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Abstract: Cancer is a multifactorial organic dysfunction for which great efforts are being devoted
in searching for new treatments and therapeutic adjuvants. Annona muricata is a fruit that has
promising activity against several types of cancer, as it contains acetogenins, the metabolite group
associated with this action. Thus, the objective of this study was to evaluate, in experimental
models, the toxic behavior of an extract and fraction rich in acetogenins from A. muricata seeds and
study the acetogenin, Annonacin, in silico. Phytochemical characterization was made by thin layer
chromatography, spectroscopy in the infrared region and nuclear magnetic resonance. Toxicity was
evaluated by tests of Allium cepa and Artemia salina, and in silico studies using the SwissDock servers
DockThor, PharmMapper, ADMETLab, PreADME, Osiris and ProTox. The extract and fraction
showed genotoxic activity against meristematic cells of A. cepa, reducing the mitotic index; however,
the extract produced great deleterious effects on the system, even causing cell necrosis. In A. Saline,
the extract was more toxic than the fraction, but both samples were considered toxic. Annonacin was
effectively linked to complex I, and presented different activities regarding toxicity. Thus, the results
of this study are promising, highlighting the anticancer potential of acetogenins.

Keywords: medicinal plants; cancer; Allium cepa; Artemia salina; in silico

1. Introduction

Cancer is a disease defined by abnormal cell proliferation resulting from multiple
factors. The National Cancer Institute (INCA) estimates that between 2020 and 2022, there
will be 625,000 new cases of cancer (non-melanoma skin). Conventional antineoplastic
therapies tend to present disadvantages in the treatment adhesion, toxicity, and general
improvement of patients’ quality of life [1]. Research to develop or characterize new
antineoplastic or adjuvant therapies are essential in terms of the aforementioned aspects.
Therapeutic searches using plant species can be important in developing new medicines.
Phytochemical analyzes elucidate new compounds that produce desired therapeutic actions,
opening a range of possibilities [2].

Annona muricata is a plant belonging to the Annonaceae family of the Magnoliales
order. It has great economic and cultural value, and is used in various culinary preparations.
In the pharmacological field, its medicinal use is highly widespread in Central and South
America, as well as countries in Africa and Asia. Among its popular uses are treatments for
bone disorders, neuralgia, digestive disorders, febrile illnesses, abrasions, antiparasitic, cys-
titis, diabetes, headaches, insomnia, abscesses, ulcers caused by leishmaniasis, conditions
associated with cancer, and as an insecticide, larvicidal and piscicidal agent [3].
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In vivo studies have shown that A. muricata leaf extracts have an anti-rheumatic effect
by decreasing the production of pro-inflammatory cytokines. Another study reached
the same result using fruits with antinoceptive activity that results from a decrease of
mediators and activity of the opioidergic pathway. Antiparasitic activity was demonstrated
in vitro against Trypanosoma cruzi and against several strains of Leishmania, using, in the
latter case, mainly isolated acetogenins. Among the bioactive compounds isolated from A.
muricata, alkaloids and acetogenins stand out, and megastigmans, flavonoids, phenols and
cyclopeptides can also be found [4].

As much as A. muricata is recognized for generating these numerous metabolite groups,
in recent years, studies have shifted from alkaloids to acetogenins. This highly bioactive
group includes compounds obtained by the acetic acid-polyketide derivatives of long-
chain fatty acids. In addition, these aliphatic chains have functional groups attached to
them, such as hydroxyl, acetyl and carbonyl groups, as well as a terminal y-lactone ring,
tetrahydrofuran, or tetrahydropyran rings. The structural organization of these functional
groups has been used to establish the cytotoxic potential of acetogenins. The hydroxyl
groups, the presence of the THF ring, and α,β-unsaturated y-lactone subunit, are essential
to produce the toxic effect of these compounds, in addition to their concentration in the
extract [3].

Studies using extracts from different parts of Annona muricata showed that the fruit has
targeted activity against different neoplasms, with acetogenins the main group responsible
for this activity. The ability of these secondary metabolites to produce cytotoxic effects in
carcinogenic cells is mainly, but not exclusively, linked to their ability to inhibit mitochon-
drial Complex I [5], which is the enzyme responsible for initiating the process of cellular
respiration. This inhibition may lead to cell death of neoplastic cells [6,7].

