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An integrative study was performed to understand the phylogenetic relationships of an undescribed, freshwater 
species of microcotylid parasitizing Plagioscion squamosissimus from the Amazon River Basin. Based on 
morphological and molecular analysis (18S rDNA and partial 28S rDNA genes), a new genus is proposed to 
accommodate this new species, Pauciconfibuloides amazonica gen. n. sp. n. The new genus is closely related to 
Protastomicrocotylinae and Pauciconfibula by sharing the vagina, male copulatory organ, and genital atrium all 
unarmed. However, Pauciconfibuloides gen. n. can be distinguished from those taxa by the prostatic system and 
position of the vaginal pore. Molecular phylogenetic inference suggests a sister relationship with species of 
Polylabris (Prostatomicrocotylinae), but to date, there are no available 18S or 28S rDNA sequences of Pauci-
confibula to be compared. This is the first report of a microcotylid parasitizing a freshwater sciaenid from South 
America.   

1. Introduction 

A considerable part of the worldwide fish diversity is concentrated in 
South America, where 27% of known species are reported [1]. The great 
contributors to this megadiversity are the Amazonian ecosystems, 
responsible for harbouring the richest fauna of freshwater fishes in the 
world, with around 2500 known species [2,3]. Such richness is the result 
of a myriad of diversification processes, characterized by long super-
posed and complex evolutionary histories [4,5]. These events gave rise 
to conditions that enabled the emergence of many lineages as the 
marine-derived lineages (MDL) represented by, between other, the 

freshwater Sciaenidae Cuvier, 1829 [2,4,6]. 
Sciaenidae accounts 66 genera and 293 species of demersal and 

commercially important fishes, most of which are marine with occur-
rence in the coastal waters of the Atlantic, Indian and Pacific oceans 
[7–10]. They form a monophyletic group [7,11] whose the most recent 
common ancestor (MRCA), a euryhaline fish, occurred in the Neotrop-
ical Region between the Late Oligocene and Early Miocene (27 Ma) [7]. 
This ancestor would have adapted to marine environments and, through 
numerous independent transitions, returned to the estuaries at different 
times during the Miocene [7]. Moreover, three independent transitions 
from marine/euryhaline to freshwater environments occurred in South 
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America, North America, and Asia [7]. 
Around the early Miocene (~ 21 Ma), the marine introgression in 

course in South America led to the divergence of lineages of the fresh-
water sciaenids [7], which today account for 19 species on the continent 
[12–15], classified into Pachypops Gill 1861, Pachyurus Agassiz 1831, 
Plagioscion Gill 1861 and the monotypic Petilipinnis Casatti, 2002. More 
than 40 species of monogenoids have been described in association with 
these fishes [16], but, these parasitological surveys were unable to 
reveal associations beyond those involving dactylgyrids and diplecta-
nids [16–19]. 

Microcotylidae Taschenberg, 1879, represents the largest family of 
Monogenoidea within Oligonchoinea, and almost all its species are 
parasites of marine fishes [20], mainly percomorpharians. However, 
there are rare reports of these parasites in freshwater environments from 
the USA, Canada, Turkey and Iraq [21–28]. Nevertheless, other reports 
of undetermined microcotylids in freshwater can be found in India and 
Japan. 

In the South America, 22 microcotylids species were reported para-
sitizing different groups of hosts, 21 from marine (13 spp. in perco-
morpharians, 6 spp. in carangimorpharians, one species in 
gobiomorpharians, and one in scombriomorpharians) and just one from 
freshwater, Paranaella luquei Kohn, Baptista-Farias and Cohen, 2000, 
associated with siluriformes and characiformes from Brazil [16,29,30]. 
The results obtained here report for the first time, the evolutionary 
history of a microcotylid infecting a freshwater sciaenid from South 
America. Based on morphological study and phylogenetic inferences 
using 18S rDNA and partial 28S rDNA genes, the monotypic Pauci-
confibuloides n. gen. was erected to accommodate Pauciconfibuloides 
amazonica gen. n. sp. n. of Plagioscion squamosissimus (Heckel, 1840) 
from the Amazon River Basin. 

