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a b s t r a c t

The Ångström–Prescott model called M1 together with ten modified versions, all based on the sunshine
duration were adjusted to estimate the daily global and monthly averaged solar irradiation for some sites
in the hinterland of Alagoas State in the eastern coast of the Northeastern Brazil. The models were
adjusted with meteorological data from 2007 to 2010 and their skills were analyzed using: the Mean
Bias Error, Root Mean Square Error and Willmott’s Index of Agreement. The results indicate that the fitted
coefficients depend on the geographical coordinates, altitude and local microclimate with 15% differences
among the coefficients and estimates. The largest errors are observed in the regions with more cloudi-
ness. Mean Bias Error and Root Mean Square Error for the daily evaluation of models M1, M9 and M11
were similar, with high values of Willmott’s Index. The daily estimates obtained with models M1 and
M11 did not differ more than 5%. Models M9 and M11 showed a better performance than that of M1
on a monthly basis. Finally, models M1 and M11 yielded the best results and due to their efficiency
and simplicity are recommended to estimate the daily and monthly solar irradiation where sunshine
duration data are available.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Surface global solar irradiation (Hg) is used in meteorology, cli-
matology, radiation and energy budgets, water treatment pro-
cesses, heating and natural lighting, agriculture and forestry and
use of renewable energy [1]. Indeed, solar energy seems to be
the most important, promising and sustainable form of energy able
to mitigate the environmental problems humankind is to face in
the future [2]. Despite its unquestionable importance, Hg measure-
ments are not globally operational due to the high cost of acquisi-
tion, maintenance, calibration and technical complexities [3,4].
Particularly in Brazil, there are relatively few studies concerning
Hg [6–8] and long time series of this variable are relatively rare,
due to the continental size of the country [9].

The most appropriated method to quantify Hg is to use pyrom-
eter data [10]. However, empirical methods that employ meteoro-
logical variables (such as air temperature [11,12], water vapor
pressure [13], relative humidity [5] and precipitation [14], all
cheaply measured) are frequently used to overcome these observa-
tional difficulties. The Ångström–Prescott (A–P) [15,16], among
many others using sunshine duration as input data, outstands for
its simplicity and better statistical performance under different cli-
matic conditions and time scales [17–19]. Some studies suggested
that modified models (such as quadratic, cubic, logarithmic and
exponential) may improve Hg estimates [20–27].

Empirical models are used to provide solarimetric data series
and are useful tools to estimate Hg where measurements are scarce
or non-existing [28]. Not all models are capable of estimating Hg

correctly under conditions different from those used originally
in their development [17,29]. Thus, it is necessary to fit their
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coefficients using local data and test them to determine the uncer-
tainties in estimating Hg. Several sites in Brazil have long time ser-
ies of sunshine duration and these data could be used to estimate
Hg with empirical models [30–32]. However, the quality of these
estimates depends, again, on a fitting with local data. Tiba [6] esti-
mated Ångström–Prescott model coefficients b1 and b2 for sites in
Northeastern Brazil (NEB) and noticed a high variability
(0.22 < b1 < 0.35 and 0.31 < b2 < 0.58). Andrade-Junior et al. [33]
calculated them for the climatic conditions prevailing in Piauí state
also in NEB (b1 = 0.3107, b2 = 0.5383 for the rainy season and
b1 = 0.3130, b2 = 0.5086 for the dry season). They did not notice
any statistically significant difference when seasonal or annual
coefficients were used.

Jerszurki and Souza [34] observed similar results for other
regions of Brazil [(0.17 < b1 < 0.23 and 0.35 < b2 < 0.45) for the
monthly scale and (b1 = 0.19 and b2 = 0.41) for the annual scale
in Paraná state, southern Brazil]. Daniele et al. [35] obtained
0.241 < b1 < 0.345 and 0.430 < b2 < 0.515 (monthly scale) and
b1 = 0.278, b2 = 0.498 (annual scale) for Brasilia DF in central Brazil.
Carvalho et al. [36] obtained 0.252 < b1 < 0.299 and
0.397 < b2 < 0.504 (monthly scale) and b1 = 0.295, b2 = 0.417
(annual scale) for Seropédica in Rio de Janeiro, southeastern Brazil.
There were no statistically significant differences regarding the use
of monthly and annual coefficients in these studies. Despite its
location in NEB, studies on the adjustment of empirical models
(such as those considered here) are scare for Alagoas region. Fur-
thermore, long time series of Hg as estimated from the sunshine
duration are used to quantify its time and space variability what
is essential in designing solar energy plants and agricultural
projects.

In the present study, the Ångström–Prescott model and seven
modified versions [20–26] are adjusted and assessed on both daily
and monthly scales for three sites: Água Branca, Pão de Açúcar and
Palmeira dos Índios in the interior of Alagoas State. In addition,
three other models are proposed. The model coefficients are fitted
with local data to yield the best estimate for each of these sites and
sensitivity studies to prevailing weather systems and climate pat-
terns were carried out.

Materials and methods

Sites and data

The daily measurements of Hg and sunshine duration (n) at
Água Branca, Pão de Açúcar and Palmeira dos Índios were obtained
at the solarimetric stations (Fig. 1), for the 2007–2010 period. The
Brazilian Instituto Nacional de Meteorologia (INMET) using con-
ventional Campbell-Stokes heliographs provided sunshine dura-
tion series (in hours).

Daily global solar irradiation (Hd
g , in MJ m�2) were obtained by

integrating (trapezoidally method) the daily solar irradiance (Ig,
in Wm�2) between 06:00 LT and 17:00 LT (Local Time) Eq. (1). Ig
was measured using black and white Eppley pyranometer [depen-
dence on temperature: ±1.5% (�20 �C to +40 �C); linearity: ±1.0%,
(0–1400Wm�2); cosine response: ±2.0% (0 < hz < 70�) and ±5.0%
(70 < hz < 80�); measurement bandwidth: (285–2800 nm)]. The
pyranometers were connected to a datalogger (CR1000, Campbell
Scientific Inc., Logan, Utah) programmed to make measurements
every second and store 1 min averaged values [9]:

Hd
g ¼

Z tf

to

Ihg ð1Þ

where (Igh) is the hourly solar global irradiance and to = 06:00 LT and
tf = 17:00 LT. Sunrise and sunset intervals were neglected because
of its small contribution to the entire integral.
Monthly averaged global solar irradiation (Hm
g ) was calculated

using the averaged values of Hd
g for all days in the month:

Hm
g ¼ 1

N0
XN0

i¼1

Hd
g ð2Þ

where N0 is the number of days in the month.
The data were sorted out into two groups; data measured in

2007, 2009 and 2010 were used to fit the model coefficients, and
the data collected in 2008 to validate and assess them. This choice
was made randomly in order to avoid any trends in the results.
Fig. 2 shows the monthly climatological air temperature and rain-
fall for the three sites, as calculated using data from 1961 to 2010
from INMET.