Studies that assess the toxic capacity of a compound, including cytotoxicity and
genotoxicity studies, are essential to determine the safety profile and future uses of the
compound via its pharmacological action. The in vitro and in vivo evaluation of extracts
or isolates from plant species has become a powerful sieve in the selection of bioactive
agents capable of becoming new drugs. In addition, in silico studies provide evidence that
can be investigated through other experimental assays, which allows creating a "shortcut"
that is based on a complex series of algorithms. Making small changes in the structure of
these chemical compounds, making them more active, selective and less toxic, can lead to a
reduction in the production costs of a new drug. This work investigates the genotoxic and
toxic effects of an extract and a fraction obtained from A. muricata seeds, and includes an in
silico study with Annonacin as a target [4].

2. Results and Discussion
2.1. Preparation of Extract and Fraction, and Phytochemical Characterization

After seed maceration, an oily extract with a mass of 5.28 g was obtained, which
represented 17.6% of the initial mass of the extractive process. From this final mass,
3 g was used for liquid-liquid partition, 1.5 g in each and, after exploratory TLC, the
dichloromethane fraction (FDSAM) was chosen for the following tests. FDSAM represented
most of the mass after partition, and 0.76 g was used in the analysis as a fraction rich in
acetogenins.

TLC chromatographic profiles suggested that acetogenins were obtained for both the
EESAM (ethanolic extract) and its fraction; however, when observed under ultraviolet light,
profiles indicative of alkaloids were also noted (Figure 1). Both alkaloids and acetogenins
act as phytochemical markers in Annonaceae. Portion A showed a chromatoplac under
ultraviolet light (365 nm), the fluorescent blue bands being suggestive of alkaloids, which
was confirmed by the reaction with Dragendorff, as demonstrated in portion C. Portion
B demonstrates the presence of acetogenins by the reaction with Kedde, which generates
a color between rose and lilac, usually weak, that dissipates in a few seconds, revealing
acetogenins that have α, β-unsaturated γ-lactonic ring. As observed in portions B and C,
acetogenins and alkaloids appear at the same point of retention, which may indicate there
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is a mixture of the two metabolite groups. To determine if FDSAM is rich in acetogenins,
analyzes were performed by more sensitive methods.
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Figure 1. TLC chromatographic profile of the extract and fraction of A. muricata. EESAM—ethanolic
extract from seeds; FDSAM—Dichlomethane fraction from seeds. Mobile phase: Ethyl acetate:
Methanol (9:1). Developers: (A)—365 nm ultraviolet light; (B)—Kedde; (C)—Dragendorff. Source:
authors.

We observe the presence of C=O deformations in the infrared spectrum (Figure 2) (1745
and 1653 cm−1), indicating the lactone portion of acetogenins, and we also observed the
axial deformation of C=C (1458 and 1465 cm−1) and the axial deformation C-O (1060 cm−1)
that suggests the portion connected to the THF ring (tetrahydrofuran), while the deforma-
tions C-H (3003 cm−1), OH (3338 cm−1), CH2 (2850 cm−1) and CH3 (2920 cm−1) indicated
the elongated chain of acetogenins linked to the lactone ring and the THF ring. Thus, the
absorptions described here indicate the presence of long chains of fatty acids that point to
the presence of acetogenins [8,9].

In the 1H NMR spectra for the two samples, we found signals of acetogenins, where the
α,β-unsaturated y-lactone subunit was evidenced by δ 1.4; 5.0 and 7.0 or 7.2 for acetogenins
with OH in their chain, for carbons linked to hydroxyls in shifts δ 3.0 and signals linked
to the presence of the THF ring δ 3.8. We also observed characteristic signals of H linked
to olefinic carbons at δ 5.0, as well as a large amount of δ 2.0 shifts that are related both to
the lactone moiety and to chemical shifts of hydrogens present in the acetogenins chain
(Figures 3 and 4; Table 1) [3,10].