2. Material and methods 

2.1. Sampling and morphological investigations 

The field research was conducted in several different Amazonian 
hydrographic sub-basins. The host fish were collected from eight capture 
points, six in the Tapajós River Basin, one in the Xingú River Basin, both 
in the state of Pará, and one in the Amazon River, in the state of Ama-
zonas (Table 1). The euthanasia method was approved by the Ethics 
Committee on Animal Research of the State University of Campinas 
(CEUA No. 3179–1). The sampling and access to genetic heritage was 
authorized by the Brazilian Ministry of the Environment (authorization 
SISBIO # 42427–3 and SISGEN # AD28DC2). The host scientific names 
and classification were validated based on Casatti [31], Betancur-R et al. 
[32], Queiroz et al. [33] and Eschmeyer et al. [8]. Fish were deposited 
under number LBP2011092501 in the collection of the Fish Biology and 
Genetics Laboratory, of the Universidade Estadual Paulista Julio de 
Mesquita Filho (Julio de Mesquita Filho São Paulo State University) 
(LBP/UNESP), São Paulo, Brazil. 

To retrieve the parasites, the gills were extracted using dissection 

scissors, shaken in a flask filled with heated water (~65 ◦C) and then 
fixed in 4% formalin for morphological study or 100% ethanol for mo-
lecular study. In the laboratory, the gills and sediments were examined 
in a Petri dish under a stereomicroscope, the helminths were recovered 
using small probes and fixed within 1.5 ml tubes filled with 4% formalin 
or 100% ethanol. 

A number of helminths were stained with Gomori’s trichrome and 
mounted in Canada balsam to study their soft internal structures, while 
others were prepared with Gray and Wess’s medium or Hoyer’s medium 
to examine the sclerotized structures [34]. The measurements were 
taken in millimeters, except where shown in micrometers. Almost all the 
helminths and their structures were measured in the dorsoventral view, 
through digital images processed using ImageJ 1.43 m software [35]. 
The average measurements are shown, followed by the ranges, and the 
number of specimens measured (n) is given in parentheses. Some 
specimens were observed and photographed using differential interfer-
ence contrast (DIC) and phase-contrast optics through an Axioplan 2 
Zeiss microscope. Scanning electron microscopy (SEM) was performed 
in a Leica/Cambridge Leo Stereoscan S-440 scanning electron micro-
scope. Specimens prepared for SEM were postfixed in 4% formalin 
during 1 h, and posteriorly in 1% osmium tetroxide for 1–2 h at room 
temperature, dehydrated in an ethanol series, dried to a critical point 
and sputter-coated with gold. Illustrations were prepared with the aid of 
a drawing tube on a Leica DM 2500 microscope with DIC. The quanti-
tative descriptors of the parasitic population used here are those sug-
gested by Bush et al. (1997) [36]. 

Type specimens and vouchers were deposited in the collection of 
Platyhelminthes of the Adão José Cardoso Museum of Zoology of the 
State University of Campinas, São Paulo (ZUEC PLA) and the details of 
the new taxa were submitted to ZooBank. The following specimens from 
the US National Parasite Collection of the Smithsonian National 
Museum of Natural History (USNM) were examined: 2 specimens of 
Aspinatrium pogoniae (USNM 1398080), 1 specimen of Aspinatrium 
kahala (USNM 1359393), 2 specimens of Microcotyle macroura (USNM 
1335871, 1,337,244), 3 specimens of Microcotyle scomberomori (USNM 
1351590), 1 specimen of Heteraxinoides hargisi (USNM 1338411), 2 
specimens of Heteraxinoides oligoplitis (USNM 1321912), 2 specimens of 
Heteraxinoides xanthophilis (USNM 1338757), and 6 specimens of Pau-
ciconfibula subsolana (USNM 1377233). Six specimens of Anakohnia 
brasiliana (ZUEC PLA 178-183) were also examined and a new record of 
geographical locality for this species is provided here (Gararu, Sergipe, 
Brazil, in the São Francisco River, Lat. − 9.924444◦; Long. 
− 37.122917◦). 

2.2. DNA extraction, amplification, sequencing, alignment and 
congruence analysis 

One helminth was mounted on a slide with glycerin, photographed 
for identification and posteriorly used for molecular characterization. 
The total DNA genomic was extracted using the Qiagen Dneasy® Blood 
and Tissue Kit (animal tissue protocol), according to the manufacturer’s 

Table 1 
Summary of the field samplings and infection diagnosis, with the geographic locality of fish capture (longitude and latitude); number of fishes caught (n); prevalence (P 
%), mean intensity (MII); and mean abundance (MAI) of infection.  

