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This work presents an analytical study of electronic transport in dimerized trans-polyacetylene
(Trans PA) oligomers containing even (n = 4, 6, 8, 10 sites) and odd (n = 3, 5, 7, 9 sites) chains
where the site C1 is sandwiched by two metallic electrodes (Left and Right ). These devices exhibit
T-shaped geometry and are investigated by Su-Schrieffer-Heeger (SSH) model via Heisenberg
equation of motion combined with the Keldysh formalism. We introduced disorder into the system
through the dimerization force (�) demonstrating that the dimerization in the chain can effectively
lead to a linear (low �) or zigzag (high �) behavior, besides also suffering increase or decrease
in conductance peak [dI/dV ]max. The odd chains exhibit trivial topological behavior to which the
conductance peaks are suppressed as dimerization disorder is considered-creates barriers for tun-
neling. On the other hand, we have an opposite behavior for conductance peaks in the even chains.
For example, the chain with weak dimerization (low �) has a perfect transmission for even chains.
In addition, we note for odd chains the formation of a plateau in the I–V curve for bias voltages and
for even chains that show a linear current. This procedure shows an analytical study through the
tunneling of the parameters on the device, such parameters as the tunneling amplitude (�L/R) can
be accessible experimentally.

Keywords: Conduct, Dimerization Correlations, Trans-PA, Electronic Transport, Keldysh
Formalism.

1. INTRODUCTION
Have been extensively investigated, low-dimensionality
systems, such as conjugated polymers, allowing the study
of essential aspects of quantum mechanics, structural prop-
erties, and transport in electronic devices [1, 2].

Typically, are defined carbon chains in the direction of
electron transport, indicating a single path in the trans-
mission process [3]. However, the graphene-type chain
nanoribbon-1D+PA with T-shaped geometry suggest that
the CnHn vertical chain can also actively participate in
electron transmission, indicating that the transverse carbon
chain is not the only way of transport on such devices [4].

In recent years, proposals for the realization of devices
designed in the form of T-shaped received much atten-
tion from the scientific community, in particular working

∗Author to whom correspondence should be addressed.

with the chain in zigzag connected to the p-type wave
superconductor, allowing the detection of Majorana-bound
states (MBS) [5, 6]. Xiong and Tong [7] proposed qubits
of Majorana with mobilizable solitons combining the Su-
Schrieffer-Heeger (SSH) model with “kitaev’s toy model,”
inducing the superconducting phase by means of the prox-
imity effect on the PA wire dimerized.
Motived by these investigations for T-shaped devices,

we propose to study theoretically the electronic transport
properties in finite-sized PA nanowires for chains even-odd
type. Experimentally, the study of finite-length chains is
relevant. Once, throughout the device, the semiconductor
nanowire is considered segmented by disorder in a smaller
number of coherent chains [8].
Electron transport decays exponentially due to the

degree of disorder and the size of the chain [9]. In this
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paper, we analyze the electronic transport characteristics
of a carbon chain:
(i) Controlled by the adjustment of different dimerization
forces (�), the parameter (�) is the degree of the chain
dimerization, the � variation influences the transport prop-
erties electronic.
(ii) Dependence on the effects of the finite-length chain
via curves for all bias windows. Due to the size of the
chain, since as the disorder increases, it can lead to more
localized states [10].

We obtain on the scale of nanodevices effects similar to
those of microelectronics. At the level of nanodevice, cir-
cuit activation is obtained due to an external excitation in
the structure of the SSH chain, like example, such as an
external electric field or voltage and the photo stimulation
corresponds to gate terminal [9].
Figure 1 shows the investigated T-shaped geometry sys-

tem, composed of the trans-PA oligomer, covalently con-
nected to two metallic electrodes (Left and Right). The
coupling parameter (� ) connect the electrodes to the first
site (c1) of the trans-PA oligomer. Is fixed the first site (c1)
at the other sites, forming the nanodevice in the geom-
etry in the form of T-Shaped; the chain is dimerized by
single (1−�) and double (1+�) bonds and is associated
with the force of dimerization. Where ��� < 1 since 1 is
the maximum tunneling for intra-site coupling and inter-
site in the chain [11–13]. In the treatment of PA for the
SSH model is introduced a simplification [14, 15] where
only the pi-electrons responsible for the formation of the
dimers, that is, only the normal mode of coupling vibration
is considered, with that they are projected as ionic coordi-
nates (displacement of the groups –CH) on the horizontal
axis that extends through the geometer of the chain making
the system one-dimensional. In short, the SSH model is an
extension of the tight-binding approach. The experimen-
tal realization of the topology in one-dimensional systems