Thus, the extract and the fraction showed the presence of acetogenins in the three
tests performed. Studies with A. muricata seeds have generally focused on the presence of
acetogenins; however, phytochemical surveys of leaves have demonstrated the presence of a
range of other metabolite groups, such as tannins, flavonoids, triterpenes and alkaloids [11].
In our study with seeds, alkaloids and acetogenins were present in this part of the plant,
and could be used as pharmacogens in future studies.
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Figure 2. Infrared spectra of the extract and fraction of A. muricata. EESAM—ethanolic extract from
seeds; FDSAM—dichlomethane fraction from seeds. Source: Authors.
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Table 1. Values of chemical shifts δ characteristics of Annonacin.

α,β-unsaturated y-lactone H-2 H-3 H-4 H-35 (33) H-36 (34) H-37 (35)
- 2.26 1.52 6.95 4.99 1.42

THF ring δ

3.0–4.2

Olefinic C-H
δ

5.0–5.8

Source: [3].

2.2. Genotoxicity in Allium cepa

The experimental model of Allium cepa allows the evaluation of the genotoxic effects of
organic and inorganic compounds from alterations in mitotic index (MI) and the presence
of alterations in the mitotic cycle, multinucleated cells or micronuclei, formation of bridges
(linked nuclei), index of aberrations (IA), these being cheap and simple tests [12]. The
results generated by such tests, as in this study, allow us to understand the mechanism of
cytotoxic effects already described for extracts of A. muricata.
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In this study, the extract and fraction demonstrated genotoxic and cytotoxic actions
by decreasing MI and increasing IA. EESAM and FDSAM showed, at the lowest concen-
trations, an elevation of the MI that decreased as the concentration increased and the time
elapsed, which may indicate they are time-dose dependent compounds. The elevation of
MI compared to the positive control indicates a cytotoxic effect based on promotion of cell
growth and eventual tumorization, while a decrease of MI indicates antiproliferative char-
acteristics of the compounds [13], as observed samples in Table 2, which tend to decrease
cell proliferation.

Table 2. Mitotic index and cellular aberrations in Allium cepa induced by the extract and fraction of
Annona muricata.

Mitotic Index (MI) % Chromosomal Aberrations (CA) %

Sample 24 h 48 h 72 h 24 h 48 h 72 h

Distilled water (NC) 16.5 16.9 13.2 * 0.001 0.001

Colchicine (PC)

1.5625 µg/mL 20.5 18.7 15.7 0.23 0.25 0.34
3.125 µg/mL 19.1 16.4 13.8 0.36 0.4 0.45
6.25 µg/mL 15.9 13.7 10.3 0.68 0.52 0.75
12.5 µg/mL 11.3 8.7 6.1 0.81 0.89 1.23
25 µg/mL 5.9 4.2 1.2 1.75 1.96 2.08

EESAM

1.5625 µg/mL 28.6 28.2 25.4 0.26 0.2 0.31
3.125 µg/mL 25.1 22.6 20.7 0.38 0.42 0.4
6.25 µg/mL 20.5 19.8 18.1 0.38 0.45 0.58
12.5 µg/mL 15.4 11.3 12.6 0.78 0.69 0.89
25 µg/mL 10.2 9.6 8.9 1.35 2.39 3.06

FDSAM

1.5625 µg/mL 27.9 24.3 26.8 0.38 0.29 0.31
3.125 µg/mL 24.9 22.8 21.2 0.4 0.42 0.53
6.25 µg/mL 19.6 20.2 16 0.38 0.49 0.48
12.5 µg/mL 9.9 8.9 8.1 0.88 0.79 1.02
25 µg/mL 7.1 4.9 6.9 0.98 1.51 2.35

Source: Authors, 2022. * Not observed during this period.

Other studies using A. cepa, showed that the extracts of A. muricata have a cytotoxic
effect; however, many of these studies used the leaves or bark [14–19], and only in a few
studies were seeds and fractions rich in acetogenins used, which, in recent years, have been
associated with the antitumor effects of A. muricata [20].

