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Background: Remote ischemic perconditioning (rPER) is the newest technique described to

mitigate ischemia and reperfusion (IR) injury. Local postconditioning (POS) is also an

effective technique for this purpose. It is uncertain if adding local POS to rPER provides

superior liver protection, so we tested this hypothesis.

Materials and methods: Twenty five Wistar rats were assigned into five groups: sham, IR,

POS, rPER, and rPER þ POS. Animals were subjected to liver ischemia for 60 min. POS

consisted of four cycles of 5-min liver perfusion followed by 5-min liver ischemia (40 min

total) after the major ischemic period. rPER consisted of four cycles of 5-min hindlimb

ischemia followed by 5 min hindlimb perfusion contemporaneously to major liver

ischemic period, during its last 40 min. After 2 h, median and left lobes were harvested for

malondialdehyde and Trolox equivalent antioxidant capacity (TEAC) measurement, and

blood for the measurement of serum transaminases.

Results: All tissue conditioning techniques were able to reduce transaminases serum levels,

having no differences among them. All tissue conditioning techniques were able to reduce

hepatic tissue MDA level; however, only rPER þ POS had higher values than SHAM. All tissue

conditioning techniquesalso enhancedTEAC; however, only POShad lowerTEAC thanSHAM.

Conclusions: rPER appears as the most promising technique to avoid IR injury. This tech-

nique reduced oxidative stress of cell membranes and lowered transaminases serum level.

There was no additive protection when POS and rPER were held together.

ª 2014 Elsevier Inc. All rights reserved.
1. Introduction several organs. This syndrome contributes to morbidity and
Reperfusion following temporary tissue ischemia has been

identified as an important mechanism contributing to tissue

injury [1]. Furthermore, the clinical syndrome of ischemia and

reperfusion (IR) is associatedwith deleterious consequences for
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mortality in a wide range of pathologies such as myocardial

infarction, ischemic stroke, sleep apnea, and circulatory arrest,

being amajor problem ina settingof liver transplantation [2e4].

Mechanisms for IR-induced tissue injury include intracel-

lular processes such as failure of the Naþ/Kþ ion pump,
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increase in intracellular Ca2þ concentration, reactive oxygen

species (ROS) formation, and associated inflammatory

response. ROS formation can cause lipid peroxidation of cell

membranes, leading to malondialdehyde (MDA) formation

and depleted tissue antioxidant capacity. ROS can also cause

proteins and DNA damage, and eventually, cell death [4,5].

The most critical factor that determines the severity of

tissue damage caused by IR appears to be the duration of the

ischemia [5]. In addition to early reperfusion, “tissue condi-

tioning” by a series of alternating intervals of brief episodes of

IR is currently the most promising approach to limit tissue

damage caused by prolonged ischemia [6e9].

Tissue conditioning was first used in 1986 by Murry et al.

[10], who demonstrated the concept of ischemic pre-

conditioning (PRE) in the heart of a dog by performing short

cycles of IR before a major period of cardiac ischemia. Since

then, this technique has been applied successfully in many

clinical situations such as kidney and liver transplantation

[6,11].

In 2003, Zhao et al. [12] developed the concept of ischemic

postconditioning (POS), which is very similar to PRE, but

consists of short cycles of reperfusion and ischemia before the

free reperfusion of a tissue that has been under ischemia. The

efficiency of POS has been demonstrated in several tissues

and has been found to be similarly effective as PRE [13,14].

Tissue conditioning by cycles of IR can also be applied to

tissues other than those exposed to ischemia. This concept

has been called remote ischemic conditioning, and was first

used by McClanahan et al. [15] (1993) who showed that a short

period of renal ischemia provides protection to the myocar-

dium from IR injury. Based on this study, the concepts of

remote PRE [16] and remote ischemic postconditioning [17]

were developed.

Schmidt et al. [18] (2007) also applied remote ischemic

conditioning in the context of myocardial ischemia. They

applied a tourniquet to a porcine limb to produce alternating

periods of occlusion and reperfusion while the myocardium

was under ischemia. This technique is called remote ischemic

perconditioning (rPER) and it has been demonstrated to pro-

tect the brain, kidney, myocardium, and liver from the IR

syndrome in various animal models [19e22].

Mechanisms underlying rPER protective effects are barely

understood [23]. Moreover, underlying mechanisms involved

in the protective effects of remote and local tissue condi-

tioning techniques might be linked, working through the

activation of reperfusion injury salvage kinase pathway. On

the other hand, studies demonstrated the importance of an

alternative pathway in remote tissue conditioning tech-

niques, where parasympathetic response plays a critical role,

and there is activation of the survivor activating factor

enhancement [24].