Fig. 1. Dimerized trans-PA oligomer with n sites whose site C1 is cou-
pled to two metallic electrodes (left lead and right lead) through the
coupling parameter (�L and �R). The tunneling or hopping parameter is
given by (1−�) for single bond and (1+�) for double bonding, where �

is the dimerization force. In our calculations, we consider the molecule
with a number odd and even of sites.

(1D) [16, 17], made possible new and extensive inves-
tigations in the Su-Schrieffer-Hegger (SSH) model. The
parameter that describes the tunneling or hopping dynam-
ics is given by (1−�) and (1+�) along the chain in each
unit cell in the 1D network in Figure 1, where � is the
dimerization force. The SSH model has as its main char-
acteristic its two topologically different phases, which can
be distinguished by the presence or absence, controlled by
the adjustment of the dimerization intensity.
We have adopted the analytical calculations the non-

equilibrium Green’s function (NEGF) [18, 19] for the
system of Figure 1, in the Su-Schrieffer-Heeger (SSH)
model [14]. Keldysh formalism is based on the Green’s
functions (retarded, advanced and minor) [20–23] and
allows the treatment of interaction electrode-molecule-
electrode in a self-consistently manner throughout the
polarization range of interest applied [24, 25]. The devices
exhibited good conductivity; can be found a robust oscil-
lation effect in even chains.
The results for (i) adjustment of different dimeriza-

tion forces (�) and (ii) dependence on the effects finite
length chain via I–V curves reveal that the intrinsic dis-
order obtained by the dimerization force (�) is one of
the most important parameters to capture the linear and
non-linear tunneling in the consistent regime. This model
can be distinguished through the presence or controlled
absence of dimerization force. The effect of intrinsic dis-
order �t on the hopping force of the nearest neighbor
through nanowire was investigated by Jun-Tong et al. [26]
via NEGF of the tight-binding approach they focus on
the properties of electronic transport, especially for zero
polarization conductance peaks in the presence of disorder.
In our article we studied intrinsic hopping disorder con-
trolled specifically by � (the dimerization force) described
in the methodology, highlighting as an example A= �1+
�−1�n�� denotes the hopping between two adjacent unit
cells for the even chain, we note that � directly implies tun-
neling dynamics. That is, the intrinsic disorder parameters
are controlled in our results by the numerical relationship
between hopping and dimerization force.
In the next sections, we present the analytical calcula-

tion based on the NEGF and the “Results and discussions”
section, we provide electronic transport results for different
wire lengths and we discuss the different types of effect
induced by dimerization in even and odd chains, respec-
tively and in the last section we conclude.

2. METHODOLOGY
We considered a 1-D chain without spineless of the dimer-
ized trans-PA oligomer whose site 1 (c1) is coupled to
metallic electrodes (left and right) by means of the sym-
metrical coupling factor �L and �R. The metallic elec-
trodes used in the system are arbitrary and, if changed to
gold, only will change the value of the chemical poten-
tial �L and �R [27, 28]. Equation (1) below shows the

2 J. Comput. Theor. Nanosci. 18, 1–10, 2021
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Hamiltonian of the system for a dimerized model with
each carbon atom interacting with the nearest neighbor, is
given by Equation (1)

H = HL+HSSH+HLSSH (1)

The first term HL represents the Hamiltonian of the elec-
trodes (left and right), which can be described by Eq. (2),

HL =
∑
k	


kc
†
k	ck	 (2)

where c†k	 �ck	� denotes the electrons creation (annihila-
tion) operators [29] in the electrodes [	= left (L) or right
(R)]; 
k represents the energy of the electrode at moment
k.