Studies have demonstrated the cytotoxic activity of acetogenins isolated from A.
muricata against tumor strains demonstrated with IC50 values ranging from 8 × 10−3–
3.3 × 10−1 µg/mL, i.e., against A-549 (human lung carcinoma) find activities for Anno-
murin with A, B, C and E; Annomutacin, Annopentocin with A, B and C; Arianacin,
cis-annonacin, cis-annonacin-10-one, cis-goniothalamicin, cis-trans-annomuricin-D-one,
Goniotha-lamycin, Javoricin, Muricatetrocin C, Muricatocin with A, B and C; and Muri-
coreacin and Murihexocin with A, B and C. In MCF-7 (mammary carcinoma) the same
acetogenins added to 2.4-cis and trans-10R-annonacin-A-one presented IC50 values be-
tween 5.70 × 10−2 and 17.93 µg/mL. Against HT-29 (human colon adenocarcinoma), the
same isolates showed an IC50 of 9 × 10−4–4.0 µg/mL. IC50 values ranged from 1.71 × 10−2–
1.14 µg/mL for PC-3 (prostate adenocarcinoma) Annomuricin with E, and Annopentocin
with A, B and C; and for cis-trans-annomuricin-D-one, Muricapentocin, Muricoreacin, and
Murihexocin with A, B and C [21].

When comparing the results, there was no statistical difference between the posi-
tive control and the samples, demonstrating the similarity between the toxic effects of
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colchicine, EESAM and FDSAM. Colchicine has been evaluated as an inducer of chromoso-
mal alterations due to meiotic changes, mainly in chromosomal adherence and lag, and
abnormalities related to mitotic spindle dysfunction [22].

Studies that evaluated the mechanism of action by which acetogenins exert their cyto-
toxic activity pointed to an inhibition of the NADH-ubiquinone oxidoreductase complex,
where acetogenins act by inhibiting electron transport by blocking complex I [23,24]. The
electron transport chain produces energy for cells by the oxidative phosphorylation of
glucose and fatty acids. Complex I reduces NADH to NAD+, in addition to ubiquinone
to ubiquinol, and carries protons through the inner mitochondrial membrane through an
imbalance of the redox potential. In this way, cells that require a large amount of energy for
division, such as neoplastic cells, would be strongly affected by this effect [5,25].

As observed by this study, EESAM and FDSAM produced deleterious effects on cells,
leading to visible damage in the cellular environment. The extract and the fraction showed
vagrant chromosomes, chromosomal loss, telophase bridges and micronuclei (Figures 5
and 6), which indicates there were alterations in the mitotic process. EESAM produced
harmful effects on A. cepa meristem cells such as loss of shape, chromosomal viscosity
and necrosis. In this sense, the fractionation process maintained the cytotoxic effects
without damage caused by the extract that could come from a synergistic effect with other,
non-alkaloid compounds existing in the seed.
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Figure 5. Chromosomal aberrations caused by the extract from A. muricata seeds. Source: Author,
2022. (A-1–2): Wandering chromosomes; (B-1): chromosomal loss; (C-1–2): micronuclei; (D-1): telophase
bridge; (E-1): shape changes; (F-1): viscosity; (G-1): necrosis—detected by the presence of vacuoles in
the cytoplasm.
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Figure 6. Chromosomal aberrations caused by the fraction from A. muricata seeds. Source: Author,
2022. (A-1): Wandering chromosomes; (B-1–2): chromosomal loss; (C-1–2): micronuclei; (D-1): telophase
bridge.

2.3. Toxicity in the Artemia salina Leach

Seeking to expand the results discussed in this study, the toxicity test was performed
against Artemia salina. The same concentrations used in the genotoxicity test were used
to observe how the samples would behave in a more complex organism. EESAM had an
LC50 value of 1.26 µg/mL, while that of FDSAM was LC50 = 4.58 µg/mL (Figure 7). In
the consulted literature, there were no studies that used extracts or fractions of seeds in
concentrations close to those of our study. However, Luna et al. [26] found CL50 = 0.49 µg
mL−1 for leaf extracts. Another study showed the higher the concentration, the higher the
percentage of deaths, thus demonstrating a concentration-dependent action [27]. Studies
by Hoe et al. [28] showed that extracts rich in acetogenins are more toxic against A. salina
larvae, confirming the results presented in this study.
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2.4. In Silico Study

In silico studies have emerged as a prerequisite for the development of new drugs or
analyzes of molecular changes made to existing drugs. In this study, we studied Annonacin,
an acetogenin isolated from the seeds of A. muricata, as a target. This molecule was chosen
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because it shows signals in the infrared spectrum and the 1H NMR method used in this
study [3,10]

When performing molecular anchoring targeting with Complex I (Figure 7), we ob-
tained an affinity of −10.72 Kcal/mol (T. Energy −54.543 Kcal/mol) on SwissDock and
−8.13 Kcal/mol (T. Energy −64.897 Kcal/mol) on the DockThor. The activity of a molecule
is related to the energy it gives off to bind to a target. In this relationship, a more stable com-
plex requires less energy for the interaction to occur [28]. Thus, the negative values found
in this study demonstrate Annonacin, theoretically, effectively binds to mitochondrial
Complex I, according to our hypothesis.

