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Mauritia flexuosa L. protects against deficits
in memory acquisition and oxidative stress in
rat hippocampus induced by methylmercury
exposure
Luana K. R. Leão1, Anderson M. Herculano1, Caio Maximino1, Alódia Brasil
Costa1, Amauri Gouveia Jr 2, Evander O. Batista3, Fernando F. Rocha4, Maria
Elena Crespo-Lopez5, Rosivaldo Borges6 and Karen Oliveira1
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Universidade Federal do Pará, Brazil, 4Laboratório de Neurofisiologia Eduardo Oswaldo Cruz, Instituto de
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Ciências Biológicas, Universidade Federal do Pará, Brazil, 6Laboratório de Química Farmacêutica, Faculdade
de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, Brazil

Objective: Methylmercury (MeHg) is the most toxic form of mercury that can affect humans through the food
chain by bioaccumulation. Human organism is capable of triggering visual and cognitive disorders,
neurodegeneration, as well as increased production of reactive species of O2 and depletion of natural
anti-oxidant agents. In this context, Mauritia flexuosa L., a fruit rich in compounds with anti-oxidant
properties, emerged as an important strategy to prevent the MeHg damages. So, this work has aimed to
elucidate the protective effect of Mauritia flexuosa L. on the damage caused by the exposure of rats to MeHg.
Methods: In order to evaluate the effect of MeHg on rat aversive memory acquisition and panic-like behavior,
we have used elevated T-maze apparatus and after behavioral test, the hippocampus was removed to perfom
lipid peroxidation.
Results: Our results demonstrated that the exposure to MeHg caused deficits in inhibitory avoidance
acquisition (aversive conditioning) and in the learning process, and increased levels of lipid peroxidation
in hippocampus tissue. However, the pretreatment with feed enriched with Mauritia flexuosa L. showed a
protective effect against cognitive deficits caused by MeHg and also prevented the occurrence of
cytoplasmic membrane damage induced by lipid peroxidation in the hippocampal region.
Discussion: Therefore, this study suggests that Mauritia flexuosa L. represents an important strategy to
prevent neurocytotoxics and behavioral effects of MeHg.

Keywords: Mauritia flexuosa L., Methylmercury, Hippocampus, Oxidative stress, Memory acquisition

Introduction
The Amazon region represents an important source of
natural products with recognized therapeutic poten-
tial. A crescent number of studies have demonstrated
that plants and fruit from Amazon forest showed
pharmacological activity in different experimental

models.1–4 Although with recognized potential, few
studies describe the possible utilization of Amazon
plants for treatment or prevention of brain injuries
induced by neurotoxic environmental contaminants
such as methylmercury (MeHg).5–10 In fact, most
pharmacological studies about Amazon plants are
mainly focused on its characterization as anti-inflam-
matory or anti-oxidant agents.9–15

In the Amazon region, several fruits are commonly
consumed by local communities and among these
include the fruit from Mauritia flexuosa L. (MF)
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popularly known as Buriti. MF belongs to the Araceae
family, found in North and South America, specifi-
cally in the Amazon region, which grows naturally in
flooded soils.16–21 MF fruit is an ellipsoid drupe oval
covered with scales dark reddish measuring between
5 and 7 cm in diameter. Populations living at
Amazon region commonly use the pulp of MF fruit
as part of the diet or for treatment of different dis-
eases.14,15,17 Studies have demonstrated that MF fruit
represents a natural source of anti-oxidants such as
vitamin A, carotenoids, and tocopherol.14,17,22

Although few studies have described the pharmaco-
logical properties of MF fruit, some works have
demonstrated its possible action in diseases such as
xerophtalmia or in injuries associated with oxidative
stress.23

Formation of reactive oxygen species (ROS)
represents an important mechanism associated
with the central nervous system diseases including
neurobehavioral alterations such as anxiety, ataxia,
and memory impairments.24–28 It is well documented
that events related to heavy metal intoxication can
also induce oxidative stress in different brain
areas.29–33

Several reports have demonstrated that environ-
mental contamination with MeHg represents risk for
populations living at regions of gold-
digging.20,21,34–40 Our group has previously demon-
strated that Amazon riverside populations showed
increased MeHg levels in their hair. These data
strongly suggest human intoxication with the
metal.39,41 In addition, we have demonstrated in this
population a positive association between elevated
MeHg levels and decreased activity of anti-oxidant
enzymes.39,41 Studies utilizing animal models showed
an association between neurobehavioral disturbances
and oxidative stress induced by MeHg intoxi-
cation.42–48 In fact, previous works suggested that
memory impairment, anxiety-like behavior, visual
and motor dysfunctions are important signals of
MeHg toxicity.24–28 It is well described that some
brain areas controlling learn and memory acquisition
represent important targets of MeHg toxicity.27

Hippocampus is a limbic brain structure close associ-
ated with control of animal memory.27,49 Previous
report describes that rats prenatally exposed to
MeHg presents significant behavior impairment
associated with increased oxidative stress in the hippo-
campus.27, 50–52 Thus, considering the known mechan-
ism associated with MeHg toxicity in the central
nervous system and phytochemical description of
MF, in the present study we evaluated whether a
dietary enriched with MF fruit is able to prevent the

behavioral and biochemical alterations induced by
MeHg exposure.