The term HSSH of the Eq. (1) describes a trans-PA
molecule dimerized in the modified SSH model, to a chain
containing n carbons, which can be written by Eq. (3),

HSSH =∑
i

{[
1+ �−1�i �

]
c†i ci+1+h · c}+h

∑
i

c†i ci (3)

where: c†i �ci� creates (annihilates) electrons at site i. The
chain index i, from 1 to n, is used to indicate the ith site of
a 1-D the chain. The hopping between the nearest neigh-
boring sites is staggered between 1+ � and 1− � along
the chain, so that each unit cell contains two sites, belong-
ing to the two subsets generally indicated as A and B in
SSH model [30]. Here we take the average of hopping
integral as the unit of energy. The number 1 in hopping
integrals (A and B) is the average of tunneling intensity. To
ensure that the probability of displacement along the chain
is equal, we considered � < 1. The parameter h represents
the energy level [7].

The last term HLSSH of the Eq. (1) describes the inter-
action between electrodes and the sites given by Eq. (4)

HLSSH =∑
k	

Vk	

(
c†k	c1+ c†1ck	

)
(4)

where V k	 is the electronic tunneling between the first site
and the electrodes (left and right).

Using the recursive method of the retarded Green’s
functions for the first site Gr

c1c1
��� that describe the

configuration indicated in Figure 1 and based on the
Heisenberg equation of motion we generalize the calcula-
tions to an even and odd number of n carbons contained
in the chain of the dimerized trans-PA molecule.

In case, that n is even, we have the set of Eqs. (i)–(v)

��−
k�G
r
ck	c1

���= Vk	G
r
c1c1

��� �i�
��−h�Gr

cnc1
���= BGr

cn−1c1
��� �ii�

��−h�Gr
cn−1c1

���= AGr
cn−2c1

���+BGr
cnc1

��� �iii�
��−h�Gr

cn−2c1
���= BGr

cn−3c1
���+AGr

cn−1c1
��� �iv�

� � �
��−h�Gr

c1c1
���= 1+BGr

c2c1
���+Vk	G

r
ck	c1

��� �v�

where: (i) describes the dynamics of electrodes (Left and
Right) through the Green’s function and it’s interaction

with site 1; (ii) describes the interaction of site n with site
n−1; (iii) describes the interaction of the site n−1 with
the sites n and n−2, (iv) shows the interaction of the site
n−2 with the sites n−1 and n−3, � � � (v) represents the
dynamics of site 1 and it’s interaction with electrodes (Left
and Right) and site 2. Replacing (ii) in (iii), (iii) in (iv),
following this reasoning, we come to (v) and obtain the
formula recursive of the Green’s function retarded of site
1, with n sites, being n even, given by Eq. (5).

Gr
c1c1

��� = 1
/

�−h

− B2

�−h−�A2/��−h−···�B2/�−h���
+i� (5)

where the hoppings B = �1+ �−1�n−1�� repeat �n/2�−1
times and A= �1+ �−1�n�] repeat n/2 times.

For the case, which n is odd, we get the set of Eqs. (vi)–
(x) similar to the set of Eqs. (i)–(v)

��−
k�G
r
ck	c1

���= Vk	G
r
c1c1

��� �vi�
��−h�Gr

cnc1
���= AGr

cn−1c1
��� �vii�

��−h�Gr
cn−1c1

���= BGr
cn−2c1

���+AGr
cnc1

��� �viii�
��−h�Gr

cn−2c1
���= AGr

cn−3c1
���+BGr

cn−1c1
��� �ix�

� � �
��−h�Gr

c1c1
���= 1+BGr

c2c1
���+Vk	G

r
ck	c1

��� �x�

The recursive formula of the retarded Green’s function of
site 1, for n sites, is given by Eq. (6), being n odd.

Gr
c1c1

��� = 1
/

�−h

− B2

�−h−�A2/�−h−···�A2/�−h��
+i� (6)

where the hoppings A = �1+ �−1�n−1�� and B = �1+
�−1�n�� repeat �n−1�/2 times.