The climate of Água Branca (in the interior with a mountain like
microclimate) according to the Köppen-Geiger classification is
‘‘As” – tropical humid, with rainy season during autumn/winter
(May to August) and dry season in summer (December to February).
The annual air temperature is 23.6 �C (20.9 �C in July and 25.6 �C in
December) and annual rainfall is 1,090 mm, with minimum in
October (23.9 mm) and maximum in June (193.5 mm) (Fig. 2A).
In Palmeira dos Índios, the monthly air temperature changes from
22.6 �C (July) to 27.2 �C (December) (Fig. 2B), with an annual aver-
age of 25.1 �C. The total annual precipitation is 881 mm with a
minimum in November (13.9 mm) and maximum in June
(173 mm). The climate is also classified as ‘‘As” – Tropical Humid.
The climate of Pão de Açúcar is ‘‘Bsh” – Dry Climate (annual rainfall
of 591 mm ranging from 13.4 mm in November to 94.2 mm in
June) (Fig. 2C) with the dry season in summer and monthly air
temperature of 24.9 �C (August) and 29.8 �C (December) and
annual average of 27.5 �C.

Ångström–Prescott model and its modified versions

In 1924 Ångström [15] suggested a simple linear relation

between the expected Hd
g in a cloudless day and daily maximum

sunshine or daylight hours (N) and in 1940, Prescott [16] included
the extraterrestrial solar irradiation (Ho) using Eq. (3) (Model M1):

Hg

Ho
¼ b1 þ b2

n
N

� �
ð3Þ

The empirical coefficients (b1 and b2) are normally fitted using
linear regression (Y = b1 + b2 X), so Y = Hg/Ho and X = n/N. The first
coefficient may be interpreted physically as the fraction of the Hg

reaching the Earth’s surface in an overcast day and depends mainly
on the type and thickness of the clouds [37]. It is a difficult task to
estimate it accurately, due to the ceaseless atmospheric motions
[38]. The other coefficient (b2) is a complement that gives the total
of Hg. Their sum, (b1 + b2), is the potential fraction of solar irradia-
tion at the top of the atmosphere available to reach the surface
(that is, Hg in a clear day). Therefore, this sum is affected by the
optical thickness, composition and interaction of the air con-
stituents. During its penetration in the atmosphere, the solar radi-
ation is scattered by air molecules, water (in its three phases) and
aerosols or particulates. The extent of the dispersion depends on
the number and size [with respect to the wave length, (k)] [39].

Modifications introduced in the original Ångström–Prescott
model in order to make it usable in different sites and under cli-
matic conditions yielded other models. Table 1 shows eleven mod-
els all based on sunshine which were assessed in this work,

regarding the estimative of Hg in the daily (Hd
g) and monthly

(Hg
m) partitions: quadratic (M2) [20], cubic (M3) [21], logarithmic

(M4) [22], linear logarithmic (M5) [23], exponential (M6) [24], lin-
ear exponential (M7) [25] and power (M8) [26]. The senoidal mod-
els: (M9) [40], (M10) [41] and (M11) [42] were originally proposed



Fig. 1. Meteorological and radiometric stations (c) in the physiographical regions of Alagoas State (b) Northeastern Brazil (a).
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Fig. 2. Climatological distributions (1961–2010) of air temperature and rainfall for (A) Água Branca, (B) Pão de Açúcar and (C) Palmeira dos Índios.
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Table 1
Models used in this study.

Model Type Equation Coefficients

M1 Linear Hg
Ho

¼ b1 þ b2
n
N

� 	 b1 and b2

M2 Quadratic Hg
Ho

¼ b1 þ b2
n
N

� 	þ b3
n
N

� 	2 b1, b2 and b3

M3 Cubic Hg
Ho

¼ b1 þ b2
n
N

� 	þ b3
n
N

� 	2 þ b4
n
N

� 	3 b1, b2, b3 and
b4

M4 Logarithmic Hg
Ho

¼ b1 þ b2log n
N

� 	 b1 and b2

M5 Linear-
logarithmic

Hg
Ho

¼ b1 þ b2
n
N

� 	þ b3log n
N

� 	 b1, b2 and b3

M6 Exponential Hg
Ho

¼ b1 þ b2exp n
N

� 	 b1 and b2

M7 Linear-
exponential

Hg
Ho

¼ b1 þ b2
n
N

� 	þ b3exp n
N

� 	 b1, b2 and b3

M8 Power Hg
Ho

¼ b1 þ b2
n
N

� 	b3 b1, b2 and b3

M9 Senoidal Hg
Ho

¼ b1 þ b2 sin p
365

n
N þ 5
� 	
 ��� ��1:5 b1 and b2

M10 Senoidal Hg
Ho

¼ b1 þ b2sin 2p
b3

n
N

� 	þ b4
h i

b1, b2, b3 and
b4

M11 Cossenoidal Hg
Ho

¼ b1 þ b2cos 2p
364

n
N

� 	þ b3

 � b1, b2 and b3

Hg is the global solar irradiation (MJ m�2), Ho the global solar irradiation at the top
of the atmosphere (MJ m�2), n is the sunshine (h), N is the daylight hours. The
coefficients are to be adjusted using local data.
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to estimate Hg using Julian calendar with Julian days being
replaced by the relative sunshine (n/N). These modifications
stemmed from the need to obtain an empirical relation capable
of estimating Hg with least deviations and better precision and
accuracy. As the solar radiation obeys a periodic pattern in a clear
sky day, senoidal (both sines and cossines) functions were deemed
to best represent it.