Methods
Plant material
Mauritia flexuosa fruit was collected from local farm
localized at Castanhal City, Pará State, Brazil. The
plant and fruit was identified in the University
Federal of Pará. MF-enriched food was produced by
mixing regular commercial chow (23% gross protein,
4% ethereal extract, 5% raw fibrous, 10% mineral
matter, 1.3% calcium, and 0.85% phosphorus) and
fruit pulp (1:1 g/g) with ultrapure water. The
mixture was compressed into pellets and dried by
warming at 40°C for 2 h. Finally, the enriched ration
was given to the animals after cooling to room
temperature.

Animals
All experiments were conducted in accordance with
the Guide for the Care and Use of Laboratory
Animals from the Ethic Commit of the Federal
University of Pará (UFPa) protocol number 122–13.
Male Wistar rats weighing 250–280 g (3 months old)
were housed at constant room temperature (20–22°C)
with light cycle of 12 h/day and free access to food
and water.

Experimental groups treatments
Animals (n= 28) were divided in two different diet
groups, one exposed to food constituted with commer-
cial ration (n= 14) and other with supplemented
ration (n= 14) for 7 days before the MeHg exposure.
Each animal group had free access to commercial or
enriched chow during experimental period. The analy-
sis of body mass was carried out by five consecutive
days. After diet period, two sub-groups, commercial
ration group (n= 7) and supplemented ration group
(n= 7), were exposed to 5 mg/kg/day methylmercury
chloride (MeHg) by gavage during three consecutive
days. The animals not exposed to MeHg received
only saline solution by oral administration. This step
was followed by 5 days of acclimatization before be-
havioral or biochemical analysis.

Elevated ‘T’-maze (ETM)
In order to evaluate the effect of MeHg exposure on
rat aversive memory acquisition and panic-like behav-
ior, we have used elevated T-maze apparatus (ETM) as
described previously.53–55 The ETM is an adaptation
of the plus-maze apparatus where closed arms were
substituted by a shielding contraption.53 The inhibi-
tory avoidance test was started with the placement of
the animal into the distal portion of the closed arm.
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The animal head was turned in the open arm direction
and latency of animal exit from closed arm (registered
when the animal had stepped its four legs outside of
the closed arm) was recorded. After latency evalu-
ation, the animal was taken out of the maze for 30
seconds for restart the next this two avoidance tests.
These inhibitory avoidance trials were named baseline
avoidance, avoidance 1 and avoidance 2 tests, respect-
ively. After the last avoidance trial, the animal was
taken out of the maze for 30 seconds and it was
placed in the end of open arm for the escape trial.
The escape latency from open arm (registered when
the animal stepped with its four legs in the closed
arm) was recorded.53,55

Elevated plus-maze (EPM)
Thirty minutes after ETM test, the animals were sub-
mitted to plus-maze test. This behavior evaluation was
performed in order to verify the effect of MeHg on the
anxiety-like behavior. The plus-maze used in this study
was constructed of wood with two open arms (30 ×
10 cm) with 1 cm border protection, and two closed
arms with 15 cm borders arranged perpendicular to
the open arms. The whole apparatus was elevated
50 cm from the floor. Animals were placed individu-
ally in the center of the maze with the head turned
to one of the closed arms and their behavior was
freely recorded for 5 minutes in the EPM. Entries in
the closed or open arms were recorded only when
the animal was positioned with all four paws in one
arm. ‘Ethological’ measures included the frequencies
of head-dipping, stretch-attend postures, rearing, and
grooming. The session was recorded by a 30 fps
digital camera interfaced via USB on a digital compu-
ter with the aid of the program Debut Video Capture
Software version 1.49. Videos were later analyzed
using the software X-Plo-Rat 2005 (http://scotty
.ffclrp.usp.br).

Lipid peroxidation test
After behavioral test, the animals were deeply anesthe-
tized and hippocampus was quickly removed. The
tissue was homogenized in phosphate buffer saline
(pH 7.4) at 4°C. The homogenate was centrifuged at
3000 rpm for 5 minutes and the supernatant was
used for the biochemical evaluation. The analysis of
the lipid peroxidation was carried out based on

standard curve concentrations of malondialdehyde,
measured by the absorbance at a wavelength of
535 nm in accordance to previous studies.56,57

Statistical analyses
Behavioral data were expressed as media± standard
error and the biochemical data expressed as media±
standard derivation. Normal distribution of the data
was confirmed by the Shapiro–Wilk test. Media of
values were compared using one-way ANOVA fol-
lowed by Bonferroni post-test. Statistical analysis
was carried out using BioEstat Software 5.0 software
and P-values <0.05 were considered significant.