Sample area Long.; Lat. n Total length (cm) Weight (g) Catch dates 

Tapajós River, South of Itaituba, PA − 56.037793◦ ; − 4.297224◦ 15 35 (30–41) 415 (140–432) September and October 2011 and July 2012 
Tapajós River, Comunidade Vila Rayol, Itaituba, PA − 56.267500◦ ; − 4.458194◦ 1 24 190 
Tapajós River, Pimental, Itaituba, PA − 56.264613◦ ; − 4.568505◦ 2 31 (28–34) 378 (292–464) 
Tracuá River, Tapajós River Basin, Itaituba, PA − 56.283917◦ ; − 4.486417◦ 1 36 582 
Tapajós River, National Park of Amazonia, Itaituba, 

PA 
− 56.299889◦ ; − 4.552694◦ 8 35 (20–48) 594 (103–1324) 

Mouth of Tapajós River, Santarém, PA − 54.813158◦ ; − 2.277381◦ 22 24 (19–31) 162 (85–335) April 2018 
Amazonas River, Manaus, AM − 59.802940◦ ; − 3.085335 

◦

10 22 (19–25) 180 (110–305) May 2018 

Xingu River, Altamira, PA 52.196528◦; − 3.354361◦ 1 25 250 June 2015  
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protocol, with a final volume of 30 μl. The DNA concentration was 
verified using a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific, Massachusetts, USA) at 260 nm. 

The 18S rDNA was amplified using the WormA (forward; 5′ – 
GCGAATGGCTCATTAAATCAG – 3′) and WormB (reverse; 5′ – 
CTTGTTACGACTTTTACTTCC – 3′) primers [37]. The 28S rDNA was 
amplified using the U178 (forward; 5′- GCACCCGCTGAAYTTAAG – 3′) 
and L1642 (reverse; 5′ – CCAGCGCCATCCATTTTCA – 3′) primers [38]. 
The Polymerase Chain Reactions (PCRs) were performed in a Master-
cycler® nexus (Eppendorf, Hamburg, Germany) with a final volume of 
25 μl using DreamTaq Green PCR Master Mix (2×) Thermo Scientific 
(Wilmington, USA), following the manufacturer’s recommendations. A 
quantity of 0.1 mM of each primer and 3 μl of the extracted DNA was 
used in the reactions. 

To amplify the 18S rDNA, the PCRs programs were set up for an 
initial denaturation at 94 ◦C for 3 min, followed by 35 cycles of 94 ◦C for 
30 s, 58 ◦C for 30 s, 72 ◦C for 90 s, and a final elongation at 72 ◦C for 10 
min. For the 28S rDNA, initial denaturation was performed at 95 ◦C for 
3 min, followed by 34 cycles of 94 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C for 90 
s, and a final elongation at 72 ◦C for 4 min. Amplicons were electro-
phoresed on 1.5% agarose gel in a TAE buffer (Tris 40 mM, Acetic Acid 
20 mM, EDTA 1 mM) stained with SYBRsafe® (Invitrogen, Thermo 
Fisher Scientific, Massachusetts, USA) alongside a 1 kb Plus DNA Ladder 
(Invitrogen, Thermo Fisher Scientific, Massachusetts, USA) at 90 V for 
30 min. The PCR products were purified using the QIAquick PCR Puri-
fication Kit (Qiagen, USA) and sequenced with the BigDye® Terminator 
v3.1 Cycle Sequencing Kit (Applied Biosystems™) in a 3500 DNA 
sequencing analyzer (Applied Biosystems, California, USA) from the 
Helixxa Company (municipality of Paulinia, state of São Paulo, Brazil). 
For the sequencing were used the primers used in the amplification plus 
the additional primers 1270R (reverse; 5′ – CCGTCAATTCCTTTAAGT – 
3′) and 930F (forward 5′ – GCATGGAATAATGGAATAGG – 3′) [37] for 
18S rDNA and 900F (5′ – CCGTCTTGAAACACGGACCAAG – 3′) and 
1200R (5′ – GCATAGTTCACCATCTTTCGG – 3′) [38] for the 28S rDNA. 

BioEdit 7.1.3.0 [39] was used to visualize, assemble and edit the 
sequences, which were submitted to a basic local alignment searches 
(BLASTn) [40] to verify their similarity with other sequences of mono-
genoids available in the NCBI BioSystems database [41]. The resulting 
sequences were aligned against sequences of 39 operational taxonomic 
units (OTUs) (Table S1). All the sequences used for comparison were 
downloaded from the NCBI BioSystems database [41], selected ac-
cording to length (i.e., >1600 bp for 18S and > 700 bp for 28S) and the 
quality of their fit with the alignments, which was performed by 
applying the ClustalW algorithm Version 2 [42] implemented in Sea-
View Version 4 [43]. The OTUs which had their species/genus deter-
mined, and had both molecular markers available, were prioritized. 
However, an exception was made for sequences of Polylabris spp. owing 
to results that inferred phylogeny, separately, for each molecular 
marker. 