The solar irradiation incident on the top of the atmosphere (Ho)
was determined using the equations given in [43], namely:

Ho ¼ 24� 3600� Io
p

1þ 0:033cos
360DJ
365

� �� �

� p
180�xs sinu sin d

� �
þ cosu cos d sinxsð Þ

h i
ð4Þ

where Io is the solar constant (1367Wm�2), DJ is the Julian day
starting on January 1, u is the local latitude (in degrees), d is the
solar declination (in degrees), given by:

d ¼ 23:45sin
360ðDJþ 284Þ

365

� �
ð5Þ

and xs is the hourly angle (in degrees) given by:

xs ¼ cos�1½�tanðdÞ � tanðuÞ� ð6Þ
The photoperiod or daylight hours (N) is:

N ¼ 2
15

xs ð7Þ

The model coefficients were determined by the least square
method using MATLAB� and were used to estimate Hg and validate
the models. This method minimizes the mean square error of the
estimates with respect to the observations. The global atmospheric
transmittance (kt) was calculated in order to assess the frequency
distribution of local cloudiness. The cloudiness ratio (U) gives the
number of hours the sun was blocked by clouds [44]. They are,
respectively, given by,

kt ¼ Hg

Ho
ð8Þ

U ¼ 1� n
N

¼ 1� X ð9Þ

where X is the sunshine ratio.
The characterization of sky conditions was adapted from Iqbal

[45] and uses local data of cloudiness; it was observed a low
frequency of clear sky (kt P 0.70) and cloudy sky (kt 6 0.30) [43].
The seasonal variation of kt was classified: cloudy sky (kt 6 0.35),
partially cloudy sky (0.35 < kt 6 0.65) and clear sky (kt > 0.65).

Statistical parameters

The performance of the models was assessed using statistical
indices for measuring the errors: MBE (Mean Bias Error), RMSE
(Root Mean Square Error), Willmott index of agreement (d) [46–
47], t-test and coefficient of variation (cv). In this order, these
parameters are mathematically given by:

MBE ¼
PN0

i¼1ðPi � OiÞ
N0 ð10Þ

RMSE ¼
PN0

i¼1ðPi � OiÞ2
N0

" #1
2

ð11Þ

d ¼ 1�
PN0

i¼1ðPi � OiÞ2PN0
i¼1ðjP0

ij þ jO0
ijÞ

2 ð12Þ

where Pi = estimated values of Hg, Oi = measured values of Hg,
N0 = number of observations, jP0

ij = absolute value of the deviation
Pi � �Oi, jO0

ij = absolute value of the deviation Oi � �Oi, with �Oi being
the average of Oi. The coefficient of variation (cv) is a measure of
the data dispersion and is defined as the ratio between the standard
deviation (r) and the average (l): cv = [(r/l) ⁄ 100].

Results and discussions

Global atmospheric transmittance

The monthly averaged kt, relative sunshine duration and cloudi-
ness ratio are shown in Fig. 3. The monthly and seasonal changes in
kt, n/N and U are associated with sky conditions; large (small) val-
ues of kt are related to large (small) values of n/N, as expected from
the outputs of Ångström–Prescott model and its modified versions.
It was also noticed a relation between the dry (September–March)
and rainy (April–August) seasons with respect to the extent of
cloudiness and transmittance. The latter was characterized by a
larger number of cloudy days and small transmittance values while
the opposite occurred for the dry period. The classification of
cloudiness using n/N as defined by WMO [48], is: cloudy (0 6 n/
N < 0.30), partially cloudy (0.30 6 n/N < 0.70) and clear sky
(0.70 6 n/N < 1.0). The averaged sky conditions for the hinterland
(Palmeira dos Índios) and interior (Água Branca and Pão de Açúcar)
regions of Alagoas State were clear sky (50.65%) followed by par-
tially cloudy sky (38.85%) and cloudy sky (10.50%). This pattern
results from the spatial (local topography) and seasonal variability
[49].

Changes in kt give information on the energy availability at the
Earth’s surface, changes in the local atmospheric conditions [50],
besides the frequency distribution and occurrence of cloudier days.
This variability is well explained by the local atmospheric condi-
tions with more cloudy days in Winter (rainy season), presence
of particulate matter (resulting from slash burnings and natural
forest fires, especially in the Summer) and the relative location of
large bodies of water (for example, Pão de Açúcar is located along
São Francisco River). Occasionally, during the dry season there are
some thunderstorms, associated with Upper Air Cyclonic Vortices
(UACV) over the coastline of Northeast Brazil [49]. UACV’s are per-
sistent weather systems responsible for long periods of rainfall and
high cloudiness. The smallest values of kt (0.531, 0.596 and 0.565,
respectively, for Água Branca, Pão de Açúcar and Palmeira dos
Índios) observed in February are, probably, associated to UACV’s.
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Fig. 3. Monthly averaged changes in the global atmospheric transmittance (kt), relative sunshine duration (r = n/N) and cloudiness ratio (U) at (A) Água Branca, (B) Pão de
Açúcar and (C) Palmeira dos Índios.
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Monthly means of partially cloudy sky prevailed for the three
sites used in this study. November and June were the months with
less and more cloudiness, respectively, for Água Branca e Palmeira
dos Índios. The highest values of cloudiness were noticed for Pão
de Açúcar in May. During partially cloudy sky conditions, the dif-
fuse solar irradiation (Hd) increases with increasing values of Hg.
Hg and Hd coincide in an overcast day while the direct solar irradi-
ation (Hd) will be predominant in a day of clear sky. The cloudiness
ratio was larger (smaller) during the rainy (dry) periods. This index
detected the periods with more (less) cloud coverage in accordance
with the kt analyses. Água Branca and Palmeira dos Índios showed
the largest values of U for the rainy season, as expected because
the annual rainfall in these two stations is larger than that of Pão
de Açúcar [49]. The values of kt are inversely proportional to U.
The decrease in kt and increase in U are associated with cloudiness
changes inherent to seasonal variations. The dry season for these
three sites (in Southern Hemisphere) is characterized by lower val-
ues of cloudiness and relative humidity and large values of Hg,
because the solar rays impinge on the Earth́s surface with smaller
inclination.

Fitted coefficients on a daily basis

The coefficients of the 11 models used for all sites (Table 2), fit-
ted with daily data are significant up to 5%. They change from place
to place with the largest differences being observed for b1, b2 and
b3 of models M5, M7, M9, M10 and M11. The values of the M1
(original Ångström–Prescott model) coefficients for the localities
in Alagoas were quite similar to those obtained by Tymvios et al.
[51] in Athalassa, semirural region in Cyprus Island (b1 = 0.199
and b2 = 0.538). However, they differed from those of Liu et al.
[38] for 31 sites along the Yellow River in China
[(0.11 < b1 < 0.29) and (0.50 < b2 < 0.69)] and those of Podestá
et al. [52] for the Pampas in central western part of Argentina
(average values of b1 = 0.214 and b2 = 0.571). Tiba [6] calculated
these coefficients for 34 localities in Northeastern Brazil and
obtained 0.22 < b1 < 0.38 and 0.31 < b2 < 0.58. The values obtained
in this study lie within the same intervals. Seasonal changes
detected in this study were very small and were not taken into
account when applying the model to the three stations, the same
procedure adopted by Iziomon and Mayer [53] for the southeast-
ern Germany and Almorox and Hontoria [3] for Toledo, Spain. Thus,
it seems reasonable to fit the coefficients using annual averages
rather than season dependent values [54]. Coefficients b1 and b2
depend on the latitude and longitude and this dependence is cru-
cial in their fitting [55,56].

