Métodos de Auto Sintonização Bioinspirados para o Algoritmo Genético
- Trabalho Publicado
Heictor Costa , Roberto Oliveira. Adaptive Radiation as an Autotuning Strategy for Genetic Algorithms on Dynamic Problems. Congresso Brasileiro de Inteligência Computacional 2023 - CBIC 2023, Salvador, Bahia, 2023. DOI: 10.21528/CBIC2023-050
- Projeto Relacionado
PRO6698-2023 Deep Learning parametrizada por Algoritmos Evolutivos aprimorados para uso no Setor Elétrico em Predição de Séries Temporais e Manutenção Preditiva
Algoritmo Genético, Radiação Adaptativa, Auto Sintonização, Modelos Multicritério.
Esta pesquisa foi motivada pela necessidade de aprimorar a eficiência do algoritmo genético (Genetic Algorithm - GA) ao lidar com uma variedade de problemas complexos. O objetivo é desenvolver estratégias que permitam ao GA ajustar-se automaticamente aos desafios específicos de cada problema, sem necessidade de intervenção manual para reajustar os seus parâmetros operacionais, tornando este algoritmo em uma ferramenta mais dinâmica. Para atingir esse objetivo, a pesquisa propôs duas estratégias bioinspiradas para aprimorar a adaptabilidade e a eficiência do GA. A primeira foi a Radiação Adaptativa (Adaptive Radiation - AR), um fenômeno biológico que provoca altas taxas de mutação em populações, permitindo rápida adaptação às condições de sobrevivência. A segunda foi uma técnica de seleção inspirada em Modelos de Decisão Multicritério (MDMC) e no comportamento natural da escolha de parceiros de diversas espécies, que auxiliam na tomada de decisão, avaliando soluções com base em critérios múltiplos. A metodologia envolveu a implementação dessas estratégias no GA, criando dois novos algoritmos: GA com Radiação Adaptativa (GAAR) e GA Multicritério (MCGA). Esses algoritmos foram então testados em três categorias diferentes de problemas: dez funções de benchmark, que simulam uma variedade de ambientes complexos; quatro problemas de engenharia, que representam desafios da indústria; e um problema real, para testar a aplicabilidade prática dos algoritmos em um cenário de alta magnitude. Os resultados mostraram que os algoritmos GAAR e MCGA superaram o GA padrão e outros algoritmos de otimização na maioria dos problemas testados. Em particular, eles foram capazes de adaptar-se efetivamente a diferentes tipos de problemas e encontrar soluções eficientes sem a necessidade de reajuste manual dos seus parâmetros. Esses resultados sugerem que a introdução de estratégias bioinspiradas como AR e MDMC pode melhorar significativamente o desempenho do GA, tornando-os uma ferramenta poderosa para uma ampla gama de aplicações do mundo real.