Recent studies found that POS associated with PRE pro-

vides synergistic protection against hepatic IR-induced injury

[6]; however, there is limited clinical applicability for PRE in a

context of unexpected ischemia. Moreover, little data exist on

the efficacy of rPER, which could be easily applied in the

context of unexpected temporary hepatic ischemia or liver

transplantation, and it is uncertain if adding POS to rPER

provides superior hepatic protection compared with rPER

alone. Thus, we tested the hypothesis that the combination of
rPER and POS provides superior hepatic protection compared

with rPER alone in a well-established rat model of hepatic

reperfusion injury.
2. Materials and methods

2.1. Animals

Twenty-five (12e15 wk) maleWistar rats, weighing 270e300 g,

were used in this study. The animals were kept in a vivarium

of the Experimental Surgery Laboratory at the Pará State

University (Brazil) with a controlled temperature, light, hu-

midity and noise; water and the food were provided ad libitum.

The research followed the rules of Brazilian National Law for

Animal Care (Law: 11.794/08) that is based on National In-

stitutes for Health guidelines, and followed the rules of

Council for International Organization of Medical Sciences

ethical code for animal experimentation. The project was

previously approved by the Animal use and care committee at

the Para State University.

2.2. Experimental protocol

The animals were randomly assigned into the following five

groups (n ¼ 5 for each group):

1. The SHAM group: In this group, the same surgical proce-

dure as in the remaining groupswas performed, but no liver

ischemia was induced.

2. The IR group: In this group, liver ischemia was induced for

60 min followed by reperfusion without any form of

conditioning.

3. The local ischemic POS group: Here, 60 min of hepatic

ischemia was followed by 40 min of autologous POS (four

cycles of 5-min hepatic perfusion were followed by 5min of

hepatic ischemia).

4. The rPER group: In this group, liver ischemia was simulta-

neously accompanied by remote ischemic conditioning.

rPER consisted of four cycles of 5-min hindlimb ischemia

followed by 5-min hindlimb perfusion, starting 20min after

the beginning of the ischemia and lasting 40 min until the

end of the ischemic phase. Hindlimb ischemia was ach-

ieved using an elastic rubber band tied around the thigh of

the left leg, following a model successfully adopted by

Yamaki et al. [25].

5. The rPER group þ local POS group (rPER þ POS): Here, liver

ischemia was simultaneously accompanied by rPER in the

left hindlimb followed by autologous ischemic POS (four

cycles of 5-min hepatic perfusion followed by 5-min he-

patic ischemia).

2.3. Surgical procedures

All surgical procedures were performed in anesthesia (keta-

mine hydrochloride and xylazine hydrochloride 60 mg/kg and

6 mg/kg, respectively, injected intraperitoneally). Through a

transverse laparotomy, hepatic lobes were exposed and the

left hepatic artery was occluded by microsurgical clamp

application, leading to left and median lobe liver ischemia.

http://dx.doi.org/10.1016/j.jss.2014.05.046
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After the liver ischemia and conditioning protocols, the

animals remained under surgical anesthesia, allowing 2 h of

liver reperfusion and postoperatory procedures. Then, blood

samplewas obtained via puncture of the abdominal vena cava

and the left and median lobes were harvested for biochemical

analysis. Subsequently, the animalswere euthanized by lethal

anesthetic doses.
Fig. 1 e AST and ALT serum mean values and standard

deviation according to groups. *P < 0.01 analysis of

variance.
2.4. Laboratory parameters

2.4.1. Aspartate and alanine aminotransferases
Blood samples were immediately sent to the laboratory for

analysis. Aspartate and alanine aminotransferases (AST and

ALT) serum levels were measured on Selectra-E auto analyzer.

The left andmedian lobeswere harvested formalondialdehyde

and Trolox equivalent antioxidant capacity measurements.

2.4.2. Malondialdehyde
MDA levels were measured through spectrophotometer

analysis after reaction with thiobarituric acid [26]. MDA is

formed when cell membranes are damaged by ROS, and high

levels can be detected after 1 h after hepatic IR injury; as such,

it is assayed in vivo as a biomarker of oxidative stress [26].

2.4.3. Trolox equivalent antioxidant capacity
Trolox equivalent antioxidant capacity (TEAC) was used to

measure the antioxidant capacity of the hepatic tissue, as

compared with the standard, Trolox. Tissue antioxidant ca-

pacity reduction is directly related to the ROS formation [27].
2.5. Statistics

The software, Bioestat 5.0 was used. All data were expressed

asmeans� standard deviation. Analysis of variance, followed

by Tukey post hoc test correction, was performed. Statistical

significance was assumed at P < 0.05.
Fig. 2 e Malondialdehyde level in hepatic tissue according

to groups. IR versus all other groups P < 0.01; SHAM versus

rPER D POS P < 0.05. Analysis of variance (Tukey).
3. Results

All tissue conditioning techniques were able to reduce trans-

aminases serum levels, and had no difference among them.

The IR group had the highest levels compared with all other

groups (Fig. 1).