The coefficient of variation (cv) for the b1 coefficient of M1 was
16.23% and 12.35% for b2 at the three stations; these values differ
from those of Liu et al. [57] for Chinese sites showing the depen-
dence of the coefficients on local data and climate conditions.
Values of (b1 + b2) [0.725 (Água Branca), 0.714 (Pão de Açúcar)
and 0.730 (Palmeira dos Indios)] showed the same trend with cv
as small as 1.13%. The small differences among these values (less
than 2.5%) can be explained recalling that the stations are within
the tropical belt and the potential fraction of solar irradiation that
impinges at the top of the atmosphere, that is, (b1 + b2) for clear sky
at the three stations is between 0.680 and 0.750 [58]. Tiba [6]
obtained 0.58 < (b1 + b2) < 0.77 for M1 when using with Brazil
Northeastern data (small variability of cv = 6.8%). This result
showed a similarity regarding its physical interpretation when
atmospheric constituents (e.g. clouds, water vapor, aerosols) do
affect the model (in particular b1) coefficients. This sum for regions
in the humid tropics is, generally, 0.670 < (b1 + b2) < 0.700.

A significant negative correlation (R = �0.996; p < 0.05)
between b1 and altitude was observed for all sites. This coefficient
was larger for the sites with a drier climate (Pão de Açúcar) than



Table 2
Empirical coefficients of the eleven models, using daily data, for the three stations in
Alagoas.

Local Model Coefficients

b1 b2 b3 b4

Água Branca M1 0.244* 0.481* – –
M2 0.289* 0.293* 0.164* –
M3 0.265* 0.481* �0.221* 0.234*

M4 0.663* 0.209* – –
M5 0.167* 0.567* �0.042* –
M6 0.037* 0.266* – –
M7 0.095* 0.137* 0.190* –
M8 0.304* 0.439* 1.345* –
M9 �1.218* 165.2* – –
M10 0.550* 0.021* �0.163* �7.794*

M11 12.4* 29.5* �1.996* –

Pão de Açúcar M1 0.339* 0.375* – –
M2 0.310* 0.496* �0.103* –
M3 0.281* 0.707* �0.526* 0.252*

M4 0.677* 0.179* – –
M5 0.414* 0.293* 0.041* –
M6 0.186* 0.203* – –
M7 0.427* 0.579* �0.112* –
M8 0.268* 0.436* 0.724* –
M9 �0.696* 119.6* – –
M10 0.595* 0.008* 0.044* 11.4*

M11 �36.6* 42.1* �0.495* –

Palmeira dos Índios M1 0,297* 0.433* – –
M2 0.290* 0.465* �0.021* –
M3 0.278* 0.592* �0.321* 0.188*

M4 0.661* 0.146* – –
M5 0.321* 0.406* 0.011* –
M6 0.105* 0.240* – –
M7 0.322* 0.486* �0.030* –
M8 0.282* 0.444* 0.922* –
M9 �0.971* 144.2* – –
M10 0.553* �0.065* 0.504* 0.182*

M11 �6.7* 24.6* �1.283* –

* Significant at the 95% level.
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for locations (Água Branca) with humid climate, differing in 38%.
Since b1 expresses the fraction of Ho that reaches the Earth’s sur-
face on an overcast day (that is, the maximum fraction of Hd that
may hit the surface), it increases with cloudiness. The larger the
concentration of water vapor in the atmosphere the larger is the
attenuation of the solar radiation thus yielding a larger value of
b1 for regions with a dry climate. Coefficient b2 is positively corre-
lated with altitude (R = 0.999; p < 0.05) and, negatively with lati-
tude (R = �0.817; p < 0.05), while the correlation between
(b1 + b2) and altitude was smaller and positive (R = 0.685;
p < 0.05). Since (b1 + b2) did not change much from one site to
another and, b1 was larger for humid climates, b2 showed an oppo-
site pattern being larger in dry regions. (b1 + b2) expresses the
maximum fraction of Ho that may reach the surface, what happens
in clear sky conditions. These conditions were found for the three
sites during the summer (dry) season (the sites are all located in
interior where water content is small and shows no conspicuous
changes). The smallness of the differences among (b1 + b2) for the
three sites is also explained by the short distances (less than
160 km) from each other what implies the same atmospheric com-
position and incident angles of solar radiation. The largest fractions
of Ho, under clear sky conditions, were observed at Palmeira dos
Índios and Água Branca. This effect is associated with the local
topography; Palmeira dos Índios is near the Borborema Plateau
(hilly region spanning from Alagoas to Rio Grande do Norte, with
an extension of 259 km) and Água Branca is at relatively high alti-
tude (593 m). Therefore, the altitude effect may be responsible for
the larger fraction of Ho that reaches the surface [38]. The smallest
value of (b1 + b2) was for Pão de Açúcar, near São Francisco River,
thus indicating a moisture supply into the atmosphere even during
the dry months. These coefficient relations are, in general, depen-
dent on the location, weather systems and atmospheric chemistry
(pollution, water vapor, rejects of industries and urban centers)
[59].

Coefficient b1 used in models M2, M3 and M8 also expresses the
fraction of Ho in a totally cloudy sky that reaches the surface,
because when n/N = 0 (overcast sky) b1 is smaller. The same sky
conditions for models M6 and M7 results the sums (b1 + b2) and
(b1 + b3), respectively, while for models M4 and M5, the atmo-
spheric transmittance (kt) is given by the vertical asymptote of
the models (for n/N? 0). The coefficient of variation for kt in over-
cast days estimated for these models showed large values: 20.4%
(Pão de Açúcar) and 21.6% (Palmeira dos Índios). This result was
due to the large estimates given by M4 (0.454 < kt < 0.515). The
patterns for kt in overcast days in M2, M3, M5, M6 and M7 were
similar to that of M1, being smaller in regions of humid climate.
In particular, M8 presented a reverse pattern with b1 smaller in
regions of dry climate. The atmospheric transmittance as esti-
mated by M4 for Palmeira dos Índios (0.369) under completely
cloudy sky was larger than that for Pão de Açúcar (0.319). The
sum of the coefficients for M2 and M3 expresses the fraction of
Ho that reaches the surface in a cloudless day (n/N = 1), while in
models M5 and M8, this fraction is given by the sum (b1 + b2).
The maximum atmospheric transmittance in M4 is given by b1
and, by the horizontal asymptote (n/N? 1) in models M6 and
M7. The transmittance variability (cv for kt) as given by the models,
were for clear sky conditions: 2.6% (Pão de Açúcar) and 4.3% (Água
Branca), that is, small dispersion of the estimated values. During
the fitting of models M2, M3, M5, M6, M7 and M8, the maximum
kt increases from humid regions (Água Branca) to dry regions
(Pão de Açúcar). The pattern was opposite in M4.

