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The problem of determining the state of a quantum system is a central task in any quantum
information processing. However, there are limitations imposed by quantum mechanics on the

possibilities to determine the state of a quantum system. For example, nonorthogonal states

cannot be discriminated perfectly. In this paper, we propose a new method to calculate the
inconclusive coe±cients based on the solution of a quadratic system, replacing the determi-

nation of the roots of a polynomial of degree 8, used in an algorithm to quantum state dis-

crimination previously de¯ned in the literature. The new method simpli¯es the calculation of

the inconclusive coe±cients and can be extended very easily to any dimension. The method was
written in Matlab and successfully applied to problems with di®erent dimensions.

Keywords: Quantum state discrimination; extended Hilbert space; semide¯nite programming;
quadratic systems.

PACS Nos.: 03.67.Hk, 03.65.Ta.

1. Introduction

The discrimination of quantum states is an essential problem in quantum infor-

mation theory, and it is well known the impossibility of doing this for nonorthogonal

states. However, if we allow for inconclusive results to occur, it is possible to never
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mistake a state by means of an optimal measurement, in terms of an appropriate

Positive Operator Valued Measure (POVM), see Refs. 1 and 2. This strategy is called

unambiguous state discrimination (USD), and the best procedure of this kind is

that which minimizes the probability of inconclusive results. The discrimination of

two nonorthogonal pure quantum states was ¯rst pointed out by Ivanovich,3 Dieks4

and Peres.5 In Ref. 6, it was show that USD of N pure quantum states is possible if

and only if they are linearly independent. Eldar7 showed that the optimal

measurement can be formulated as a semide¯nite programming (SDP) problem, see

Refs. 8 and 9. In Refs. 10�13, the USD problem is considered via the Neumark's

theorem.1

This paper presents a new method to calculate the inconclusive coe±cients in

order to improve the algorithm for quantum state discrimination proposed in Ref. 13,

replacing the determination of the roots of a polynomial of degree 8, by the solution

of a quadratic system.15 Furthermore, we used just one condition on the entry states:

the conservation of the scalar product. The algorithm was completely rewritten in

Matlab and successfully applied on problems with di®erent dimensions (in Ref. 13, it

was applied on just one problem with dimension 3).

The paper is organized as follows. First, the de¯nition of the unambiguous

state discrimination problem is given. Next, we describe the new approach. Finally,

we present some computational results and ends with a brief conclusion and

acknowledgments.

2. Unambiguous State Discrimination

The problem of unambiguous state discrimination (USD) for N linearly independent

nonorthogonal pure quantum states can be stated as follows. We assume that a

quantum system is prepared in pure quantum states from a collection of given states

fjQii; i ¼ 1; . . . ;Ng in an N -dimensional complex Hilbert space, i.e. given an

ensemble �, where each state jQii is prepared with probability �i,

� ¼
XN
i¼1

�ijQiihQij; 0 � �i � 1: ð1Þ

To detect the state of the system, a measurement is constructed comprising N þ 1

measurement operators f�i; 0 � i � Ng that satisfy

XN
i¼0

�i ¼ I ; ð2Þ

where I is the identity operator.

The measurement operators are constructed so that either the state is correctly

detected, or the measurement returns an inconclusive result. Thus, each of the
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operators �i, for i ¼ 1; . . . ;N ; corresponds to the detection of the corresponding

states jQii, and

�0 ¼ I �
XN
i¼1

�i ð3Þ

corresponds to an inconclusive result. Because the identi¯cation must never be in

error, the measurement operators must obey

hQij�j jQii ¼ pi�ij ; ð4Þ

for i; j ¼ 1; . . . ;N and pi � 0:

The measurement operators can be expressed in the form

�i ¼ piCi; 1 � i � N ; ð5Þ

where Ci ¼ j ~Qiih ~Qij and the vectors j ~Qii are the states such that h ~QijQji ¼ �ij , for

1 � i; j � N . Given the matrix �, whose columns are the vectors jQii, the states j ~Qi i
are the columns of the matrix ~�, given by