The alignments were subjected to the composition of less stringent g- 
blocks [44]. These alignments were supplied to produce distance 
matrices through MEGA-X version 10.0.5 using the Maximum Com-
posite Likelihood algorithm [45]. Such matrices were compared by 
running a Congruence Among Distance Matrices (CADM) analyses, with 
the algorithm of CADM entered in the ‘ape’ (Analyses of Phylogenetics 
and Evolution) package, handling the R Version 3.6.1 [46–48]. The 
sequence matrices were concatenated with SeaView Version 4 for the 
phylogenetic inferences [43]. 

2.3. Phylogenetic inferences 

Sixteen OTUs were used as the outgroup, two of which were classi-
fied into Polyonchoinea Bychowsky, 1937, and 14 of which were clas-
sified as members of Heteronchoinea Boeger and Kritsky, 2001, grouped 
in Polystomatoinea Lebedev, 1986 (Table S1). Three methods were 
applied to reconstruct the phylogenetic relationships among the taxa 

investigated. The Maximum Parsimony (MP) was used running the 
NONA ver. 2.0 implemented in WinClada ver. 1.00.08 [49,50]. In order 
to achieve the globally optimal trees, thirty heuristic searches were 
conducted [51], each configurated to reach a maximum of 104 trees 
within 1000 replications, with the TBR + TBR multiple swapping al-
gorithm and one holding tree. The taxa were randomly added, with 
characters equally weighted, freely allowed to the reversibility and 
optimized to accelerate the transformations (ACCTRAN), while gaps 
were considered missing data. The PhyML with Smart Model Selection 
[54,55] was employed to apply the Maximum Likelihood (ML) method. 
For the MP and ML, branch was validated, supported by bootstrapping 
the analyses with 1000 replicates. Bayesian Inference (BI) was carried 
out using MrBayes version 3.2 software package [56]. For these in-
ferences, the analyses were set up to run two independent Markov Chain 
Monte Carlo (MCMC) trials over 106 generations, sufficient to keep the 
average standard deviation below 0.001. The MCMC were sampled each 
100th and diagnosed every 1000th generation, with the first 25% of the 
samples discarded in the burn-in phase. To sample across the substitu-
tion models and combine a gamma-distributed rate variation across sites 
with a proportion of invariable sites, the lset nst = mixed rates =
invgamma function was used [56]. 

3. Results 

3.1. Quantitative descriptors of Pauciconfibuloides amazonica gen. n. sp. 
n. 

Overall, 43 specimens of P. squamosissimus were examined, with a 
mean length of 29 cm and a mean weight of 344 g (Tables 1 and 2). 
Infection by Pauciconfibuloides amazonica gen. n. sp. n. was observed in 
25 of these fish and a total of 38 parasites were counted, however, many 
of them were broken and were just considered for the purpose of 
quantitative description of parasitism. 

3.2. Taxonomic acts 

Taxonomic summary 
Class: Monogenoidea Bychowsky, 1937. 
Subclass: Heteronchoinea Boeger and Kritsky, 2001. 
Order: Mazocraeidea Bychowsky, 1937. 
Family: Microcotylidae Taschenberg, 1879. 
Pauciconfibuloides gen. n. 
Type-species: Pauciconfibuloides amazonica gen. n. sp. n. (Figs. 1, 

A.1). 
Type host: P. squamosissimus (Heckel, 1840), South American silver 

croaker. 
Site of infection: Gills. 
Type locality: Tapajós River, National Park of Amazonia (PARNA da 

Amazônia), Itaituba, PA. 
Etymology: an adjective meaning that the new genus resembles the 

genus Pauciconfibula. It is a Latinized form from -o- + Ancient Greek - 
ειδής (− eidḗs, “-oid, − like”). 

Zoobank Life Science Identifier: urn:lsid:zoobank.org: 
pub:12A373BF-0B1C-4FA3-BAAE-C610BABC7077. 