All tissue conditioning techniques were able to reduce the

hepatic tissue MDA level. The IR group (215.2 � 33) had the

highest MDA levels compared with all other groups. POS

(112.6� 47.5), rPER (103.3� 43.6), and rPER þ POS (131.8� 41.7)

had similar values; however, POS and rPER showed no dif-

ference in MDA levels when compared with SHAM

(57.2� 27.4) whereas rPERþ POS had higher values than SHAM

(Fig. 2).

All tissue conditioning techniques enhanced TEAC. The IR

group (0.49 � 0.14) had the lowest TEAC compared with all

other groups. POS (0.86 � 0.12), rPER (0.93 � 0.13), and

rPERþ POS (0.91� 0.26) had similar values; however, rPER and

rPER þ POS showed no difference in TEAC when compared

with SHAM (1.19 � 0.14) whereas POS had lower TEAC than

SHAM (Fig. 3).
4. Discussion

rPER is the newest technique described to mitigate IR injury in

many tissues, such as myocardium, kidney, brain, and liver

[16,20,21,25]. Our study is innovative, evaluating the potential

protective effect of rPER alone or rPER combined with POS on

liver IR-induced injury.

Transaminases serum level is a goodmeasurement of liver

damage. AST is similar to ALT in that both enzymes are

associated with liver parenchymal cells. The difference is that

ALT is found predominantly in the liver whereas AST is found

in the myocardium, the kidneys, the brain, and the red blood

cells. As a result, ALT is a more specific indicator of liver

damage than AST [28]. Our data for transaminases serum level

showed results following the same pattern when both AST

and ALT were analyzed, eliciting that minimal nonhepatic

trauma was exempted.

All adopted protocols of tissue conditioning techniques

were able to reduce AST and ALT serum levels in a very similar

manner, demonstrating that rPER and local POS are very

effective, and conferred protection against hepatocytes injury

secondary to liver IR-induced syndrome (Fig. 1). However,

http://dx.doi.org/10.1016/j.jss.2014.05.046
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Fig. 3 e Trolox equivalent antioxidant capacity of hepatic

tissue according to groups. IR versus all other groups P <
0.01; SHAM versus POS P < 0.05. Analysis of variance

(Tukey).
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when the association of both techniqueswas held, no additive

effect was observed; this fact suggests that maximal protec-

tion capacity was already induced by performing either rPER

or POS, and no further protection can be achieved by associ-

ating the techniques.

Other studies reported that the addition of PRE to POS led to

a better AST and ALT outcome than POS or PRE [6] only. This

fact demonstrates that it is possible to achieve further pro-

tection when adding other tissue techniques to POS. Thus,

this indicates that POS cannot induce maximum capacity of

hepatic tissue protection.

To measure cell membrane injury due to ROS activity, we

measured the hepatic tissue MDA level. Our data presented

that all tissue conditioning techniqueswere able to reduce the

oxidative stress satisfactorily. Interestingly, rPER and POS

were able to reduce MDA levels to the same found on SHAM,

but rPER þ POS did not have such result (Fig. 2).

We could clearly detect that therewas no additional effects

when both techniques were held together. Actually, the as-

sociation had slightly worse outcome that could be of statis-

tical significance in a larger series. We suggest that the

complementary POS IR cycles might lead to additional tissue

damage, in opposition to the expected additional protection.

Furthermore, no protection could be achieved after per-

forming rPER, and because previous studies showed that

additional protection can be obtained by adding another tis-

sue technique to POS, we inferred that rPER is the technique

that can confer the maximum amount of tissue protection.

To measure the formation of ROS, we carried out TEAC of

hepatic tissue, which shows how strongly the formation of

ROS consumed endogenous antioxidant reserve. We noted

that all tissue conditioning techniques were able to avoid the

consumption of endogenous antioxidant substances. rPER

and rPER þ POS enhanced TEAC levels to similar values found

on SHAM; however, results found on POS were not similar to

those found on SHAM (Fig. 3).

From the TEAC data, we could detect again that when both

techniques were held, no further protection was achieved.
rPER works better than POS on preventing the general for-

mation of ROS. This fact suggests that rPER is the technique

that can confer better tissue protection when compared with

POS or the combination of techniques, because they failed in

promoting additional protection and in preventing ROS for-

mation, respectively.

rPER appears as the most promising technique to avoid

deleterious consequences of hepatic IR-induced injury. No

improved outcomewas detected when the association of both

techniques was held, and ROS formation was not similar to

SHAM only when purely POS was held, eliciting that rPER

conferred better protection, and the complementary POS IR

cycles might lead to additional tissue damage.

We claim that rPER works better than POS in a setting of

hepatic IR injury, and there is no benefit in the combination of

those techniques.
5. Conclusions

rPER appears as the most promising technique to avoid IR

injury. This technique reduced oxidative stress of cell mem-

branes and lowered transaminases serum level. Furthermore,

rPER led to the formation of less ROS than POS.

There was no additive protection when POS and rPER were

held together.
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