The retarded Green’s function of site 1, Gr
c1c1

���
is important for our results, because we can of
obtain the density of states (DOS) given by ��� =
�−1/�� Im

[
Gr

c1c1
���

]
whose results are present in

Section 3.
In the Non-Equilibrium situation, we obtain the prop-

erties of electronic transport, such as the current and the
differential conductance of the system versus the bias volt-
age through the NEGF, using the Keldysh formalism [18].
Is described the current by Eq. (7):

I	 = 2eRe

{∑
k	

Vk	G
<
c1k	

�t� t′�

}
(7)

where, G<
c1k	

�t� t′�= i
〈
c†k	 �t� � c1 �t

′�
〉
is the minor Green’s

function. Therefore, can be the current rewritten using the
Landauer-Büttiker formula [31] given by Eq. (8):

IL/R = 2e
h

∫
T �E�

[
fL/R �E�− fR/L �E�

]
dE (8)
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where T �E� = Tr
[
�LGr

c1
�RGa

c1

]
is transmittance, fL/R =

�1/e��
−�L/R�/kBT �+1� is the function of Fermi distribution
in the chemical potential (�L/R) in the electrodes and the
Gr

c1
�t� t′�=−i

〈
c1 �t� � c

†
1 �t

′�
〉
, Ga

c1
�t� t′�= i

〈
c1 �t� � c

†
1 �t

′�
〉

and G<
c1
�t� t′�= i

〈
c†1 �t� � c1 �t

′�
〉
are the Green’s functions

(retarded, advanced and minor) for the site 1. As a depar-
ture point, via analytical continuation we get the retarded
Green’s function in the Keldysh contour Gc1k	

��� � ′� =
−i

〈
Tcc ��� � c

† �� ′�
〉
where T c the operators along the

Keldysh contour. Let us now calculate the current. For a
molecule of n sites, taking the temporal derivative of and
Gr

c1
�t� t′�, we obtain the Eq. (9)(
i
�

�t
−h

)
Gr

c1
�t� t′� = � �t− t′�+∑

k	

Vk	G
r
c1
�t� t′�

+BGr
c21

�t� t′� (9)

With Gr
k	 �t� t

′� = −i
〈
Tcck	 �t� � c

†
1 �t

′�
〉
and Gr

c2
�t� t′� =

−i
〈
Tcc2 �t� � c

†
1 �t

′�
〉
. Deriving Gr

k	 �t� t
′� and Gr

c2
�t� t′� in

t, we obtain the Eqs. (10) and (11),(
i
�

�t
−h

)
Gr

ck	
�t� t′�= Vk	G

r
c1
�t� t′� (10)

(
i
�

�t
−h

)
Gr

c2
�t� t′�= BGr

c1
�t� t′�+AGr

c3
�t� t′� (11)

where Gr
c2
�t� t′� = −i

〈
Tcc2 �t� � c

†
1 �t

′�
〉
, which deriving in

t we obtain Eq. (12),(
i
�

�t
−h

)
Gr

c3
�t� t′�= AGr

c2
�t� t′�+BGr

c4
�t� t′� (12)

Continuing in the same way, we arrive at Eq. (13),(
i
�

�t
−h

)
Gr

cn
�t� t′�= AGr

cn−1
�t� t′� (13)

The Eqs. (9)–(13) constitute a complete set of n+ 1 dif-
ferential equations that describe the interactions between
electrodes with the first site (c1) and between the neigh-
boring sites (cn), see Figure 1. May be written the Eq. (10)
in integral form, given by Eq. (14),