Coefficient b1 of M2 was similar among the sites, with an aver-
aged difference of 4.76%, while b3 showed differences of 162%
(b3 = �0.103 at Pão de Açúcar and b3 = 0.164 at Água Branca). This
model reduces to model M1 when the coefficient b3 of M2 tends to
zero, as observed at Palmeira dos Índios (b3 = �0.021). With
respect to M1 for this same site, the differences among the esti-
mates given by M2 for the same n/Nwere less than 2.5%. In general,
the changes in b1 and (b1 + b2 + b3) may be explained as conse-
quences of local and seasonal conditions, type of clouds, concentra-
tion of water vapor and particulate material, altitude and latitude
[3]. Coefficients b3 of M3, M5 and M7 were negative. Coefficients
b1 and b2 of models M2 to M8 ranged, respectively, in
0.037 < b1 < 0.677 (average 0.313 ± 0.164) and 0.137 < b2 < 0.707
(average 0.389 ± 0.155). Coefficient b3 of models M2, M3, M5, M6
and M7 remained in the interval �0.322 < b3 < 1.345 (average
0.512), while b3 of M3 changed from 0.188 to 0.522 with an aver-
age of 0.225 ± 0.033.

The spatial pattern shows that besides the altitude, other fac-
tors may exert an appreciable influence in the coefficient fitting
stage. Água Branca has a more humid climate than that of the other
stations due to topography-induced precipitation [49]. Water
vapor is supplied into the region of Pão de Açúcar by the São Fran-
cisco River during most part of the year (the highly changeable
water vapor concentration in the atmosphere is responsible by a
larger absorption of infrared radiation, what lessens the global
solar radiation). The fitted coefficients in this study were, in gen-
eral, smaller than those of Li et al. [60] for regions in China. This
discrepancy may be attributed to the local topography approxi-
mately ten times higher than that of Alagoas, thus implying a
shorter optical path. Pollution and local effects apart, it is probable
that these regions in China show less turbidity
(b1 + b2 � 0.868 ± 0.041) than in Alagoas. Persaud et al. [61] noticed
that their model coefficients for Niger had a larger variability when
particulate matter (aerosols and sand dust) was present in the



Table 3
Empirical coefficients for the eleven models at the 3 sites in Alagoas, using monthly
data.

Local Model Coefficients

b1 b2 b3 b4

Água Branca M1 0.163* 0.582* – –
M2 0.079* 0.868* �0.233* –
M3 �0.153* 2.046* �2.167* 1.030*

M4 0.695* 0.344* – –
M5 0.454* 0.264* 0.189* –
M6 �0.059* 0.312* – –
M7 0.340* 1.036* �0.244* –
M8 �0.253* 0.970* 0.453* –
M9 �1.660* 205.4* – –
M10 0.104* 0.703 * 6.072* 6.287*

M11 �4.2* 34.2* �1.419* –

Pão de Açúcar M1 0.393* 0.283* – –
M2 0.023* 1.459* �0.902* –
M3 �0.169* 2.377* �2.324* 0.717*

M4 0.660* 0.185* – –
M5 1.501* �0.900* 0.753* –
M6 0.302* 0.143* – –
M7 1.019* 2.068* �0.925* –
M8 �17.389* 18.050* 0.010* –
M9 �0.488* 99.4* – –
M10 �0.860* 1.473* 5.632* 7.0*

M11 �9.1* 19.1* �1.048* –

Palmeira dos Índios M1 0.239* 0.507* – –
M2 0.137* 0.848* �0.274* –
M3 �0.407* 3.578* �4.690* 2.313*

M4 0.705* 0.305* – –
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atmosphere. Ögelman et al. [20] found for their polynomial model
(M2) when used in Turkey, the following averaged coefficients:
b1 = 0.204, b2 = 0.758 and b3 = �0.250. These values were different
from those obtained in Alagoas. These coefficients were b1 = 0.340,
b2 = 0.400 and b3 = 0.170 as obtained by Newland [23] with the M5
model applied to coastal regions of southern China. Ampratwum
and Dorvlo [22] found for the logarithmic model (M4) in Oman
the coefficients b1 (0.514–0.833) and b2 (0.141–1.057), with R2

(0.699–0.988); these were comparable to those obtained in this
study. However, when they used the linear logarithmic model
(M5) their coefficients [b1 (�1.193–11.111), b2 (�10.440–0.143)
and b3 (�1.254–9.665), with R2 (0.735–0.996)] were different from
those fitted for the Alagoas stations. Almorox and Hontoria [24]
used the exponential model (M6) for different regions in Spain
and obtained the coefficients b1 = �0.027 and b2 = 0.309; these val-
ues were also different from those obtained in Alagoas. They also
fitted the coefficients of M4 for the same regions (b1 = 0.690 – sim-
ilar to ours, b2 = 0.614 and R2 = 0.842). Șen [26] used the model M8
for eight different sites in Turkey and found: 0.166 < b1 < 0.429,
0.223 < b2 < 0.535 and 1.940 < b3 < 0.640. The latter was quite close
to the values obtained in this study. When the coefficients of mod-
els M9, M10 and M11 were compared with those of the original
models of Bulut [40], Al-Salaymeh [41], Kaplanis and Kaplani
[42], large differences were noticed [2], which may be attributed
to the input variables. Although, the quality of the coefficient fit-
ting was considered satisfactory, the results reinforced the need
of fitting with local data.
M5 0.600* 0.115* 0.236* –
M6 0.051* 0.268* – –
M7 0.436* 1.026* �0.276* –
M8 �1.001* 1.714* 0.198* –
M9 �1.345* 178.5* – –
M10 �0.252 * 1.025* 7.761* 6.7*

