10% and rMBE = �6.01%. Linarez-Rodriguez et al. [11]
showed that in studies of the literature, Hb

h estimates from satel-
lites have average rRMSE value �35.00%. From a proposed method,
Fernández-Peruchena et al. [59] generated a climate series of Hb

with values every 1 min and found average error >30.0%. Generat-
ing synthetic Hb series every 5 min, Grantham et al. [60], obtained
rMBE = �0.40% and rRMSE = 16.30%. The difference between local
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Fig. 4. Box plots of errors of fourteen hourly mod
results and those above is related to the methodology adopted.
The method used by the authors shows sky conditions at intervals
with increment of 0.01, which is different from the local method-
ology. The local results are better than those obtained by Polo
et al. [61], who reported rRMSE = 31.0% in the generation of Hb ser-
ies every 10 min from a given time series. Linarez-Rodriguez et al.
[11] estimated Hb

h by satellite using five ANN models and obtained
rRMSE between 24.23 and 37.60%. The finding shows that local
models and the used variables had better performance in estimat-
ing Hb

h. That difference is mainly due to larger errors expected
when satellite products are used. The rMBE values found by [11]
resemble those locally obtained.

Box graphs show the errors among measurements and Hb
h esti-

mates using ANNh (Fig. 4a) and SVMh models (Fig. 4b). Inside each
box, the center mark shows the average of all error values. By
default, the box is determined by 25th and 75th percentiles.
Whiskers are determined by 5th and 95th percentiles. Except for
ANN1h and SVM1h models, the others have narrow box, i.e., the
estimates are more reliable. These results agree with the perfor-
mance of models analyzed using validation indexes.

Dispersion between measured and estimated Hb
h using models

that have lower and higher accuracy is shown in Fig. 5a–d. ANN1h

(Fig. 5a) and SVM1h models (Fig. 5b) had the highest dispersion.
The high dispersion found for these models is because climatic
effects of Hb

h are greater than astronomical effects. That is, temporal
variability of Hb

h in a cloudy or turbid atmosphere is different from
temporal variation of Hb

h under the same atmosphere. The increase
in cloudiness generates a reduction in atmospheric transmission of
Hb

h, but attenuation in HG
h is not proportional to the attenuation by

Hb
h transmission because of the conversion of direct irradiation into

diffuse irradiation. Transition of atmosphere from partially cloudy
to cloudy generates 100% reduction in Hb, while only 26% reduction
in HG [62]. In the absence of clouds, aerosols are the main respon-
sible for reducing Hb [63]. Depending on the atmospheric turbidity,
reduction in Hb by aerosols can vary from 30% to 100%, while in HG

is less than 10%. Due to low correlation between increase and
reduction of radiation, HG alone should not be directly applied to
estimate Hb [2]. ANN6h (Fig. 5c) and SVM6h models (Fig. 5d) had
the lowest dispersion and show good agreement. The curves of
the other models are not shown, but they have behavior similar
to that of the above models.

4.2. Performance analysis of daily models

The validation indexes (rMBE, rRMSE and d) of daily models
show that estimation with SVMd is better than estimation with
ANNd (Fig. 6a, b, c). Models, whose input variables are only HG

d,
ANN1d and SVM1d estimated the measures with rRMSE = 26.91%
and rRMSE = 22.08%, respectively. With the inclusion of kt, ANN2d

decreased by �7.96% the rRMSE value compared with ANN1d. The
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els: (a) ANNh models and (b) SVMh models.
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ANN3d model did not improve estimation with addition of Hsc
d

compared with ANN2d. ANN4d improved the estimate
(rMBE = 0.38%, rRMSE = 18.30% and d = 0.98) with the addition of
the insolation ratio variable. When ANN4d is compared with
ANN1d, the rRMSE reduction was �8.30%, with ANN2d, the reduc-
tion was �8.61%. The ANN5d model shows rMBE = 6.39%,
rRMSE = 16.85% and d = 0.98. The results obtained in the validation
of ANN6d and SVM6d models were not shown here due to their
high inaccuracy, which show the infeasibility of using these set
of input variables. Therefore, the combination of ANN5d variables
is the most appropriate.

SVM models have smaller rMBE than ANN. SVM1d is the only
SVM model to underestimate (rMBE = �1.74%). The addition of
new input variables improved accuracy of SVM models. SVM2d–
SVM5d models have rMBE values ranging from 0.60 to 2.70%
(mean = 1.48 ± 0.90%), rRMSE from 16.92% to 19.43% (mean
18.46 ± 1.19%) and d = 0.98. Although SVM input vectors are quite
flexible, the replacement of these input variables with information
from aerosols and water vapor would result in better estimations.
This work did not consider aerosols and water vapor because these
variables are not readily available.

ANNd and SVMd had better accuracy with insertion of other
variables. In the case of ANN1d and SVM1d models, the explanation
for the poor accuracy can be summarized as follows: clouds in the
atmosphere result in reduced Hb

d values, which cause increase in
daily diffuse irradiation (HD
d). This dynamics in the atmosphere

makes clear-sky days present high HG
d and Hb

d values, while, in
cloudy-sky days, Hb

d tends to zero and HG
d is significantly reduced

to lower values, but higher than Hb
d values due to the HD

d compo-
nent that raises HG

d values. This dynamics makes the relationship
between Hb and HG be low, which affects modeling. Therefore,
the results show that inclusion of more variables improves estima-
tion of Hb

d with ANN and SVM.
The Box graphs show errors of measurements and Hb

h estimates
with ANNd (Fig. 7a) and SVMd models (Fig. 7b). Inside each box, the
center mark shows the average of all error values. By default, the
box is determined by the 25th and 75th percentiles. Whiskers
are determined by 5th and 95th percentiles. Except for ANN1d

and SVM1d, the others have narrow box, i.e. estimates are more
reliable. These results agree with the performance of models ana-
lyzed with validation indexes.