Gr
k	 �t� t

′�=
∫
dt1g

r
n�k	 �t� t1�Vk	G

r
c1
�t� t′� (14)

where, grn·k	 �t� t1� = −i
〈
Tcck	 �t� � c

†
1 �t1�

〉
. Replacing

Eqs. (14) in (9), we obtain the Eq. (15),(
i
�

�t
−h

)
Gr

c1
�t� t′� = � �t− t′�

+
∫
dt1

∑
�t�t1�

Gr
c1
�t� t′�+BGr

c2
�t� t′�

(15)

with
∑

�t�t1�
=∑

k	 g
r
k	 �t� t1� �Vk	�2. Therefore, we reduced

the system of n differential equations, which can be written

in integral form. In a matrix notation, they are given by
Eq. (16),

→
G�t� t′� = g �t� t′�

→
u+

∫∫
dt2dt1g �t� t2�

×
′∑
�t2� t1�

→
G�t1� t

′� (16)

where
→
u is the unitary vector. Using Eq. (16), we get the

Dyson Equation for the system,

G�t� t′�= g �t� t′�+
∫∫

dt2dt1g �t� t1�
′∑
�t1� t2�G�t2� t

′�
(17)

Due to the convolution-time integrals in the above equa-
tions, it is useful to make Fourier transforms of the Green’s
functions. Therefore, in the Keldysh contour [30] we have
Eq. (18),

G���� ′�=g���� ′�+
∫∫

d�2d�1g����1�
∼∑
��1��2�G��2��

′�
(18)

Next, we apply Langreth’s analytic continuation in
Eq. (18), we get the retarded Green’s function by Eq. (19),

Gr ���= gr ���+ gr ���
∼∑r

���Gr ��� (19)

In addition, for the minor Green’s function, we have the
Eq. (20),

G< ���=Gr ���
∼∑<

���Ga ��� (20)

The equations obtained for the retarded/advanced/minor
Green’s functions form a set of integral-dependent equa-
tions and a set of matrix equations in the energy represen-
tation. Note that all of the above equations for the three
real-time Green’s functions are exact and general in the
meaning of the perturbation expansion, that is, when one
can define self-energies [32].
From where we get the components of retarded and

minor self-energy given by the following matrix,

∼∑r

11
���=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− i

2
� ���

B
0
0
� � �
0

B
0
A
0
� � �
0

0
A
0
B
� � �
0

0
0
B
0
� � �
0

0

0
0
0
� � �
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(21)

and the matrix
∑∼< ��� has a nonzero element in Eq. (21),

∼∑r

11
���= i ��L ��� fL ���+�R ���fR ���� (22)

Self-energies are complex Green’s functions and have
interesting physical meaning, the real part causes a change
in its own values, while the imaginary part is responsible
lifetime in the electronic state, this process produces an
enlargement of Density of States (DOS). Therefore, with
the Eqs. (19) and (20) we can calculate the current of the
system.

4 J. Comput. Theor. Nanosci. 18, 1–10, 2021
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3. NUMERICAL RESULTS
Initially, we developed calculations at the thermodynamic
limit in the context of the Green’s functions [33, 34] for the
metal/trans-PA/metal system (corresponding to odd–even
sites), and assuming �L/R = 0.5 eV between the molecular
level and the electrodes. The control for the free parame-
ters used are h= 0 eV to adjust the only accessible energy
level on the site (c1) Fermi level �= 0 eV. The parameter
� represents the adjustable dimerization force. For obtain
better tunneling, we consider 0 < � < 1 to ensure equal-
ity in the probability of displacement along the chain and
ensure best results when � values are near to zero, as show
in Figure 4(a) in the paper for �= 0.01 eV that confirms an
almost perfect conduction. The model will regress to the
Kitaev’s model when �= 0 eV and the molecule becomes
a polyne-type carbyne when �= 1 eV, once 1 allows max-
imum tunneling for intrasite-to-intersite coupling in the
chain [11–13].

Fig. 2. DOS and Transmittance [T(E)] versus Energy for the metal/trans-PA/metal system with symmetrical coupling �L/R = 0.5 eV; hoppings between
neighboring sites, A= 1+� and B = 1−� where �= 0.1 eV and energy level, h= 0.0 eV. (a) DOS for odds chains, (b) DOS for even chains, (c) T(E)
for odds chains and (b) T(E) for even chains.