M11 �7.3* 30.4* �1.321* –

* Significant at 95% level.
Fitting with monthly averages

The coefficients fitted with monthly averages for the three sites,
using the linear, polynomial, exponential, logarithmic and the pro-
posed models are shown in Table 3. The monthly coefficients are
also depended on the local climate conditions, like the daily coef-
ficients. The coefficient b1 of model M1 changed in the interval
0.163 < b1 < 0.393 (average = 0.265 ± 0.117 and cv = 44.2%), b2 in
the interval 0.283 < b2 < 0.582 (average = 0.457 ± 0.155 and
cv = 34.0%) and 0.676 < (b1 + b2) < 0.746 (cv = 5.56%). The sum
(b1 + b2) for monthly data showed differences ranging from
�2.8% (at Água Branca) to 5.3% (at Pão de Açúcar), with respect
to the values obtained with daily data. However, coefficient b1 of
the M1was 15.8% smaller (at Pão de Açúcar) but 19.5% (at Palmeira
dos Índios) and 33.2% (at Água Branca) larger than the correspond-
ing ones obtained with daily data. Coefficients b1 and b2 of M2, M5,
M7, M8 and M11 models for the regions of Água Branca and Pal-
meira dos Índios exhibited due to the geographical position and
altitude of the sites, what is in agreement with results of Chen
et al. [55] in China. El-Sebaii and Trabea [10] noticed that the coef-
ficients b1 and b2 did not change much with respect to the latitude
or altitude; however the sums (b1 + b2) were quite close to those
obtained in Alagoas. Coefficient b4 of M10 and b3 of M11 were also
similar to those observed at the three sites in Alagoas. The coeffi-
cient b2 of models M9 and M11 showed the largest differences
among the sites. The fitted coefficients for the stations in Alagoas
differed from those used by Ångström [15] who suggested values
of 0.20 and 0.50 for b1 and b2, respectively. The FAO-56 Bulletin
[62] recommends that for regions where there are no Hg data avail-
able, models with fixed values of b1 = 0.25 and b2 = 0.50 be used.
The results obtained in this study are different from those just
mentioned but agree with those of Chineke [18] what, again, rein-
forces the need for fitting with local data. It is worth mentioning
that when monthly data are used to fit the coefficients of empirical
models, large variations are likely to occur if the climatic series are
not sufficiently long. Nevertheless, the fitted coefficients may still
be used in models on a daily basis [38].
Under clear sky conditions (n/N = 1), the global atmospheric
transmittance estimated by the models remained between 0.663
(M4) and 0.760 (M6) at Água Branca, 0.667 (M4) and 0.738 (M6)
at Pão de Açúcar and 0.661 (M4) and 0.757 (M6) at Palmeira dos
Índios. These values were similar to those presented in the litera-
ture and discussed in this study. The differences in the transmit-
tances under these conditions were between �7.7% and 18.4%
(on a daily basis). Models M3 and M8, under conditions of overcast
sky yielded negative values, what is physically unacceptable. The
global atmospheric transmittances obtained with M2 and M7,
when n/N = 0, were all less than 0.160; less than 0.094 at Água
Branca and Pão de Açúcar, values much lower than those found
in the literature. Only M1, M4 and M6 models yielded comparable
values under the same sky conditions. However, these coefficients
were fitted using the least square error method and express the
best statistical local fitting, that is, they have only statistical
meaning.

The averaged differences between the daily and monthly
coefficients for the three stations were large (average of 15%).
Martinez-Losano et al. [63] noticed that the variability of the
Ångström–Prescott coefficients is related to the geographical loca-
tion and atmospheric conditions (e.g. water vapor and pollution).
These factors may explain quite satisfactorily the changes in b1
and b2 for different locations but not the temporal changes at a
given site [38]. The monthly coefficients were different from those
found by Li et al. [60]. Bakirci [25] obtained �0.034 < b1 < 0.962,
�0.737 < b2 < 2.67 and �1.12 < b3 < 0.47 for some sites in Turkey,
with determination coefficient 0.127 < R2 < 0.995. The fitted coeffi-
cients of M2 are different from those proposed by Ögelman et al.
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[20] (b1 = 0.195, b2 = 0.676 and b3 =�0.142). The coefficients of the
cubic model (M3) differ from those suggested by Bahel et al. [21]
for 48 sites throughout the world (b1 = 0.160, b2 = 0.870,
b3 =�0.610 and b4 = 0.340) and also different from those obtained
by Samuel [64] in Sri Lanka (b1 =�0.140, b2 = 2.52, b3 =�3.71 and
b4 = 2.24). The monthly coefficients of M4 were similar to those pro-
posed by Ampratwum and Dorvlo [22] (b1 = 0.637 and b2 = 0.249).

Statistical performance of the models on a daily basis

The statistical indices to measure the model performance in

estimating Hd
g for the sites in Alagoas are shown in Table 4. All

models showed estimates with jMBEj < 0.94 MJ m�2,
RMSE < 4.51 MJ m�2 and d > 0.70. For the region of Água
Branca �0.55 < MBE < 0.38 MJ m�2, 2.93 < RMSE < 4.51 MJ m�2

and 0.66 < d < 0.93; M11 yielded for this region, the smallest values
of MBE (0.31 MJ m�2) and RMSE (2.93 MJ m�2). M10 had the lar-
gest RSME (4.51 MJ m�2) and smallest d (0.66) followed by M3
with RMSE = 3.12 MJ m�2 and d = 0.89. These models (M3 and

M10) showed estimates statistically different from the Hd
g observa-

tions. M1 yielded MBE = �0.55 MJ m�2, RMSE = 3.0 MJ m�2 and
d = 0.92. All but the M3 and M11 models underestimated the mea-
surements (average of �0.54 ± 0.05 MJ m�2) in Água Branca region.
In general, the proposed models (M9, M10 and M11) showed a dis-
persion 2.74% larger than those of the remaining empirical models
(M1-M8); this is due to the large (the largest of them all)
RMSE = 1.53 MJ m�2 of model M10. The estimates obtained with
models M1 and M11 do no differ statistically by more than 5%.
However, models M9 and M11 have skill superior or equal to those
of the others. These results are better than those of [65] who pro-
posed new models to estimate the global solar irradiation in China
with 1.71 < RMSE < 5.24 MJ m�2 and [66] for some sites within the
Yangtze Basin, also in China, with 1.81 < RMSE < 3.39 MJ m�2.

