News

Banca de QUALIFICAÇÃO: VITOR CIRILO ARAUJO SANTOS

Uma banca de QUALIFICAÇÃO de DOUTORADO foi cadastrada pelo programa.
DISCENTE: VITOR CIRILO ARAUJO SANTOS
DATA: 07/07/2022
HORA: 09:30
LOCAL: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZTZmYWE5YTItMzg3My00YjExLWFkNTctMDkwZTMxNDBk
TÍTULO:

Estudo sobre a teoria de medição e generalização de modelos de aprendizado de máquinas


PALAVRAS-CHAVES:

aprendizado de máquinas, teoria de resposta ao item, MLOps, subespecificação de modelos, 


PÁGINAS: 100
GRANDE ÁREA: Ciências Exatas e da Terra
ÁREA: Ciência da Computação
SUBÁREA: Metodologia e Técnicas da Computação
ESPECIALIDADE: Sistemas de Informação
RESUMO:

O aprendizado de máquina está sendo cada vez mais utilizado e evoluiu de forma considerável no decorrer dos últimos anos, permitindo-o alcançar o estado da arte na solução de várias tarefas. Entretanto, com seu uso se intensificando, lacunas relacionadas aos procedimentos de medição e de aprendizagem dos modelos se tornaram mais evidentes. Existem vários procedimentos para avaliar modelos, como acurácia, F1 score e outros. Todavia, esses procedimentos não estão vinculados aos vieses indutivos específicos codificados, e essa característica impossibilita avaliar se um modelo foi capaz de aprender por meio de elementos que fazem sentido no contexto em que está inserido. Portanto, isso pode causar algo semelhante a um overfitting de treinamento de modelo, uma vez que o modelo obtém bons resultados em um ambiente específico e resultados ruins quando o modelo precisa generalizar. Pesquisadores acrescentam que a causa raiz disso é a subespecificação. No contexto de aprendizagem de máquina um pipeline é subspecificado se houver muitas maneiras distintas para o modelo alcançar um mesmo desempenho. Ou seja, um modelo pode obter bons resultados de acordo com os procedimentos de avaliação, porém esse modelo pode não ter aprendido de forma correta o que foi lhe passado, com isso esse modelo provavelmente falhará ao tentar generalizar. Dado esse contexto, criamos uma metodologia baseada na Teoria de Resposta ao Item que permite identificar se um contexto de aprendizado de máquina está sofrendo de subespecificação. Para isso utilizamos 126 partições de dados a partir de 21 conjuntos de dados, o que proporcionou que a metodologia gerasse um modelo (não subespecificado) com acurácia de 0.927 e f1-score de 0.932 para a identificação de contextos subespecificados.


MEMBROS DA BANCA:
Presidente - 381.226.502-87 - RONNIE CLEY DE OLIVEIRA ALVES - ITV
Interno - 1809092 - CLAUDOMIRO DE SOUZA DE SALES JUNIOR
Interno - 2378314 - JEFFERSON MAGALHAES DE MORAIS
Externo ao Programa - 2324982 - REGIANE SILVA KAWASAKI FRANCES
Externo à Instituição - RICARDO BASTOS CAVALCANTE PRUDENCIO
Notícia cadastrada em: 21/06/2022 10:25
SIGAA | Centro de Tecnologia da Informação e Comunicação (CTIC) - (91)3201-7793 | Copyright © 2006-2024 - UFPA - bacaba.ufpa.br.bacaba2