Figure 2(a) exhibits Density of States (DOS) at V = 0 V
for odd chains (n= 3�5�7�9). The DOS strong and broad
peaks appear at the Fermi level for dimerization force �=
0.1 eV while the Figure 2(b) for the even chains (n =
4�6�8�10) exhibit the peaks in DOS situated (gap to the
finite size) at the Fermi level that contribute to the emer-
gence of more transmission channels than the odd chain.
An efficient coupling in T-shaped shape can be found on
the device, DOS displays well-matched channels for elec-
trons contribute to transmittance in nanodevice.
Figures 2(c) and (d) present the energy-dependent trans-

mittance [T(E)] for odd and even chains, respectively.
Figure 2(c) shows that the transmittance is greater for short
chains. The transmittance in even chains, see Figure 2(d),
is greater than for odd chains because it has a greater con-
tribution, as accessible multichannel emerge and approach
the Fermi level. The DOS and T(E) depend on odd-
even parity, where we observe a clear difference between
odd and even chains; Jing-Xin et al. [35] predicted this

J. Comput. Theor. Nanosci. 18, 1–10, 2021 5
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behavior. It is observed that the transmission probabil-
ity is characterized by the presence of peaks at 0.0 eV.
Figure 2(c) shows; (1) a qualitative transmission signa-
ture for the odd number of sites, but (2) for the case of
the even-local dimer chain at 0.0 eV energy, a decrease
the transmission probability with increasing length of the
chain, the Figure 2(d) show probability that an electron is
reflected from in even chain.
In Figure 3(a), it is exhibited the characteristics of the

electronic transport by I–V curves, for the parameters
�L/R = 0.5 eV and � = 0.1 eV for odd chains 3 ≤ n ≤ 17
sites. In the linear response regime indicated by 0.0 V ≤
V ≤ 0.5 V inserted in the Figure 3(a), the current has
a finite slope. As the bias voltage increases above linear
response regime 0.6 V≤V≤ 2.0 V, it is observed that the
current profile presents a single plateau at 2.0 V, I–V curve
tends to a saturation region. In Figure 3(b) the differential
conductance (G= dIdV ) features the standard Lorentzian
with broadening given by � = �L+�R with almost invari-
ant pattern for polarization voltage up to 0.5 V (insert in
Fig. 3(b)).
In Figure 4(a), it is investigated the effect of tunnel-

ing, through different dimerization force (�) controlling the
electronic tunneling for five sites (i.e., n= 5). The dimer-
ization force (�) in the hopping A = 1+� (double bond)

Fig. 3. Electronic transport to odd chains (n = 3, 5, 7, 9, 11, 13, 15
and 17 sites) coupled to electrodes (Left and Right) with parameters,
�L/R = 0.5 eV and � = 0.1 eV: (a) I–V curve with voltage from −4 V
to 4 V. In the inset (a), we have current for low bias voltage and (b)
dI/dV −V curve, highlighting the resonance peaks at insert (b).

Fig. 4. (a) I–V curve for the chain with five sites n= 5 considering four
different values for the parameter �: (1) 0.01 eV; (2) 0.1 eV; (3) 0.5 eV;
and (4) 0.8 eV, keeping �L/R = 0.5 eV. (b) The maximum conductance
for chain with even and odd sites keeping �L/R = 0.5 eV and varying �,
i.e., 0.06 eV, 0.08 eV and 0.1 eV.

and B = 1− � (single bond), respectively is adopted as:
� = 0.01 eV; � = 0.1 eV; � = 0.5 eV and/or � = 0.8 eV.
It is observed that the I–V curve for � = 0.01 eV (black
curve) and �= 0.1 eV (blue curve) shows an almost per-
fect drive, that is, an almost flat chain (�= 0.0 eV). How-
ever, for the chain dimerized with �= 0.5 eV (red curve)
and �= 0.8 eV (green curve) the tunneling is smaller and
approximately equal to �= 0.6 eV. This condition can be
interpreted as structural and conformational defects that
reduce the overlapping states, acting as locator centers that
interrupt conjugation along the polymer chain.
Figure 4(b) exhibits the maximum conductance