The RMSE values for Água Branca were larger than those for Pão
de Açúcar and Palmeira dos Índios. This reflects the fact that the
dispersion increased with the cloudiness associated with the
microclimate of Água Branca region. The increase in the errors
due to increasing cloudiness stems from the strong relation
between incident solar radiation and cloud coverage. The results
for the Pão de Açúcar region showed smaller values of MBE and
RMSE, when M3 is used; the estimates obtained with this model
differ no more than 5% of the measurements. The statistical indices
MBE and RMSE of models M1, M9 and M11 were all similar, with
high agreement (averaged d = 0.92 ± 0.22). RMSE at Pão de Açúcar
was larger than that of Palmeira dos Índios, probably due to the
more humid climate of the former station (recall Pão de Açúcar
is at the margins of São Francisco River). All the models overesti-
mated the measurements for the region of Palmeira dos Índios,
in particular M3 and M10 which yielded the largest and smallest
Table 4
Statistical indices for the models with daily data: MBE (Mean Bias Error) and RMSE (Root

Model # Model Água Branca

MBE RMSE d

M1 Linear �0.55 2.98 0.92
M2 Quadratic �0.45 2.96 0.93
M3 Cubic 0.38 2.96 0.93
M4 Logarithmic �0.51 3.12 0.89
M5 Linear logarithmic �0.55 2.99 0.92
M6 Exponential �0.54 2.97 0.92
M7 Linear exponential �0.52 2.96 0.92
M8 Power �0.52 2.97 0.92
M9 Sinusoidal �0.65 2.99 0.92
M10 Sinusoidal �0.55 4.51 0.66
M11 Sinusoidal 0.31 2.93 0.93
MBE, respectively. The cubic, logarithmic and sinusoidal models
(M3, M4 and M10, in this order) showed the largest RMSE. Despite
its small MBE, M10 showed the largest dispersion
(RMSE = 3.55 MJ m�2) and smallest agreement (d = 0.78). The anal-
ysis of the MBE showed that M1 overestimated the measurements
by 0.22 MJ m�2 (1.1%), with a dispersion of 1.95 MJ m�2 (9.7%) and
d = 0.96. These indices show that the estimates follow the variabil-
ity of the measurements, with small dispersion and large index of
agreement. The results also showed that the performance of the
models is satisfactory mainly for the sinusoidal models M9 and
M11. Although, the original Ångström–Prescott model (M1) is
more often recommended due to its simplicity and practicability,
models M9 and M11 have their own advantages for they produce
errors smaller than those of M1. Models M2, M9 and M19 are all
statistically similar.

Fig. 4 shows the dispersion for model M1 and the models that
yielded the best and worst estimates according to RMSE values.
Models M1 and M11 showed small dispersion for the region of
Água Branca, with most of the points clustered along the ideal
straight line of model comparisons (1:1), M10 showed the highest
dispersion with no satisfactory linear fitting (Fig. 4A). The disper-
sion using model M10 for Pão de Açúcar (Fig. 4B) and Palmeira
dos Indios (Fig. 4C) was large, while for these two sites M1, M3
and M9 models yielded the best estimates.

These results showed that the adjustments made for the Ala-
goas sites were statistically better than those [67]. The authors
mention as examples of high correlations, the significant correla-
tions at Chaoyang (R = 0.969; p < 0.001), Dalian (R = 0.971;
p < 0.001) and Shengyang (R = 0.967; p < 0.001). This statement
agrees with the results obtained in Alagoas: Água Branca
(R = 0.977; p < 0.0001), Pão de Açúcar (R = 0.982; p < 0.0001) and
Palmeira dos Índios (R = 0.975; p < 0.0001). Zhou et al. [68]
obtained better estimates for some sites in China using the loga-
rithmic model (M4) while in the present study the better estimates
in Água Branca and Pão de Açúcar were achieved with the cubic
model (M3), and the sinusoidal model (M11) for Palmeira dos
Índios. In general, the local results were analogous to those
obtained by [68]. Many studies have utilized the Ångström–Pre
scott model (M1) and its versions to correlate the global solar radi-
ation with the sunshine at different time scales: daily [60,69–71]
and monthly [60]. Yao et al. [72] estimated hourly Hg from daily
data. It is worthwhile mentioning the satisfactory results attained
with M9 and M11 models for the stations in Alagoas.
Statistical performance of the models on a monthly basis

Among the modified versions of the Ångström–Prescott model
(M1), the quadratic (M2) and cubic (M3) models yielded the largest
RMSE and MBE and the smallest d when monthly data are used
Mean Square Error) in MJ m�2 and d (Willmott index of agreement).

Pão de Açúcar Palmeira dos Índios

MBE RMSE d MBE RMSE d

�0.91 2.11 0.94 0.22 1.95 0.96
�0.87 2.08 0.94 0.20 1.95 0.96
0.16 1.93 0.95 0.94 2.23 0.95

�0.83 2.14 0.94 0.27 2.47 0.93
�0.88 2.09 0.94 0.23 1.96 0.96
�0.89 2.15 0.94 0.17 1.95 0.96
�0.87 2.08 0.94 0.22 1.96 0.96
�0.90 2.10 0.94 0.23 1.96 0.96
�0.80 2.10 0.94 0.14 1.90 0.96
�0.77 3.55 0.70 0.05 3.55 0.78
�0.78 2.09 0.94 0.51 1.97 0.96
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Fig. 4. Dispersions of the best and worst estimates of daily global solar irradiation (Hg
d) obtained for (A) Água Branca, (B) Pão de Açúcar e (C) Palmeira dos Índios.

Table 5
Monthly statistical indices: MBE (Mean Bias Error) and RMSE (Root Mean Square Error) in MJ m�2; d (Willmott index).