Genus description 
Body lanceolate, flattened dorsoventrally. Opisthohaptor symmetri-

cal or asymmetrical, armed with two approximately parallel (sometimes 
convergent, other divergent) rows of clamps. Clamps composed by five 
sclerites. Mouth ventral, subterminal. A paired prehaptoral organ C- 
shaped, septated, within the mouth, bearing sclerotized toothlike 
papillae surrounding the anterior and posterior margin. Intestinal caeca 
branched, extending into haptor, dissimilar and not confluent posteri-
orly. Common genital pore midventral; common genital atrium mid-
ventral, unarmed. Vagina mediodorsal, unarmed. Vaginal duct arising 
from the meet of the transverse vitelline ducts in the median line of the 
body. Ovary question mark-shaped, tubular, pretesticular, intercaecal, 
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dorsal to vitelline ducts and uterus. Uterus delicate, opening in the 
genital atrium. Eggs fusiform, with filament at one pole. Genitointestinal 
canal short. Testes post-ovarian, intercaecal. Vas deferens extending 
along body midline to male copulatory organ (MCO), long, convoluted. 
MCO a not sclerotized tube, not armed, opening into genital atrium, with 
a soft tissue base. Ejaculatory bulb absent. Prostatic system a sac jointing 
to the base of the MCO. Vitellaria extending along the intestinal caeca. 

Pauciconfibuloides amazonica gen. n. sp. n. (Figs. 1, 2, A.1). 
Type host: P. squamosissimus (Heckel, 1840), South American silver 

croaker. 
Site of infection: Gills. 
Type locality: Tapajós River, National Park of Amazonia (PARNA da 

Amazônia), Itaituba, PA. 
Other localities: see Table 1. 
Etymology: the specific name is an adjective, means that something 

is relative to or belonging to the Biome Amazônia, in allusion to the 
geographic locality in which the parasites were found. 

Prevalence of infection: 50% (Table 2). 
Mean intensity of infection: 1.5. 
Mean abundance of infection: 3. 
Specimens deposited: Holotype ZUEC PLA 162. Paratypes ZUEC PLA 

163-169; Voucher ZUEC PLA 170-177. 
GenBank accession number: MT645074 (18S rDNA) and MT645075 

(28S rDNA), obtained from one single specimen and MT645076 (28S 
rDNA) obtained from another single specimen, all from Mouth of 
Tapajós, in Santarém, state of Pará. 

Description (based on 12 specimens: 5 stained with Gomori’s tri-
chrome, 4 mounted in Gray and Wess’s medium and 3 mounted in 
Hoyer’s medium). 

Species description 
Total length 4.8 (2.7–6.7; n = 6), maximum body width 0.8 (0.6–1; n 

= 6) at level of ootype, with geographical variability (Table 2). Anterior 
extremity slightly rounded, with a central head organ opening anteri-
orly. Absence of haptoral peduncle. Haptor arising posteriorly to testes, 
2.3 (1.2–3.3; n = 6) long, equivalent to 31%–57% of the total length 
(Figs. 1, 2, A.1) and 0.5 (0.3–0.6; n = 6) maximum width. Clamps 
pedunculated, composed by five sclerites unequal in length but similar 

in structure; one single median, sometimes curved, which bears, at the 
anterior and posterior ends, two diverging projections; a paired ante-
rolateral sclerites, twisted at its one third to the middle, bending post-
eromedially; and a paired curved posterolateral sclerites. At left side of 
the haptor there are about 54 clamps (76 μm long x 84 μm width) and at 
right side, 57 clamps (58 μm long x 91 μm width); the largest generally 
posteriorly distributed (Table 2). Paired prehaptoral organ 59 μm 
(50–74; n = 6) in maximum length; septum laterally dislocated, 
extending longitudinally, from its posterior to anterior border. Muscular 
pharynx ovoid, 128 μm (97–181; n = 6) long, 85 μm (60–111; n = 6) 
width. Oesophagus short, without diverticula. Intestinal bifurcation 
immediately anterior to common genital pore; branched intestine, 
partially obscured by vitelline follicules, extending from 1/3 to less than 
85% into the haptor without posterior confluence; intestinal caeca 
subequal in length, left caecum being slightly longer. Common genital 
pore located at 409 μm (248–548, n = 6) from anterior extremity; 
common genital atrium 83 μm (67–101, n = 6) in diameter, with a strong 
circular muscle surrounding it. Vagina opening through a single medi-
odorsal, slightly left pore located at 726 μm (641–857, n = 3) from 
anterior extremity; vaginal canal muscular, short, connecting with vi-
telline ducts. Paired vitelline ducts directing posteriorly to form a 
common vitelline duct or vitellovaginal reservoir. Vitellaria laterally 
scattered, coextensive with intestinal caeca, extending from prostatic 
organ to near posterior portion of body, not entering the haptor. Ovary 
long, originating on left side of body, extending anteriorly, then 
traversing intercaecal region to right side, aftermore ventral and pos-
teriorly, back to left side, until it snaps between the common vitelline 
duct and the anterior testes. A S-shaped oviduct arises at the end of 
ovary, extends anteriorly, dorsal to the common vitelline duct or vitel-
lovaginal reservoir, opening near the end of the genitointestinal canal, 
which comes from left vitellaria. Ootype smooth walled, dorsal to 
vitellovaginal reservoir. Mehlis’ glands not observed. Uterus, a delicate 
tube, ventral to ovary and vas deferens, relatively straight with some 
loopings when unpregnant, arising at level of end of vitellovaginal 
reservoir, extending anteriorly, nearly at body midline, until reaching 
the genital atrium. Testes 22 (19–23, n = 6) in number, post-ovarian, 
intercaecal, occupying 1/3 of body. Prostatic system a sac with two 