�dI/dV �max depending on the number of sites and dimer-
ization force � = 0.06 eV; � = 0.08 eV and � = 0.1 eV.
For odd chains (n = 3�5�7�9�11�13�15 and 17 sites),
there is a decrease in maximum conductance related to the
increase in the chain (n) and dimerization force (�) that
vary approximately between 11 �A/V and 5 �A/V con-
firmed in the I–V curve, as can seen in Figure 4(a). Also in
Figure 4(b), it is examined �dI/dV �max for the even chains
(n= 4�6�8 and 10 sites), a behavior clearly different from
those obtained for the odd chains. For example, the sup-
ply chain dimmers with � = 0.1 eV has a perfect con-
duction. In this case, the increase in dimerization strength
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Fig. 5. (a) ln�I�–V curve and (b) dln�I�/dV curve for even chains (4,
6, 8 and 10 sites) with the parameters �L/R = 0.5 eV and �= 0.1 eV. The
insert in (a) shows the I–V curves for these chains.

contributes to the creation of states localized at the Fermi
level. It can be confirm this characteristic in the DOS plot,
see Figure 2(b). As a result, can be transferred the elec-
tron coherently from one state of energy to another, since
these relocated states are close to the Fermi level and are
sensitive to the entire uniform chain.

Now, it is done the analyze for the electronic transport in
the even chains (i.e., n= 4�6�8 and 10) for a dimerization
force � = 0.1 eV in according with the Figure 4(b), as it
provides a additional information to describe the influence
of disorder on the system.

In Figure 5(a) for even chains (i.e., n= 4�6�8 and 10),
the ln�I�–V curve displays a quasi-ohmic region up to
0.5 eV. Then the current it increases very slowly, and the
slope is due to the different resistances offered. Figure 5(b)
shows that conductance peaks are due to the gradual
increase in excitation states available in the pair chain
as tunneling paths. These oscillations allow us to obtain
information about the dynamics of carriers. This effect
was experimentally confirmed for the Au, Pt and Ir wires
through the by means mechanically controllable break
junctions (MCBJ) [36]. Lang and Avouris [37] showed that
at the low voltage limit the oscillations for even chains
are greater than for odd chains and then Larade et al. [38]
extended their investigation to higher finite voltages and
found a similar result. Such effects are attributed to charge
transfer in different paths involving hopping between adja-
cent sites A and B in the same cell or not due to different
topologies chain order [35].

Now, it is exhibited the DOS and T(E) for a strong
dimerization � = 0.6 eV of the even chain. Figure 6(a)
exhibits states located near at the Fermi level while
Figure 6(b) has a wide and tilting window of the tail,
where the Fermi level is close to the driving band
region [38]. Figure 6(b) has a wide transmission window
displaying a greater contribution to long chains. The inser-
tion of Figure 6(b) shows the range of n= 4�6 and 8 for
small transmissions.
Figure 7(a) exhibits the I–V curve for dimerization �=

0.6 eV. The current increases to V = 1.2 V and saturates
the electronic transport affected by oscillations at V >

1.2 V. For oscillations intermediate, � = 0.6 eV depend
on the states localized and delocalized. In Figure 7(b) for
�= 0.6 eV, the peaks in concordance are oscillations and
show the appearance of barriers. The chain of dimer for
� = 0.6 eV indicates that, as the disorder increases, the
states became more localized.

Fig. 6. (a) DOS and (b) transmittance T(E) with symmetric coupling
�L/R = 0.5 eV and �= 0.6 eV, for even chains (4, 6, 8 and 10 sites). In
(b) an insert shows the T(E) behavior for 4, 6 and 8 sites.
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Fig. 7. (a) ln�I�–V curve and (b) dln�I�/dV for 4, 6, 8 and 10 sites,
with the parameters �L/R = 0.5 eV and �= 0.6 eV. The insert in (a) shows
the I–V curves.