~� ¼ �ð���Þ�1: ð6Þ

Given an ensemble �, where each state jQii is prepared with probability �i, the

total probability of a successful detection is

PD ¼
XN
i¼1

�ihQij�ijQii ¼
XN
i¼1

�ipi : ð7Þ

Therefore, the problem of optimal USD is to ¯nd measurement operators

�i ¼ piCi , or equivalently, the values pi in order to maximize PD subject to the

constraint (2). We can express that constraint directly in terms of the values pi as

I �
XN
i¼1

piCi � 0: ð8Þ

In Ref. 7, it was show that the optimal USD can be formulated as a semide¯nite

programming (SDP) problem. Generally, a SDP problem is to ¯nd x 2 RN which

minimizes a linear function cTx, subject to a matrix inequality FðxÞ ¼ F0 þPN
i¼1 xiFi � 0, where the problem data are the vector c 2 RN and the N þ 1 complex

Hermitian matrices Fi.
8,9

Expressions (7) and (8) can be put together as a SDP problem, resulting in

minimize
p2RN

f��Tpg ð9Þ
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subject to the constraints

I �
XN
i¼1

piCi � 0;

pi � 0:

8>><
>>: ð10Þ

The solution of the problems (9) and (10) can be computed on Matlab using the

CSDP package, which is based on a predictor-corrector version of the primal-dual

barrier method of Helmberg et al.16 It is written in C , but can be used by Matlab

through yalmip toolbox.

3. The New Approach

In Ref. 13, the USD problem was considered via Neumark's theorem,1 where the

main objective was to obtain the transformation which maps N nonorthogonal pure

states in a set of states that can be discriminated by usual projective measurements

in an extended Hilbert space. It was used as a computational procedure that takes as

input the ensemble of nonorthogonal states and outputs the best set of discriminable

states.

Based on these ideas, we reformulated the algorithm replacing the calculation of

the roots of a polynomial of degree 8, as it was done in Ref. 13, by the solution of a

quadratic system. This system is easier to generalize to any dimension and simpler to

implement in a computer code. In addition to this, it is robust when the number of

variables increases.

We also start by rewriting the N entry states to be discriminated in a ladder form

in the orthonormal basis fjii; i ¼ 1; . . . ;Ng:

jQ lad
1 i ¼ j1i;

jQ lad
2 i ¼ c21j1i þ c22j2i;

jQ lad
3 i ¼ c31j1i þ c32j2i þ c33j3i;

..

.

jQ lad
N i ¼ cN1j1i þ cN2j2i þ cN3j3i þ � � � þ cNN jNi;

ð11Þ

where the set fjQ lad
i ig belongs to the Hilbert space of original size N and the coef-

¯cients cij are obtained using the preservation of the scalar product of the entry

states, that is, hQ lad
i jQ lad

j i ¼ hQijQji; for all i; j ¼ 1; . . . ;N .

In order to apply the Neumark's theorem,1 we extend the original Hilbert space to

2N � 1 dimensions and map the original states to the ¯nal state con¯gurations,
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described by Ref. 13 as follows:

jQf 1i ¼ g1j1i þ gNþ1jN þ 1i þ � � � þ g2N�2j2N � 2i þ g2N�1j2N � 1i
jQf 2i ¼ g2j2i þ g2N jN þ 1i þ � � � þ g3N�2j2N � 1i
jQf 3i ¼ g3j3i þ g3N�1jN þ 1i þ � � � þ g4N�4j2N � 2i

..

.

jQfii ¼ gijii þ gi=2ð2Nþ3�iÞjN þ 1i þ � � � þ g½Nðiþ1Þþi=2ð1�iÞ�1�j2N þ 1� ii
..
.

jQfN i ¼ gN jNi þ g1=2½NðNþ3Þ�1�jN þ 1i:

ð12Þ

The state labeled by i is identi¯ed with probability g 2
i , when the measurement

collapses to jii; for 1 � i � N . For other values of i, the result is inconclusive.

Therefore, the ¯rst N g 0
is are chosen to produce the best possible discrimination, i.e.

gi ¼ ffiffiffiffi
pi

p
; where the set fpig is determined by the SDP problems (9) and (10).

The other coe±cients fgi; i ¼ N þ 1 to N=2ðN þ 3Þ � 1g are calculated in order

to preserve the normalization and the scalar products among the original states.