By simulating the bonds that Annonacin can make with Complex I (Figure 8) we
obtained evidence for the presence of two hydrogen bonds, one conventional with a
Glycine-Gly89 residue (Å 3.03), and another hydrogen pi-bridge with Fenylalamine-Phe93
(Å 3.09) and two hydrophobic alkyl ones with residues Alanina-Ala91 (Å 4.47) and Ala426
(Å 4.04) (Figure 9). The smaller the distance between the amino acid residues and the ligand,
the stronger the bond, even if these bonds are weak, as with hydrogen bonds [29]. The
distances observed in this study, up to 4.5 Å, indicate good coupling between Annonacin
and Complex I [24].
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When generating reverse pharmacophoric mapping, we obtained 300 possible targets
for Annonacin. The first 10 were studied in more detail and are presented in Table 3,
with emphasis on GTPase HRAS, transthyretin, mitogen-activated protein kinase and
methionine aminopeptidase 2, which were chosen because they relate, directly or indirectly,
to carcinogenic processes or/and tumor deactivation, which was the subject of this in silico
study.

Table 3. Prediction of possible targets for Annonacin.

Order Code PDB Target Name Fit Score

1 5P21 GTPase HRas 5.24
2 1RLB Transtirretina 4.77
3 1CBS Cellular retinoic acid binding protein (CRABP2) 4.72
4 1R5L Alpha-tocopherol transfer protein 4.49
5 1O1V Ileal lipid binding protein (ILBP) 4.39
6 1SR7 Progesterone receptor 4.37
7 1M7Q Mitogen-activated protein kinase (MAPK14) 4.37
8 1BOA Methionine Aminopeptidase 2 4.32
9 1GNI Seroalbumin 4.30

10 1V4S Glucokinase 4.30

Source: Authors.

The first predicted target was the GTPase HRAS, an isoform of the GTPase RAS
protein expressed in several types of cancer. RAS proteins are considered “undruggable”
because, in addition to not having favorable binding sites, they make high-affinity bonds
with nucleotides. Thus, drugs that seek to inhibit this pathway competitively inhibit the
docking of RAS-bound GTP to the membrane. Drugs that block GTP are prime targets in
the search for new antineoplastic therapies [30,31].

The second target was Transthyretin (TTR). Another protein involved in the develop-
ment of cancer, it is one of the biomarkers of cell proliferation. In lung cancer, evidence
was found that recombinant TTR increased the proliferation of carcinogenic cells acting by
several mechanisms, such as increased CLL melanoma cells, regulation of immune cells
and promotion of angiogenesis. In addition, it acts as a carrier of cellular retinoic acid
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binding protein (third predicted target) [32,33]. Thus, drugs that modulate TTR can be used
in specific cases of lung cancer.

The seventh predicted target was the mitogen-activated protein kinase (MAPK) family,
specifically p38 MAP kinase, which shows dual characteristics in cancer pathogenesis. p38
acts both in the G1/S and G2/M phases by checkpoint responses. As an antitumor, p38
has mechanisms of negative regulation of Cyclin D1 and, through cellular senescence, as a
pro-oncogenesis, it increases resistance, survival and even assists migration (metastasis) of
cancer cells from the isoform p38γ [34,35]. Therefore, they may be targets of new therapies,
as long as they are selective for the p38γ isoform.

Methionine aminopeptidase 2 (MetAP2) was the eighth target predicted in this study,
and is related to tumor activities. MetAP2 is a bifunctional enzyme that removes the
amino-terminal methionine from newly formed proteins. MetAP2 seems to be related
to the proliferation of endothelial cells at the stage of tumor angiogenesis, and has thus
become a popular target for antitumor drugs [36,37].