Results
Memory acquisition test
Before all behavioral evaluations, body weight of
control and diet groups was measured and our
results demonstrated that neither MeHg exposure
nor MF-enriched diet has induced significant
changes in the body weight of animals (Table 1).
Memory acquisition was evaluated utilizing the

elevated T-maze test as described in the method.
Control group showed increased latency period
during avoidance 2 test when compared with avoid-
ance 1. This result suggests memory acquisition in
the control group (Fig. 1). On the other hand,
animals treated with MeHg showed low latency in
the closed arm when submitted to avoidance 2
tests. These data indicating lack of memory acqui-
sition induced by MeHg exposure. As observed in
Fig. 1, animals intoxicated with MeHg and feed
with MF-enriched ration did not show lack of
memory acquisition. Although we observed that
MF-enriched diet has evoked memory acquisition
already from avoidance 1 test, no difference was
observed in avoidance 2 test when compared with
control (Fig. 1).

Anxiety and motor activity evaluation by EPM
task
It is well documented that anxiety-like behavior or
fear/panic-like behavior can influence memory acqui-
sition in rodents. In this way, we tried to assess whether
memory impairment induced by MeHg could be
associated with anxiogenic-like behavior. Our results
demonstrated that both MF-enriched diet and MeHg

Table 1 Analysis of body mass gain. Data were shown as mean± standard error and analyzed by one-way ANOVA followed by
Bonferroni post-test

Before the treatment
with ration Gavage Day 1 Gavage Day 2 Gavage Day 3 Before behavior test

Normal ration+ saline (0.9%) 243.66± 4.37 244.33± 4 245.16± 4.14 246.16± 4 246.66± 4.1
MF-enriched ration+ saline (0.9%) 213.25± 6.18 223.25± 7 218.75± 8.22 224.50± 7.84 217.25± 6.34
Normal ration+MeHg 5 mg/kg 217.0± 4.50 221.4± 5.26 221.2± 5.16 220.0± 5.05 220.0± 5.34
MF-enriched ration+MeHg 5 mg/kg 211.4± 5.88 217.6± 5.87 214.2± 5.01 208.8± 6.79 202.4± 7.44
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did not evoke significant alterations in anxiogenic-like
parameters such as grooming, head-dipping, and SAP
or fear/panic-like parameter (latency in the open arm)

(Fig. 2). Data from horizontal displacement evalu-
ation suggested no motor alterations in rats exposed
to MeHg (Fig. 3).

Figure 1 Analysis of inhibitory avoidance acquistionwas performed from three replicates (baseline, avoidance 1, avoidance 2) at
intervals of 30 seconds. It was recorded the latency in LTE. Data were shown as mean± standard error and analyzed by one-way
ANOVA followed by Bonferroni post-test, with P< 0.001 as significant. ***Compared to normal diet group+ saline (0.9%);
compared to control diet group+MeHg (5 mg/kg).

Figure 2 Analysis of the number of grooming, head-dipping, stretch-attend postures (SAP) and time spent on the open arm in
the EPM. Data were shown as mean± standard error and analyzed one-way ANOVA followed by Bonferroni post-test.
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MeHg induces lipid peroxidation in rat
hippocampus
The results presented above suggested that MeHg
affected specifically aversive memory acquisition
without induce changes in motor, anxiety, or panic-
like behavior. It is well documented that hippocampus
represents an important cerebral structure that con-
trols memory acquisition. In this way, we have verified
whether the deficit on the memory acquisition induced
by MeHg was associated with oxidative stress.
Our results showed that hippocampus of animals

intoxicated with MeHg showed about 150% of
TBARs production when compared with control
group. On the other hand, rats intoxicated with
MeHg and feed with MF-enriched ration did not

show increased hippocampal TBARs levels when com-
pared with control (Fig. 4).

Discussion
Riverside Amazon population utilizes regional fruit as
component of supplemental dietary16,17,20–22 and pre-
vious studies describe that fruits form Amazon florets
are used by local community for treatment of different
diseases.15,17,58–60 In the present work, we demon-
strated, for the first time, that MF fruit dietary pre-
vents memory impairment and oxidative stress in
hippocampal tissue induced by MeHg in rats.
Several reports have described that MeHg represents

an environmental biohazard for Amazon riverside
populations living at gold-digging areas.20,21,35–40 It

Figure 3 Locomotor activity (number of crossed) in the EPM. Data were shown as mean± standard error and analyzed by one-
way ANOVA followed by Bonferroni post-test.