In Ref. 13, it was described in detail the procedure for N ¼ 3, whose solution

involves the calculation of the roots of a polynomial of degree 8.

In Ref. 14, the authors provided a set of equations where the optimal solution of

the USD problem of N pure states must satisfy. However, despite providing explicit

analytical equations to solve the problem, it is reported the di±culty of the method

regarding the nonlinearity of these equations and the coupling of variables p1; . . . ; pN .

The authors showed explicitly that, for N ¼ 3, their method supplies a polynomial

equation of degree 6. One point that has not been studied is about the relation between

an arbitrary N and the degree of the associated polynomial equation.

Now, we will present a new strategy for the determination of the inconclusive

coe±cients for a generic N ,15 resulting in a more robust procedure that eliminates the

need to solve a polynomial equation of degree 6 or 8, previously reported in the

literature.

First, we propose a new nomenclature for the ¯nal discriminable con¯guration,

which will facilitate the understanding of the resulting quadratic system. Rewriting

the system (12), we get

jQf 1i ¼ g11j1i þ g1;Nþ1jN þ 1i þ � � � þ g1;2N�2j2N � 2i þ g1;2N�1j2N � 1i
jQf 2i ¼ g22j2i þ g2;Nþ1jN þ 1i þ � � � þ g2;2N�2j2N � 2i þ g2;2N�1j2N � 1i
jQf 3i ¼ g33j3i þ g3;Nþ1jN þ 1i þ � � � þ g3;2N�2j2N � 2i

..

.

jQfii ¼ giijii þ gi;Nþ1jN þ 1i þ � � � þ gi;2Nþ1�ij2N þ 1� ii
..
.

jQfN i ¼ gNN jNi þ gN ;Nþ1jN þ 1i;

ð13Þ
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which in the matrix form can be given by

Qf ¼ jQf 1i jQf 2i � � � jQfN i
� � ð14Þ

¼

g11 0 � � � 0 � � � 0

0 g22 � � � 0 � � � 0

0 0 . .
.

0 � � � 0

0 0 . . . gii . . . 0

..

. ..
.

. . . ..
. . .

.
0

0 0 . . . 0 . . . gNN

g1;Nþ1 g2;Nþ1 . . . gi;Nþ1 . . . gN ;Nþ1

g1;Nþ2 g2;Nþ2 . . . gi;Nþ2 . . . 0

g1;Nþ3 g2;Nþ3 . . . gi;2Nþ1�i . . . 0

..

. ..
.

. . . 0 . . . 0

..

. ..
.

. . . 0 . . . 0

g1;2N�1 g2;2N�1 . . . 0 . . . 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ð15Þ

of dimension 2N � 1� N .

Recall that the elements gii of Qf , for i ¼ 1; . . . ;N , referring to the components

related to the orthonormal basis are obtained by solving a SDP problem. Thus, the

only unknown elements in this matrix are the coe±cients gij associated with the

extended Hilbert space, for i ¼ 1; . . . ;N and j ¼ N þ 1; . . . ; 2N � 1. We remark that

this is the minimum possible extension, since the minimum dimensionality of the

ancilla space is N � 1, as it was proved in Ref. 17.

To solve this problem, we propose the use of basic concepts of linear algebra, using

matrices in block form. Therefore, rewriting in the block form the matrices Qf and
~Q
lad

of dimension 2N � 1�N by

~Q
lad ¼

Q lad

. . .

~O

0
B@

1
CA ¼

1 c21 c31 . . . cN1

0 c22 c32 . . . cN2

0 0 c33 . . . cN3

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 0

0 0 0 . . . 0
. . . . . . . . . . . . . . .

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

1 ..
.

s t

. . . . . . . . .

0 ..
.

S
. . . . . . . . .

0 ..
.

O

0
BBBBBBBB@

1
CCCCCCCCA
; ð16Þ
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where

s ¼

c21
c31

..

.

cN1

0
BBB@

1
CCCA

is a vector of dimension N � 1, 0 is a null vector of dimension

N � 1; S ¼

c22 c32 . . . cN2

0 c33 . . . cN3

..

. ..
. . .

. ..
.