Table 4 shows toxicity predictions for Annonacin in different servers. We found reso-
nances between the predictions made for hepatotoxicity, hERG inhibition (cardiotoxicity),
irritant effects and mutagenicity; however, we found dissonant results for carcinogenesis.
While Osiris and ProTox showed negative results, PreADME showed positivity in mice,
which were more sensitive models than rats, in which a range of toxic substances were
generated and resulted in a prediction of carcinogenicity [38]. PreADME was also predicted
to be toxic to algae, Medaka, Daphnia and Minnow; however, highly lipophilic compounds
tend to be predicted as toxic in these models because of their natural accumulation [39].
Studies using Annonacin focused mainly on evaluating its mutagenic action, being negative
in these studies [40,41].

Table 4. Annonacin toxicity prediction.

ADMETLab

hERG Negative
hepatotoxicity Negative
skin sensitization Negative
Reduction of liver damage Negative
AMES Negative

PreADME

Algae Toxic
Medaka sp. Very toxic
Daphnia Toxic
Minnow Toxic
Ames Negative
Carcinogenic (rats) Negative
Carcinogen (mice) Positive
hERG Negative

Osiris

Mutagen Negative
Tumorigenic Negative
Irritating Negative
Effect on reproduction Negative

ProTox

Hepatotoxicity Negative
Carcinogenicity Negative
Immunogenicity Positive
Mutagenicity Negative
Cytotoxicity Positive

Source: Authors.
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Studies have shown that Annonacin can have a neurotoxic effect, inducing an atypical
Parkinsonian state. This could occur due to these compounds being deposited in cells
of the nervous system, delays in the mitochondrial distribution of ATPs in the cell soma
and interference in the intracellular distribution of the protein tau [42–44]. The authors of
the studies were not categorical regarding this action, and there may even be synergism
for the toxic effect [42]. In addition, preliminary studies have demonstrated that even
though acetogeins, such as Annonacin, can cross the blood-brain barrier, there is low brain
exposure to acetogenins at doses of 10 mg/kg [45].

Thus, what is envisaged is a compound with high potential for use against neoplasms.
However, more detailed studies are needed not only on the pharmacokinetics of this com-
pound, but also on the pre-formulation of its possible pharmaceutical form, to guarantee
its efficacy and safety as a therapy, as well as molecular modeling studies in which its
therapeutic effect can be guaranteed, reducing its toxicity.

3. Materials and Methods
3.1. Plant Material, Extract and Fractions

A. muricata seeds were donated by Miriam Beta. They came from the municipality of
Castanhal—PA. They were sanitized, dried and ground. An exsiccata was prepared and
it is in the process of being integrated into the Herbarium Prof. Dr. Marlene Freitas da
Silva—Center for Social Sciences, at the University of the State of Pará.

The ground seeds (±30 g) were subjected to exhaustive maceration with 96◦ GL
ethanol for 21 days. Every 7 days the extractive solution was filtered, and fresh solvent
was added. At the end of 21 days, the extractive solutions were concentrated in a rotary
evaporator under reduced pressure, obtaining EESAM from the seeds. To obtain the
acetogenin-rich fractions, liquid-liquid partitions were carried out, where 1.5 mg of EESAM
was solubilized in methanol and water (1:1) and extracted with organic solvents, as in the
scheme described in Figure 10.
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3.2. Thin Layer Chromatography—TLC

Silica gel was used as the stationary phase, and 18 mL of ethyl acetate and 2 mL
of methanol (9:1 ratio) as a mobile phase. The reagents were: Kedde (for solution A
(3.5 dihydrobenzoic acid (2 g) was mixed in methanol (50 mL)); for solution B (potassium
hydroxide (5.7 g) was dissolved in methanol (100 mL)) and solutions were mixed in a
1:1 ratio at the time of use) and Dragendorff (bismuth subnitrate (8 g) potassium iodide
(27 g) was mixed with concentrated hydrochloric acid (20 mL) and distilled water qsp.
(100 mL)) [3].
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3.3. Spectroscopy in the Infrared Region—Fourier Transform (FT-IR)

Spectra were obtained using an IR Prestige-21 Shimadzu spectrophotometer, in which
1 mL of the samples was dispersed over a diamond crystal with attenuated total reflectance
(ATR), and 20 scans were performed with a resolution of 2 cm−1 in the spectral range of
4000–400 cm−1.