Table 2 
Comparative measurements (μm) and quantitative descriptors of the specimens (n = number of specimens) of Pauciconfibuloides amazonica gen. n. sp. n. parasite of 
Plagioscion squamosissimus from five localities in the Amazon River Basin, Brazil.   

Tapajós River, PARNA da 
Amazônia, PA (n = 6) 

Tapajós River, South of 
Itaituba, PA (n = 1) 

Mouth of Tapajós River, 
Santarém, PA (n = 2) 

Amazonas River, Manaus, 
AM (n = 2) 

Xingu River, Altamira, 
PA (n = 1) 

Total length 4757 (2709–6681) – 4775 (4550–5000) 5675 (3850–7500) 3050 
Maximum body 

width 
815 (573–1052) 315 600 (400–800) 650 (450–850) 400 

Haptor length 2339 (1206–3346) – 2075 (1650–2500) 2850 (1700–4000) 1250 
Haptor width 493 (321–611) – 550 (500–600) 260 (250–270) 550 
Number of left 

clamps 
54 (33–96) – 55 (45–65) 72 (49–95) 47 

Number of right 
clamps 

57 (29–101) – 22 (12− 32) 25 (19–32) 19 

Anterior clamps long 52 (29–79) – 80 (75–85) 82 (80–85) 100 
Medial clamps long 70 (40–105) – 107 (100–115) 125 100 
Posterior clamps long 64 (41–83, n = 5) – 137 (125–150) 122 (100–145) 200 
Anterior clamps 

width 
88 (62–124) – 115 (80–150) 85 (75–95) 125 

Medial clamps width 91 (35–145) – 200 137 (125–150) 200 
Posterior clamps 

width 
100 (56–133, n = 5) – 110 (100− 120) 110 (95–125) 110 

Common genital pore 
location 

409 (248–548, n = 5) 454 475 (450–500) 576 (502–650) 350 

Testes number 22 (19–23) – 21; 22 22; 23 – 
Prevalence of 

infection (%) 
50 33 41 60 100 

Mean abundance of 
infection 

1.5 0.4 0.5 0.8 1 

Mean intensity of 
infection 

3 1.2 1.2 1.3 1  
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Fig. 1. Pauciconfibuloides gen. n. Amazoniacotyle amazonica gen. n. sp. nov. A: whole composite drawn, ventral view. B: prehaptor. C: male reproductive system. D: 
egg. E: female reproductive system. F and G: opened and closed clamps. Scale bar = 1000 μm (A), 100 μm (E), 50 μm (C, D, F, G), 25 μm (B). 
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chambers, arise as a pouch from the proximal portion of the male 
copulatory organ (MCO). Egg operculated, 217 × 55 μm (in uterus) (n =
1), 130 × 25 μm (in ootype) (n = 1), with one short polar filament. 

3.3. Molecular phylogenetic inference 

The 18S sequencing of Pauciconfibuloides amazonica sp. n. generated 
a 1724 bp sequence, which in the BLASTn search revealed closest 

similarity with Polylabris acanthopagri Mamaev and Parukhin, 1976, and 
Microcotyle sebastis Goto, 1894 (96.3% and 96.2% respectively). The 28S 
sequencing recovered 1547 bp, while the BLASTn search evidenced 
closest similarity with Microcotyle isyebi Bouguerche, Gey, Justine and 
Tazerouti, 2019, and Microcotyle erythrini Van Beneden and Hesse, 1863, 
both with 92.1%. After alignment and g-block selection procedures, 18S 
and 28S matrices with 1698 and 810 characters, respectively, were 
reached. The congruence test performed revealed a concordance 

Fig. 2. Barplot of the relationship between body and haptor length of Pauciconfibuloides gen. n. amazonica sp. nov.  