Model # Model Água Branca Pão de Açúcar Palmeira dos Índios

MBE RMSE d MBE RMSE d MBE RMSE d

M1 Linear �0.95 1.48 0.97 �0.97 1.25 0.96 �1.17 1.65 0.95
M2 Quadratic �0.98 1.45 0.97 �0.87 1.13 0.97 �11.18 11.71 0.32
M3 Cubic 3.82 4.11 0.84 2.64 2.78 0.85 10.13 10.33 0.43
M4 Logarithmic �1.05 1.45 0.97 �0.92 1.19 0.97 �1.16 1.54 0.95
M5 Linear logarithmic �1.01 1.46 0.97 �0.82 1.08 0.97 �1.14 1.55 0.95
M6 Exponential �0.86 1.52 0.97 �0.93 1.23 0.96 �1.20 1.73 0.94
M7 Linear exponential �0.94 1.42 0.97 �0.82 1.10 0.97 �1.09 1.54 0.96
M8 Power �0.98 1.44 0.97 �0.81 1.11 0.97 �1.15 1.56 0.95
M9 Sinusoidal �0.92 1.47 0.97 �0.93 1.22 0.96 �1.16 1.64 0.95
M10 Sinusoidal �0.99 1.45 0.97 �0.85 1.12 0.97 �1.16 1.58 0.95
M11 Sinusoidal �0.91 1.46 0.97 �0.92 1.21 0.97 �0.57 1.32 0.97
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Fig. 5. Dispersions of the best and worst estimates of monthly global solar irradiation (Hg
m) obtained for (A) Água Branca, (B) Pão de Açúcar e (C) Palmeira dos Índios.
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(Table 5). These results differed from those of Zhou et al. [68] who
obtained smaller errors for M2 and M3 using local Chinese data;
Yorukoglu and Celtik [73] who obtained for these models RMSE
quite close to that of the linear model (M1). This may be due to
the fact that the models were not appropriately fitted to the local
conditions. In general, the more coefficients an empirical model
has the higher the chances to yield a better performance [67].
However, changes introduced in the quadratic (M2), cubic (M3),
logarithmic (M4), linear logarithmic (M5), exponential (M6), linear
exponential (M7) and power (M8) models did not improve their
performances with the linear model M1 used as standard. The
modifications in the sinusoidal models (M9, M10 and M11) made
their performances comparable or even better than that of M1.
The statistical index MBE showed that all models underestimated
the observations at Água Branca, with the exception of M3 which
overestimated the measurements in 3.82 MJ m�2; with
1.42 < RMSE < 4.11 MJ m�2 and 0.84 < d < 0.97.

AMBE analysis showed that all (but one)models underestimated
the measurements at Pão de Açúcar. Model M3 overestimated the
observations in 2.64 MJ m�2 with 1.08 < RMSE < 2.78 MJ m�2 and
0.85 < d < 0.97. The linear model (M1) yielded small errors
(MBE = �0.97 MJ m�2 and RMSE = 1.25 MJ m�2), with a large agree-
ment index (d = 0.97). The best performance for this region was
achieved with M10 (MBE = �0.85 MJ m�2, RMSE = 1.12 MJ m�2

and d = 0.97). The same was observed for the region of Palmeira
dos Índios, with M3 being the only model that overestimated the
measurements (MBE = 10.13 MJ m�2); for the others,
�11.18 < MBE < �0.57 MJ m�2. The largest dispersions were found
with M2 and M3 models, with RMSE = 11.71 and 10.33 MJ m�2,
respectively. For the others the RMSE remained in the interval
1.32 < RMSE < 1.73 MJ m�2 with an average of 1.57 ± 0.11 MJ m�2.
Index d was large for M11 (0.97) but small for M2 (0.32), with an
overall average of d = 0.85 ± 0.24. The estimates obtained with
M11 were statistically similar to the observations. The local results
are similar to those found by Ertekin and Evrendilek [74] in Turkey
with the exponential model (RMSE = 1.62 MJ m�2), logarithmic
model (RMSE = 1.59 MJ m�2) and the linear logarithmic
(RMSE = 1.59 MJ m�2) but differed from those of the quadratic
model (RMSE = 1.58 MJ m�2) and cubic model (RMSE =
1.59 MJ m�2). The monthly results are similar to those of Li et al.
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[66] for sites in the Tangtze River Basin in China with
0.70 < RMSE < 1.98 MJ m�2. The M1 dispersion together with those
of the models that yielded the best and worst estimates are shown
in Fig. 5A–C. M3 and M2 showed the largest dispersions for the
regions of Água Branca and Palmeira dos Índios, respectively.

The patterns obtained with monthly indices differed from those
with daily indices. Long term series of monthly averaged data may
be useful to seek better correlations between Hg and sunshine,
since daily data are vulnerable to local weather and air pollution
(responsible for fewer hours of sunshine and less solar radiation
reaching the surface [68]). It was noticed that all empirical models
had a satisfactory performance for all regions, except M2 (in Pal-
meira dos Índios) and M3 (in the three stations). It is important
to emphasize that: (a) atmospheric pollution an affect the Hg esti-
mates and (b) the proposed models (M9, M10 and M11) also
yielded good estimates.
Conclusions

Reliable data of Hg are of great importance for growth models,
agricultural productivity projects and feasibility studies for the
installation of solarimetric plants. The time and space variability
of Hg is instrumental for decision makers and establishment of
policies regarding agricultural and energetic practices. Eleven
empirical models using sunshine duration as input data to esti-
mate Hg

d and Hg
m were assessed for three sites in Alagoas State,

NEB. The study also took into account the presence of clouds and
their effects in the atmosphere energy budget.

The seasonal variations found in kt, n/N and U depend on the
local condition of cloudiness, (being larger during the winter), par-
ticulate material due to slash burnings of biomass and adjacent
vegetation (mainly during summer) besides the import of water
vapor due to the proximity to the coastline. The cloudiness ratio
(U) is larger (smaller) in the rainy (dry) periods, in accordance with
the pluviometric indices. A larger number of overcast days and,
consequently smaller transmittance characterizes the rainy sea-
son; the opposite is true for the dry period.

Different coefficients b1 and b2 of the original Ångström–Pre
scott (M1) model are used depending on whether a daily or
monthly basis is desired. However, they indicate the same poten-
tial fraction of global solar irradiation with respect to that at the
top of atmosphere (b1 + b2 = 0.74) in clear days, as a function of
the climate characteristics and atmospheric composition of the
regions chosen in this study. b1 is larger for humid than dry climate
and also reveals a dependence on the altitude while b2 is a function
of both latitude and altitude. Besides its good performance, this has
coefficients which can be physically interpreted.

The original M1 and the cossenoidal wave model (M11) after
fitted with local data yielded better estimates of the solar global
irradiation with higher accuracy and precision than the remaining
models (M2–M10). Sunshine duration data (for estimating global
solar irradiation estimates for sites such as Água Branca, Pão de
Açúcar, Palmeira dos Índios, and probably other regions with sim-
ilar micro climates) may be a solution to the data shortage problem
when there are no Hg measurements available. Therefore, the M1
and M11 models are highly recommended to be used in a data
bank of global solar irradiation for sites where Hg measurements
are not available or scarce. These models will allow researchers,
engineers and decision making people to utilize the estimates with
a high level of confidence.
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