Figure 4 Hippocampus lipid peroxidation. Data were shown as mean± standard error and analyzed by one-way ANOVA
followed by Tukey post-test with P< 0.05 as significant. ***Compared with the normal ration+ saline (0.9%); #compared with the
normal ration+MeHg (5 mg/kg/day).
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is also well described that the central nervous system is
a potential target of MeHg intoxication.42–46,48,61,62

Although studies demonstrated that behavioral altera-
tions induced by MeHg can be associated with toxico-
logical actions in humans and animal
models,8,31,33,46,63–66 few works have evaluated the
potential effect of Amazon fruits against behavioral
toxicity induced by MeHg.
In the present study, we demonstrated that MeHg

induces severe deficits in memory acquisition in rats
(Fig. 1). These results are in agreement with previous
reports showing pronounced memory impairment in
rodents exposed to acute doses of MeHg.26,67 Studies
utilizing animal models describe MeHg affecting
different brain functions, including anxiety-like behav-
ior, motor activity, and panic-related behavior.8,46,67,68

Our results have demonstrated no significant altera-
tions in anxiety, motor, and panic indicating par-
ameters induced by MeHg. Taken together these
results suggest that MeHg had induced a highlighted
memory acquisition impairment more than other be-
havioral changes. Our data showed that M. flexuosa
fruit dietary exerted a protector action against
memory lack induced by MeHg exposure (Fig. 1).
We administered orally the fruit in combination with
commercial ration in order to simulate the natural con-
sumption of M. flexuosa fruit by Amazon population.
Our results also suggest that M. flexuosa fruit intake
can exerts its protector effect by blocking the oxidative
stress induced by MeHg in the brain hippocampus
(Figure 4). In fact, ROS generation with consequent
lipid peroxidation represents an important mechanism
associated with several brain disorders, including toxi-
cological action of heavy metals as MeHg.30,31,69–72

Studies demonstrated that memory impairment also
can be attributed to oxidative stress in hippocampal
tissue.73,74 In fact, precise mechanism involved in the
memory impairment induced by oxidative stress in
the brain are not fully understood; but recent works
have pointed that oxidative stress inhibits neuron for-
mation as well as is able to alter the maintenance of
dendritic network in the hippocampus.75,76 New
neurons formation and hippocampal dendritic
network integrity are crucial to provide the synaptic
plasticity needed for learning and formation of mem-
ories. In the present study, we have demonstrated
that MeHg exposure evokes oxidative stress in rat hip-
pocampus as well as we have showed that M. flexuosa
fruit diet prevents against this effect (Figure 8). These
results are the first to demonstrate that oral adminis-
tration of Amazon fruit could evoke protective effect
against MeHg toxicity.
It is well described that several Amazon fruit pre-

sents in its chemical constitution several anti-oxidant
agents; and it is also known that M. flexuosa has a
high concentration of beta-carotene in its fruit

(about 70%).14,22,23,49,77 A recent work utilizing dom-
estic processing of carotenoids rich vegetables has
demonstrated that wet heat processing at 50°C for 3
hours do not reduces concentration and anti-oxidant
activity of carotenoids in the analyzed matrix.78 In
the present study, M. flexuosa pulp fruit was heated
at 40°C for 2 hours during enriched chow preparation.
Thus, although we do not rejected the hypothesis that
other anti-oxidants present in the fruit pulp may have
suffered changes during its processing, the procedures
used in the present study seem not to be able to evoke
significant changes on the carotenoids content present
in the M. flexuosa enriched chow. In regard to nutri-
tional parameters of enriched dietary, future bromato-
logical analysis must be performed to characterize the
caloric values associated with the M. flexuosa fruit
enriched diet. At the moment, our data represent
only the first pre-clinical validation of the M. flexuosa
fruit use as protective against toxicity MeHg-induced
on the CNS.

In conclusion, we demonstrated that M. flexuosa
fruit has an efficient effect against behavioral and bio-
chemical toxicity induced by MeHg; and M. flexuosa
fruit could be alternative treatment to minimize the
toxicological effects of MeHg in people living at
regions of gold-digging.

Conclusion
This study showed, for the first time, the protect effect
of Mauritia flexuosa L. (Buriti), considering the expo-
sition of Wistar rats to 5 mg/kg of methylmercury
induces deficits on inhibitory avoidance acquisition
and aversive memory, hindering the learning process
and increased the levels of lipidic peroxidation on hip-
pocampus. However, pre-treatment with buriti-
enriched ration was able to prevent damage both the
behavioral and biochemical. Therefore, Mauritia flex-
uosa L. (Buriti) can be considered an important pre-
vention strategy against high rates of mercury
intoxication.
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