In summary, for �= 0.1 eV in the odd chain (i.e., n= 3,
5, 7 and 9 sites), the system has a metallic behavior until
0.5 V going from metal to semiconductor between 0.6 V≤
V ≤ 2.0 V. For even chains (i.e., n= 4, 6, 8 and 10 sites)
we have: (i) for �= 0.1 eV, the increase in the I–V curve;
(ii) to � = 0.6 eV, undergoes an increased oscillations in
the conductance curves. Transitions in electrical behavior
of Molecular Devices [39] were recently investigated. In
this paper for zero polarization 0.0 V, the odd chains have
a metallic behavior, see DOS in Figure 2(a). However,
when the voltage increases the current grows up to 0.5 V
where quasi-uniform up to 0.6 V which is the beginning
of the resonance and then grows up to with a linear growth
for greater polarization. The resonance points confirm the
occurrence of a change in the I–V curve and the electronic
transition.
On the other hand, the Figure 2(b) shows the even

chains for � = 0.1 eV, where the DOS at 0.0 V exhibits
contributions of the delocalized peaks in the entire energy
range. Also in Figure 2(b) the DOS at 0.0 V shows peaks
and gaps near the Fermi level (
F ) with Energy gap< 0.1.
Still for even chains, Figure 6(b) for �= 0.6 eV there are
clear peaks around 
F show gap� 0.1 eV, this is visible in

Figure 7(a), still in Figure 6(b) for the 2.0 eV range, DOS
shows the states located. The I–V curve in the Figure 7(a)
does not identify the small characteristic oscillations, since
the transport is done via direct tunneling through the bar-
rier model (the graph is a straight line as the tension is
increased). However, the graph of differential conductance
G= dI/dV in Figure 7(b) shows oscillations, that is G=
dI/dV is sensitive to the presence of localized states from
the range of 2.0 eV visible in the DOS of Figure 6(b).
The results obtained through analytical calculations

show peculiar differences between odd-even parity chains
in the T-shaped device, due to the topology of the chain.

4. CONCLUSION
We investigated the effect of intrinsic disorder the trans-
port properties of polyacetylene of even-odd chain, adopt-
ing the Keldysh’s formalism. We introduce disorder into
the system as dimerization forces (�): strong type � =
0.1 eV, � = 0.5 eV, � = 0.6 eV and weak type � =
0.01 eV, � = 0.06 eV and � = 0.08 eV. For odd chain,
the presence of disorder is controlled to � = 0.1 eV (low
dimerization) which allows an exponential increase in the
I–V curve and a pronounced peak in conductance see
Figures 3(a) and (b). Therefore, for high bias voltage, start-
ing at 2.0 V, the conductance spectra decrease monoton-
ically and electronic signature is the predominant voltage
function applied in the system. On the other hand, for the
even chain with � = 0.1 eV it reduces the location of the
conductance around 0.0 eV and for � = 0.6 eV for even
chain, localized states arise, leading to an increase in the
division of the peaks. This is seen in Figure 4(b) due to the
higher conductance for the even chain indicating an elec-
tronic signature with greater influence of the dimerization
force parameter of the even chain.
We demonstrate that the disorder can displace the peak

in the differential conductance. The odd chain exhibits triv-
ial topological behavior that we can see it in the transmis-
sion electronic of the system for odd chain; the magnitude
of the conductance peaks is considerably suppressed as the
disorder is taken into account.
On the other hand, we have an opposite behavior in the

pair chain, seen in Figure 4(b). For example, the dimer
chain with �= 0.06 eV strong has an almost perfect trans-
mission. We can be attributing this behavior to the appear-
ance of DOS. This corroborates the dynamic of electrons
in the device, via electronic tuning and the topologic of
the system. This procedure shows an analytical and numer-
ical study in with experimentally accessible parameters.
Therefore, it can be applied to systems such as Condensed
Matter/Cold Atom [40, 41], which were proposed as semi-
conductor wires with states located through a defect in the
chain. It has already been verified that some physical sys-
tems, for example, the two-dimensional graphene tape [42]
and the p-orbital optical lattice [46], can be mapped to the
SSH model. Such devices have applications as in qubits
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with mobilizable solitons in an extended SSH model qubit
in quantum computer application [7]. The present model
investigated through the control of intrinsic parameters
allows the system to behave like a molecular structure like
carbine and even the kitaev’s chain model [5] for topolog-
ical formation of protected states as observed in photonic
quantum walks [44].
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