Fig. 3. A 50% majority-rule consensus tree based on a concatenated matrix of 18S rDNA and partial 28S rDNA gene sequence. Numbers above the branches are the 
supports of Maximum Parsimony, Maximum Likelihood and Posterior Probability from Bayesian Inference. The hosts were manually optimized optimized on the tree 
according to Modified Fitch Optimization [69]. 
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between the distance matrices with a Mantel mean of 0.92 and a Ken-
dall’s W range of 0.96. Subsequent to concatenation, a matrix with 2509 
characters was reached. 

A single most parsimonious MP tree with length of 4703, CI = 46, RI 
= 75 revealed total congruence with the ML and BI trees, though the 
values of support can vary for each algorithm. The Generalized Time- 
Reversible was the selected model for both ML and BI, with submodels 
GTR + G + I for ML and GTR M177 for BI. The BI read 20,002 trees and 
sampled 15,002. 

Pauciconfibuloides amazonica sp. n. emerged within Microcotylidae as 
a sister species to Polylabris spp. and this clade arose in a sister rela-
tionship with Bivagina pagrosomi (Murray, 1931) + Omanicotyle hetero-
spina (Mamaev and Parukhin, 1974) and M. erythrini + M. sebastis Goto, 
1894. Cynoscionicola branchialis (taxon inquirendum) arose as a sister 
taxon for the heteraxinids, composing a sister group to Microcotylidae 
(Fig. 3). 

4. Discussion 

Pauciconfibuloides gen. n. is characterized by the question mark- 
shaped ovary; a genitointestinal canal; a symmetric or asymmetric 
haptor; numerous clamps without accessory sclerites; and absence of 
muscular pads in the genital atrium. The genus is also characterized by: 
(1) the presence of sclerotized toothlike papillae in the prohaptor; (2) 
intestinal caecum extending into the haptor; (3) the egg with one fila-
ment; (4) clamps with five sclerites; (5) the vagina dorsal and unarmed; 
(6) the genital atrium unarmed; (7) the MCO unarmed; (8) the prostatic 
system like a sac with two chambers. These characters fit with the 
diagnosis of Microcotylidae [20,57,58]. 

The new genus shares the genital atrium, vaginal pore and MCO all 
unarmed, with members of Prostatomicrocotylinae Yamaguti, 1968 and 
Pauciconfibula Dillon and Hargis, 1965 (Microcotylinae Monticelli, 
1892) [20,25,59–62]. These characters neither are shared with mem-
bers of other lineages reported in Brazil, as the subfamily Anakohninae 
Bravo-Hollis, 1986, once its only species is represented by specimens 
bearing a MCO with two terminal spines [63], or Paranaella Kohn, 
Baptista-Farias and Cohen, 2000, whose unique species described has a 
genital atrium armed with spines [30]. However, Pauciconfibuloides gen. 
n. can be differentiated from members of Protastomicrocotylinae and 
Pauciconfibula by the morphology of the saccular prostatic system, that 
supports the erection of the new genus. Pauciconfibula lacks a prostatic 
system, while genera included in Protastomicrocotylinae have a sym-
metric, paired and cylindrical prostatic reservoirs, perpendicular to the 
MCO [20,60–62]. The mediodorsal vaginal pore of Pauciconfibuloides 
gen. n. also differs the new genus from the genera compounding Pro-
tastomicrocotylinae, that have a single medioventral vagina or two 
mediolateral vagina [20,61,62]. 

In the meantime, Pauciconfibuloides amazonica sp. n. is characterized 
by: (1) the prostatic system like a sac with two chambers; (2) the pres-
ence of sclerotized toothlike papillae in the prohaptor; (3) intestinal 
caecum extending into a maximum of 85% of the haptor; (4) 56 clamps 
on each side of the haptor; (5) 22 testes (19–23, 5) an egg filament; (6) a 
dorsal vagina; (7) a genitointestinal canal opening to the left vitellaria. 
These characters distinguish the new species from all species of Pauci-
confibula and Prostatomicrocotylinae. 