0 0 . . . cNN

0
BBBB@

1
CCCCA

is a matrix of dimension N � 1� N � 1 and O is a null matrix of dimension

N � 1� N � 1.

The matrix Qf in the block form is given by

Qf ¼

g11
..
.

0 t

. . . . . . . . .

0 ..
.

~D
t

. . . . . . . . .

b ..
.

Bt

0
BBBBBBBB@

1
CCCCCCCCA
; ð17Þ

where 0 is a null vector of dimension

N � 1; ~D ¼

g22 0 . . . 0

0 g33 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . gNN

0
BBBB@

1
CCCCA;

is a matrix of dimension

N � 1� N � 1; Bt ¼

g2;Nþ1 g3;Nþ1 . . . gN�1;Nþ1 gN ;Nþ1

g2;Nþ2 g3;Nþ2 . . . gN�1;Nþ2 0

..

. ..
.

. . . 0 0

g2;2N�1 0 . . . 0 0

0
BBBB@

1
CCCCA

is also a matrix of dimension

N � 1� N � 1 and b ¼

g1;Nþ1

g1;Nþ2

..

.

g1;2N�1

0
BBB@

1
CCCA

is a vector of dimension N � 1.
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By the conservation of the scalar product between the column vectors of the

matrices Qf and ~Q
lad
, i.e.

Qt
fQf ¼ ~Q

lad
t

~Q
lad
; ð18Þ

we obtain

g11
..
.

0 t ..
.

bt

. . . . . . . . . . . . . . .

0 ..
.

~D ..
.

B

0
BBBB@

1
CCCCA

g11
..
.

0 t

. . . . . . . . .

0 ..
.

~D
t

. . . . . . . . .

b ..
.

Bt

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼
1 ..

.
0 t ..

.
0 t

. . . . . . . . . . . . . . .

s ..
.

S t ..
.

Ot

0
BBBB@

1
CCCCA

1 ..
.

s t

. . . . . . . . .

0 ..
.

S

. . . . . . . . .

0 ..
.

O

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð19Þ

which implies that

g 2
11 þ btb ..

.
btB t

. . . . . . . . .

Bb ..
.

~D ~D
t þ BBt

0
BBB@

1
CCCA ¼

1 ..
.

s t

. . . . . . . . .

s ..
.

ss t þ S tS

0
BBB@

1
CCCA: ð20Þ

Considering the matrix equalities, we get

g 2
11 þ btb ¼ 1;

btB t ¼ s t ;

Bb ¼ s;

~D ~D
t þ BBt ¼ S tS þ ss t :

8>>><
>>>:

ð21Þ

That is, our problem consists in solving the following quadratic system

BBt ¼ S tS þ sst � ~D ~D
t
;

Bb ¼ s;

g 2
11 þ btb ¼ 1;

8><
>: ð22Þ

whose solution will provide the elements gij associated with the basis of the extended

Hilbert space, for i ¼ 1; . . . ;N and j ¼ N þ 1; . . . ; 2N � 1.
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4. Computational Results

Before presenting some computational results for many values of N , we will see an

example of the application of all the procedure for N ¼ 3, where we provide the

analytical solution of the problem.

Consider the ensemble fðjQ1i; �1Þ; ðjQ2i; �2Þ; ðjQ3i; �3Þg, with
P3

i¼1 �i ¼ 1. In

order to obtain the ¯nal discriminable con¯guration, we have the following steps:

. First, we start by rewriting the entry states to be discriminated in a ladder form in

the orthonormal basis fjii; i ¼ 1; 2; 3g:
jQ lad

1 i ¼ j1i;
jQ lad

2 i ¼ c21j1i þ c22j2i;
jQ lad

3 i ¼ c31j1i þ c32j2i þ c33j3i:

8><
>: ð23Þ

. Solving the problems (9) and (10), we obtain

p ¼
p1
p2
p3

0
@

1
A; ð24Þ

where gii ¼ ffiffiffiffi
pi

p
, for i ¼ 1; 2; 3.