3.4. 1H Nuclear Magnetic Resonance

NMR analyzes were performed on a Bruker Ascend 400 spectrometer (operating at
400 MHz for hydrogen). Samples were solubilized in chloroform. Chemical shifts (δ) were
measured in ppm and coupling constants (J) in Hertz (Hz). Tetramethylsilane (TMS) was
used as an internal reference.

3.5. Allium cepa Assay

About 1 mg of A. cepa seeds was placed in a petri dish lined with filter paper and
treated with different concentrations of ethanol extract and dichloromethane fraction from
A. muricata seeds (25; 12.5; 6.25; 3.125 and 1.5625 µg/mL). After radial growth of 1 cm of
the seeds, they were removed at 24, 48 and 72 h and were counted and fixed in Carnoy
(absolute ethyl alcohol: glacial acetic acid 3:1).

For the control groups, distilled water (negative control) and colchicine (positive
control) at the same concentrations of the extract and fraction were used. To prepare the
slides, the shoots were removed from the fixative and transferred to a petri dish where
they were washed (3 washes of 5 min). After that, they were subjected to acid hydrolysis in
1N hydrochloric acid for 15 min, then washed again and stained in acetic acid orcein 2%
for 10 min. Following this, the shoots were placed on a slide and a drop of acetic orcein
was placed on the cut. After 1 min, crushing (squash) was performed, and the slides were
observed under the light microscope at 400× magnification [12]. The results were analyzed
with the PAST program (Paleontological Statistics) using ANOVA followed by Tukey’s test
for multiple comparisons. Values in which the p-value was less than or equal to 0.05 were
considered statistically significant.

3.6. Artemia Salina Leach Assay

To hatch A. salina cysts, a solution of sea salt and distilled water at a concentration
of 35 g/L was used. The pH of the solution was adjusted to 9–10 with sodium hydroxide
(NaOH) at 0.1 mol/L, then the solution was homogenized and filtered. The saline environ-
ment was transferred to an aquarium with a light/dark environment, where 20 mg of A.
salina cysts were added and remained until complete hatching cysts (±24 h) at a tempera-
ture of 27–30 ◦C. The extract and the fraction were prepared at the same concentration as
the A. cepa assay with a final volume of 5 mL. This assay was carried out with five replicates,
with 10 crustaceans being added to each and kept for 24 h and 48 h. The live and dead
nauplius were counted at the end of each cycle [46,47] (both with adaptation). To calculate
the Lethal Dose 50% (LD50) the IC50 Calculator tool [48] was used.

3.7. In Silico Study

The following programs were used in the in silico study: ChemSketch (version 2.1,
2019), to design the chemical structure of the Annonacin, which was subjected to molecular
anchoring using the SwissDock (version 2022), and DockThor (version 2.0) against coen-
zyme NADH: ubiquinone oxidoreductase—Complex I (ID: 5XTB). These online servers
were comprised within the fast-docking system. The Dockthor server was powered by
the National Laboratory of Scientific Computing, which works with the C++ language,
using generic algorithms based on the molecular force field MMFF94 (Merck Molecular
Force Field). SwissDock, on the other hand, is a server that is confined to a system based
on multiobjective scoring function designed around the CHARMM22 force field and the
FACTS solvation model. The coenzyme and the ligand were optimized in the Discovery
Studio program. In the program, the forces involved in the docking, receptor-ligand interac-
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tions, as distance and binding types, were observed. In addition to reverse pharmacophoric
mapping using the PharmMapper server (2008–2022), PreADMET (2012–2021), ADMETLab
(version 2.0) and Protox (2021), were used in addition to free software OSIRIS Property
Explore (2017) [49–53].

4. Conclusions

Both EESAM and FDSAM showed genotoxic action against A. cepa and were toxic
against A. salina; however, EESAM showed greater deleterious effects on cell division and
microcrustaceans, which may result from synergistic action or the presence of specific
toxicant groups. From the assays developed in this study, and the available literature, it is
evident that acetogenins are a group of compounds that can be tested as drug candidates
based on in vivo seminal studies and, in the future, may be used in broad or narrow
antineoplastic therapy.
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