In proposing the systematic reorganization of Microcotylidae, 
Mamaev [20] brought together Polylabris Euzet and Cauwet, 1967 and 
other genera into the subfamily Prostatomicrocotylinae, by sharing, 
among other characteristics, a prostatic system. The hypothesis raised in 
the tree BI tree (Fig. 3), when presenting the microcotylines as a sister 
group of a clade whose species, Pauciconfibuloides amazonica sp. n. and 
Polylabris spp., have prostatic systems, seems to reflect Mamaev’s 
overview. This would be an interesting hypothesis, even more, consid-
ering that the species compounding this clade present a gondwanic 
distribution. Polylabris bengalensis Sailaja and Madhavi, 2011, is a 
parasite of siganids from India, and Polylabris sillaginae (Woolcock, 

1936), was found infecting a sillaginid from Australia and, in a sum-
marized view, based on inferences by Betancur-R et al. [32], the siganids 
form a sister group with sillaginids, composing a sister clade to sciae-
nids. However, it is possible that the putative sister relationship evi-
denced for Pauciconfibuloides amazonica sp. n., is not real and it is a result 
of the scarcity of sequences of microcotylids, especially those of Pauci-
confibula spp. which have only mitochondrial sequences available [64]. 
In this case, it should be assumed that the prostatic system arose inde-
pendently in these parasites. 

The possibility for the existence of another and yet unknown lineage 
that could fill the gap of a real sister group for Pauciconfibuloides ama-
zonica sp. n. sp. n. from Neotropics is not enigmatic, once the branch 
support of this clade is not strong (70/600/0.95), moreover, there are 
precedents to sustain such a hypothesis. A similar biogeographical 
pattern has been observed by Trevisan et al. [65] and Boeger and Kritsky 
[66] for different host-parasite systems in the Neotropics. This pattern, if 
summarized, result in an area cladogram (Southeastern Pacific +
Southwestern Atlantic (South American Freshwater)) also observed for 
other marine-derived lineages, arising from a single paleogeographic 
event, the Miocene marine introgressions [67]. All these studies suggest 
that the South American MDL has a sister group formed by taxa with 
occurrence in the Caribbean Sea. Nonetheless, it should be assumed that 
Pauciconfibuloides amazonica sp. n. is also an MDL. 

Some microcotylids seems to exhibit resistance to changes in salinity. 
The report of Anakohnia brasiliana Bravo-Hollis, 1986 (see the Sampling 
and morphological investigations section) in the São Francisco River, 
more than 120 km off the coast, supports this assertion. This species was 
described in Barra de São João, the coastal region of Rio de Janeiro, 
Brazil, in association with Centropomus parallelus Poey, 1860 [63]. Later, 
it was found in the Guandu River, Seropédica, Rio de Janeiro, just over 
20 km from the mouth, parasitizing Centropomus undecimalis (Bloch 
1792) [68]. These two host species are amphidromous estuarine cen-
tropomids. The report of Pauciconfibula subsolana Chisholm, Beverly- 
Burton and McAlpine, 1991 was carried out 136 km from the coast 
[25], and its host, Morone americana (Gmelin, 1789), is an anadromous 
and estuarine moronid. Different from these parasites, Pauciconfibuloides 
amazonica sp. n. was recovered on several occasions, in 2011, 2012, 
2015 and 2018, in some of them, such as in the type locality, more than 
1000 km from the coastal region. These are strong indications that 
Pauciconfibuloides amazonica sp. n. is a freshwater species, and as such, it 
may have experienced the same evolutionary processes as its host, 
P. squamosissimus, a freshwater sciaenid whose ancestral is derived from 
marine lineages. Nevertheless, this cannot be stated with absolute cer-
tainty, but future studies on freshwater microcotylids from Neotropics 
will can highlight this hypothesis. 

5. Conclusions 

Our study reports for the first time the occurrence of a microcotylid 
parasitizing a freshwater sciaenid from South America. Supported by 
morphological and molecular characterization, a new genus was erected 
to accommodate Pauciconfibuloides amazonica sp. n. The phylogenetic 
inference put the new species as sister to Polylabris spp. (Prostatomi-
crocotylinae), suggesting that the prostatic system present in these taxa 
is homologous. However, the inexistence of sequences of 18S and 28S 
rDNA for the Pauciconfibula spp., which are the morphologically closest 
species of Pauciconfibuloides amazonica sp. n., can be the cause of this 
result. The occurrence of Pauciconfibuloides amazonica sp. n. more than 
1000 km from the coastal region strongly suggest that this species is a 
freshwater one and, as such, it could have experienced the same 
evolutionary events of its host, P. squamosissimus, a freshwater sciaenid 
that arose from the divergence of marine ancestral that invade the South 
America freshwater environments. Nonetheless, additional studies on 
Neotropical microcotylids will can highlight this hypothesis. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.parint.2021.102489. 
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[12] L. Casatti, Taxonomia do gênero sul-americano Pachyurus Agassiz, 1831 
(Teleostei: Perciformes: Sciaenidae) e descrição de duas novas espécies, in: Comun. 
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