. In order to calculate the coe±cients gij , for i ¼ 1; 2; 3 and j ¼ 4; 5, we have to solve

the system (22), given by

ffiffiffiffiffi
p1

p
0 0 g14 g15

0
ffiffiffiffiffi
p2

p
0 g24 g25

0 0
ffiffiffiffiffi
p3

p
g34 0

0
B@

1
CA

ffiffiffiffiffi
p1

p
0 0

0
ffiffiffiffiffi
p2

p
0

0 0
ffiffiffiffiffi
p3

p
g14 g24 g34
g15 g25 0

0
BBBBB@

1
CCCCCA

¼
1 0 0 0 0

c21 c22 0 0 0

c31 c32 c33 0 0

0
@

1
A

1 c21 c31
0 c22 c32
0 0 c33
0 0 0

0 0 0

0
BBBBB@

1
CCCCCA;

which implies that (recall that c 2
21 þ c 2

22 ¼ 1 and c 2
31 þ c 2

32 þ c 2
33 ¼ 1)

p1 þ g 2
14 þ g 2

15 ¼ 1; ð25Þ
g14g24 þ g15g25 ¼ c21; ð26Þ

g14g34 ¼ c31; ð27Þ
p2 þ g 2

24 þ g 2
25 ¼ c 2

21 þ c 2
22 ) p2 þ g 2

24 þ g 2
25 ¼ 1; ð28Þ

g24g34 ¼ c21c31 þ c22c32; ð29Þ
p3 þ g 2

34 ¼ c 2
31 þ c 2

32 þ c 2
33 ) p3 þ g 2

34 ¼ 1: ð30Þ
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From Eq. (30) we obtain g34 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p3

p
, which implies that g24 ¼ ðc21c31 þ

c22c32Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p3

p
by Eq. (29). Using this value for g24 in (28), we get

g25 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 � ðc21c31 þ c22c32Þ2=ð1� p3Þ

p
. Now, using the value for g34 in (27), we

obtain g14 ¼ c31=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p3

p
. Finally, using the values for g14; g24; g25 in (26), we obtain

g15 ¼ ðc21�c31ðc21c31 þ c22c32Þ=ð1� p3ÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 � ðc21c31 þ c22c32Þ2ð1� p3Þ

p
. That

is, the ¯nal discriminable con¯guration, in terms of c21; c22; c31; c32; c33 and p1; p2; p3, is

given by

jQf 1i ¼ ffiffiffiffiffi
p1

p j1i þ c31ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p3

p j4i þ
c21 � c31ðc21c31þc22c32Þ

1�p3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 � ðc21c31þc22c32Þ 2

1�p3

q j5i;

jQf 2i ¼ ffiffiffiffiffi
p2

p j2i þ c21c31 þ c22c32ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p3

p j4i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 �

ðc21c31 þ c22c32Þ2
1� p3

s
j5i;

jQf 3i ¼ ffiffiffiffiffi
p3

p j3i þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p3

p j4i:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð31Þ

In Table 1, we present the medium time, considering 10 random instances for

di®erent values of N , necessary to obtain the ¯nal discriminable con¯guration, using

the procedure described in this paper. The code was written in Matlab 7.0.1 and all

the experiments were carried out on an Intel Core 2, 1.66GHz and 1GB RAM,

running Windows XP.

From that table, we can see that our procedure is able to obtain the ¯nal dis-

criminable con¯guration for di®erent values of N , in a very reasonable time. In

Table 1. Medium time for di®erent values of N .

N Time

2 1.4344s
3 1.7156s

4 1.7706s

5 2.1174s

6 2.0282s
7 2.2936s

8 2.9421s

9 2.4860s

10 2.0514s
20 2.6954s

30 4.3342s

40 6.1859s

50 9.0860s
60 14.8456s

70 20.8436s

80 32.8407s
90 44.4249s

100 1min 11.025s
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addition to this, the new method proposed to calculate the inconclusive coe±cients is

easier to implement and more robust than the one proposed in Ref. 13.

5. Conclusion

We proposed a new method to calculate the inconclusive coe±cients of the ¯nal

discriminable con¯guration calculated by the algorithm described by Ref. 13,

replacing the determination of the roots of a polynomial of degree 8 by the solution of

a quadratic system. The new method simpli¯ed the calculation of the inconclusive

coe±cients and could be extended very easily to any dimension. The method was

written in Matlab and successfully applied to problems with dimensions varying from

N ¼ 2 to N ¼ 100.
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