Some possible combinations have been considered to find a set
of input variables and the most favorable learning technique in
estimating Hb

d. Six models with different combinations of input
variables have been established. The Hb

d values estimated using
ANN and SVM, according to measures for the best and worst mod-
els, are presented in Fig. 8a-d. The dispersion with ANN1d (Fig. 8a)
and SVM1d models (Fig. 8b) show low correlation between Hb

d and
HG

d. ANN4d (Fig. 8c) and SVM5d models (Fig. 8d) show that many
points are along the ideal comparison line (1:1) as well as good
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agreement between measured and estimated values. The capacity
of each model and technique selected to provide accurate esti-
mates are related to the proper selection of input variables.

5. Conclusions

This study presents the use of ANN and SVM to estimate hourly
and daily normal direct irradiation in Botucatu/SP. The following
input variables were analyzed: HG, kt, Hsc, cosZ, mr, r0, Tmax and
Tmin. In ANN and SVM, for training and validation of ANNs and
SVM, different input variables were used to identify those present-
ing the best correlation with Hb. The performance of ANN and SVM
is compared with that of statistical models using the same input
variable. A total of 13-year data of high quality were used for train-
ing and validation of the ANN and SVMmodels, generation and val-
idation of the statistical models. Estimate of Hb and assessment of
methods are of great importance for application in the area of con-
version of solar energy and in locating areas with potential for
installation of solar power plants.

The statistical models presented determination coefficients (R2)
lower than those of ANN and SVM models. Therefore, the machine
learning models have more generalization capability and ability to
adapt different boundary conditions than the statistical models.
Therefore, the statistical models in this study were considered as
the third choice of option to estimate Hb.

In the estimation of Hb with SVM, the use of the following
parameters is recommended: C = 50, c = 0.2 and e = 0.005 for RBF.
Other kernel functions were of no interest in being evaluated.
However, other studies may be considered in assessing the
flexibility of other functions in the estimation of Hb. The most
relevant input variables in the models were Hsc, kt and the
insolation ratio.

In hourly estimates, the greatest errors are observed for
ANN1h: rMBE = 20.15%, rRMSE = 52.79% and d = 0.82; SVM1h:
rMBE = 3.51%, rRMSE = 26.84% and d = 0.85. The models with kt
as input variables had: ANN2h (rMBE = 16.00%, rRMSE = 26.84%
and d = 0.96) and SVM2h (rMBE = 1.40%, rRMSE = 20.54% and
d = 0.97). In average, the models of ANNh presented rMBE =
14.72 ± 3.25%, rRMSE = 29.66 ± 11.40 and d = 0.94 ± 0.06; SVMh:
rMBE = 2.05 ± 0.80%, rRMSE = 26.24 ± 11.97% and d = 0.95 ± 0.05.
Except for ANN1h and SVM1h models, which were the models with
the greatest errors, the models had: ANNh (rMBE = 13.64 ± 2.09%,
rRMSE = 25.04 ± 1.46% and d = 0.96 ± 0.003) and SVMh (rMBE =
1.76 ± 0.42%, rRMSE = 21.45 ± 3.03% and d = 0.97 ± 0.004).

For the daily estimate, the results showed the worst estimate
for the ANN1d models: rMBE = 12.11%, rRMSE = 26.91% and
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d = 0.79; SVM1h: rMBE = �1.74%, rRMSE = 22.08% and d = 0.86. The
models ANN5d and SVM5d resulted in (rMBE = 6.39%, rRMSE =
16.85% and d = 0.98) and (rMBE = 1.55%, rRMSE = 16.92% and
d = 0.98), respectively. In general, the ANNd models presented
average values of rMBE = 3.04 ± 6.15%, rRMSE = 19.78 ± 4.06 and
d = 0.94 ± 0.08; SVMd: rMBE = 0.83 ± 1.63%, rRMSE = 19.19 ± 1.91%
and d = 0.95 ± 0.05.

Based on the results found in Botucatu, ML techniques were
able to model different combinations of input data for all weather
conditions. At first, the statistical models were discarded due to
their high inaccuracy. As the comparison is performed between
MLP and SVM, it was concluded that SVM has better performance
than MLP because there are many other types of ANN, and the MLP
evaluated in this study is only a kind of ANN. Therefore, SVM has
better accuracy in estimating Hb than ANN and it is the first option
of choice. The exploration and validation of new estimation
methodologies to meet the demand of solarimetric information
for different applications are of great importance in current
studies.

Information and estimates of Hb (hourly and daily) are relevant
to be used for comparison and calibration of satellite data, improv-
ing temporal and spatial resolution. The models can be applied to
other locations where there are other measured variables recov-
ered from historical series or dataset. Further studies should ana-
lyze other meteorological variables in Hb modeling. Analysis of
techniques for shorter time intervals is interesting for solar pro-
jects. In order to determine accurate measurements, validating
SVM in other locations is of great interest. The assessment of
ANN and SVM in estimating other irradiations are proposed for
future studies, as the demand for solarimetric information
increases routinely.
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